

O
sm

an G
ökhan U

yan

A RELIABLE AND SECURE

COMMUNICATION DESIGN FOR

UNDERWATER SENSOR NETWORKS

CONCERNING ENERGY EFFICIENCY

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND

SCIENCE OF ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Ph.D.

By

Osman Gökhan Uyan

January 2023

A
 Ph.D

. Thesis
A

G
U

 2023

A RELIABLE AND SECURE

COMMUNICATION DESIGN FOR

UNDERWATER SENSOR NETWORKS

CONCERNING ENERGY EFFICIENCY

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Ph.D.

By

Osman Gökhan Uyan

January 2023

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all materials and results that are

not original to this work.

Name-Surname: Osman Gökhan Uyan

Signature :

REGULATORY COMPLIANCE

Ph.D. thesis titled “A Reliable And Secure Communication Design For Underwater

Sensor Networks Concerning Energy Efficiency” has been prepared in accordance with

the Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of

Engineering & Science.

Prepared By Advisor
Osman Gökhan Uyan Prof. Dr. V. Çağrı Güngör

Head of the Electrical and Computer Engineering Program

Assoc. Prof. Zafer Aydın

ACCEPTANCE AND APPROVAL

Ph.D. thesis titled “A Reliable And Secure Communication Design For Underwater

Sensor Networks Concerning Energy Efficiency” and prepared by Osman Gökhan Uyan

has been accepted by the jury in the Electrical and Computer Engineering Graduate

Program at Abdullah Gül University, Graduate School of Engineering & Science.

……….. /……….. / ………..

JURY:

Advisor : Prof. Dr. V. Çağrı Güngör

Member : Asst. Prof. Gülay Yalçın Alkan

Member : Asst. Prof. Muhammed Sütçü

Member : Assoc. Prof. Özlem Durmaz İncel

Member : Assoc. Prof. Selçuk Ökdem

APPROVAL:

The acceptance of this Ph.D. thesis has been approved by the decision of the

Abdullah Gül University, Graduate School of Engineering & Science, Executive Board

dated ….. /….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

Graduate School Dean
Prof. Dr. İrfan ALAN

ABSTRACT

A RELIABLE AND SECURE COMMUNICATION

DESIGN FOR UNDERWATER SENSOR NETWORKS

CONCERNING ENERGY EFFICIENCY

Osman Gökhan Uyan
Ph.D. in Electrical and Computer Engineering

Advisor: Prof. Dr. V. Çağrı Güngör

January 2023

Underwater Acoustic Sensor Networks (UASNs) recently attract scientists because

of its wide range of applications and emerging technology. A design challenge in UASN’s

is the limited network lifetime and poor reliability caused by limited battery supply of

sensors and harsh channel conditions in underwater environment. Moreover, sensors

might transmit sensitive data that must be disguised against eavesdropping attacks. To

maintain a reliability level, packet-duplication and multi-path routing method are

suggested, which renders eavesdropping attacks easier. For data security, cryptographic

encryption is the most acclaimed method. However, encryption needs extra computations,

which consume extra energy and cause a decrease in the network lifetime. As a

countermeasure along with encryption against silent listening, fragmenting data and

transmitting in pieces over different paths has been proposed. To address these

challenges, an optimization framework has been developed to analyze the effects of multi-

path routing, packet duplication, encryption, and data fragmentation on network lifetime.

However, the solution time of the proposed optimization model is quite high, and

sometimes it cannot come up with feasible solutions. To this end, in this study, different

regression and neural network methods have been proposed to predict the energy

consumptions of underwater nodes as supplementary methods to optimization models.

Performance evaluations show that the proposed methods yield remarkably accurate

predictions and can be used for energy consumption prediction in UASNs.

Keywords: Energy Efficiency, Reliability, Security, Underwater Sensor Networks

ÖZET

SU ALTI SENSÖR AĞLARI İÇİN ENERJİ VERİMLİ

İSTİKRARLI VE GÜVENLİ BİR HABERLEŞME TASARIMI

Osman Gökhan Uyan

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora
Tez Yöneticisi: Prof. Dr. V. Çağrı Güngör

Ocak 2023

Sualtı Akustik Sensör Ağları (UASN'ler), geniş uygulama yelpazesi ve gelişmekte

olan teknolojisi nedeniyle son zamanlarda bilim insanlarının ilgisini çekmektedir.

UASN'lerdeki bir tasarım zorluğu, sensörlerin sınırlı pil kaynağı ve su altı ortamındaki

zorlu kanal koşullarının neden olduğu sınırlı ağ ömrü ve zayıf güvenilirliktir. Ayrıca,

sensörler gizli dinleme saldırılarına karşı gizlenmesi gereken hassas veriler iletebilir.

Belirli bir iletim istikrarı seviyesini korumak için, bu çalışmada paket çoğaltma ve çok

yollu yönlendirme yöntemi önerilmiştir. Ancak bu yöntemler gizli dinleme saldırılarını

daha kolay hale getirmektedir. Veri güvenliği için kriptografik şifreleme en çok bilinen

yöntemlerdendir. Ancak, şifreleme fazladan enerji tüketen ve ağ ömründe azalmaya

neden olan ekstra hesaplamalara ihtiyaç duyar. Gizli dinlemeye karşı şifreleme ile birlikte

bir karşı önlem olarak, verinin parçalanması ve farklı yollar üzerinden parçalar halinde

iletilmesi bu tezde önerilmiştir. Bu zorlukları ele almak adına, çok yollu yönlendirme,

paket çoğaltma, şifreleme ve veri parçalamanın ağ ömrü üzerindeki etkilerini analiz

etmek için bir optimizasyon çerçevesi geliştirilmiştir. Ancak, önerilen optimizasyon

modelinin çözüm süresi oldukça yüksektir ve bazen uygulanabilir çözümler

üretememektedir. Bu amaçla, bu çalışmada, optimizasyon modellerine tamamlayıcı

yöntemler olarak sualtı düğümlerinin enerji tüketimlerini tahmin etmek için farklı

regresyon ve sinir ağı yöntemleri önerilmiştir. Performans değerlendirmeleri, önerilen

yöntemlerin oldukça doğru tahminler verdiğini ve UASN'lerde enerji tüketimi tahmini

için kullanılabileceğini göstermektedir.

Anahtar kelimeler: Enerji Verimliliği, Güvenlik, İstikrarlılık, Su Altı Sensör Ağları

Acknowledgements

 First, I would like to thank Prof. Dr. V. Çağrı Güngör for supporting me in every

stage of this study. I could not have finished this thesis without his invaluable advice and

supervision.

I would like to give my gratitude to Asst. Prof. Ayhan Akbaş who helped me with

his knowledge when I got stocked, and to Asst. Prof. Gülay Yalçın Alkan and Asst. Prof.

Muhammed Sütçü for taking their valuable time for following my progress and helping

me with their advice.

I would like to thank my family with my heart; my kids, my mother, my father and

my brother motivated me a lot during the study.

Lastly, I would like to thank my dear friend Oğuzhan Ayyıldız for always

supporting and motivating me with his patience and wisdom.

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1 BACKGROUND OF UASNS .. 1
1.2 MOTIVATION AND IDEA .. 3
1.3 PROPOSAL .. 5
1.4 RELATED WORK ... 7
1.5 OUTLINE ... 16

2. NETWORK MODEL .. 17

2.1 COMPOSITION AND SCENARIO ... 17
2.2 UNDERWATER CHANNEL MODEL .. 20
2.3 NETWORK SUCCESS RATE ... 23

3. OPTIMIZATION MODEL .. 25

3.1 OPTIMIZATION CONCEPT ... 25
3.2 MIP FRAMEWORK ... 25
3.3 EXPLANATION OF THE SYMBOLS ... 27

4. ENCRYPTION ALGORITHMS ... 30

4.1 ENCRYPTION CONCEPT ... 30
4.2 ENCRYPTION TYPES .. 31
4.3 SELECTION OF ENCRYPTION TYPE FOR UASNS .. 31

4.3.1 AES Algorithm .. 33
4.3.2 Twofish Algorithm ... 34

4.4 CALCULATING ENERGY CONSUMPTION FOR ENCRYPTION 35
4.5 ASSIGNING ENCRYPTION ALGORITHMS ... 36

5. OPTIMIZATION RESULTS ... 38

5.1 IMPLEMENTATION OF OPTIMIZATION MODEL ... 38
5.2 OPTIMIZATION RESULTS ... 39
5.3 UNDERSTANDING THE RESULTS .. 43

6. HEURISTIC APPROACH ... 45

6.1 HEURISTIC ALGORITHMS .. 45
6.1.1 Simulated Annealing ... 45
6.1.2 Golden Section Search .. 46
6.1.3 Genetic Algorithm ... 47

6.2 EVALUATION OF HEURISTIC ALGORITHMS .. 48

7. MACHINE LEARNING APPROACH ... 54

7.1 WHAT IS REGRESSION? ... 54
7.2 COLLECTING DATA ... 55
7.3 MACHINE LEARNING ALGORITHMS ... 61

7.3.1 Linear Regression ... 62
7.3.2 Support Vector Machine ... 62
7.3.3 Gradient Boosting ... 63
7.3.4 K-Nearest Neighbors .. 63

7.3.5 Ridge Regression .. 64
7.3.6 Decision Trees .. 64
7.3.7 Random Forest .. 64
7.3.8 XGBoost Regression ... 65
7.3.9 Artificial Neural Network ... 65
7.3.10 Convolutional Neural Network ... 66

7.4 EVALUATION METRICS ... 66
7.4.1 R2 Score .. 67
7.4.2 Mean Absolute Error .. 67
7.4.3 Mean Squared Error ... 68
7.4.4 Mean Squared Log Error .. 68
7.4.5 Root Mean Squared Error .. 68
7.4.6 Mean Absolute Percentage Error ... 68
7.4.7 Median Absolute Error ... 69
7.4.8 Max Error ... 69
7.4.9 Explained Variance Score ... 69

7.5 EVALUATION OF ML ALGORITHMS ... 69

8. CONCLUSIONS AND FUTURE PROSPECTS .. 105

8.1 CONCLUSIONS ... 105
8.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY 109
8.3 FUTURE PROSPECTS .. 110

LIST OF FIGURES

Figure 2.1 Illustration of a sample UASN application .. 18
Figure 4.1 Example encryption configuration ... 37
Figure 5.1 Energy consumption as a function of node number, NSR, Lnode and

encryption type .. 40
Figure 5.2 Energy consumption as a function of NSR .. 41
Figure 5.3 Energy consumption as a function of encryption type 42
Figure 5.4 Energy consumption as a function of Lnode .. 43
Figure 6.1 Results of Simulated Annealing algorithm .. 49
Figure 6.2 Results of Golden Section Search algorithm ... 50
Figure 6.3 Results of Genetic Algorithm .. 51
Figure 6.4 Comparison of maximum energy consumption of optimization vs. heuristic

algorithms .. 52
Figure 7.1 Data preparation flowchart .. 57
Figure 7.2 Correlations between the variables in the dataset .. 59
Figure 7.3 Pair-plot of the variables in the dataset .. 60
Figure 7.4 Scatter plot for predictions of LR run with raw data 74
Figure 7.5 Scatter plot for predictions of LR run with normalized data 75
Figure 7.6 Scatter plot for predictions of LR with 10-fold cv and hyper-parameter

tuning ... 76
Figure 7.7 Scatter plot for predictions of SVM run with raw data 77
Figure 7.8 Scatter plot for predictions of SVM run with normalized data 78
Figure 7.9 Scatter plot for predictions of SVM with 10-fold cv and hyper-parameter

tuning ... 79
Figure 7.10 Scatter plot for predictions of Gradient Boosting run with raw data 80
Figure 7.11 Scatter plot for predictions of Gradient Boosting run with normalized data

 ... 81
Figure 7.12 Scatter plot for predictions of Gradient Boosting with 10-fold cv and hyper-

parameter tuning .. 82
Figure 7.13 Scatter plot for predictions of KNN regression run with raw data 83
Figure 7.14 Scatter plot for predictions of KNN regression run with normalized data .. 84
Figure 7.15 Scatter plot for predictions of KNN with 10-fold cv and hyper-parameter

tuning ... 85
Figure 7.16 Scatter plot for predictions of Ridge Regression run with raw data 86
Figure 7.17 Scatter plot for predictions of Ridge Regression run with normalized data 87
Figure 7.18 Scatter plot for predictions of Ridge Regression with 10-fold cv and hyper-

parameter tuning .. 88
Figure 7.19 Scatter plot for predictions of Decision Tree Regression run with raw data

 ... 89
Figure 7.20 Scatter plot for predictions of Decision Tree Regression run with

normalized data ... 90
Figure 7.21 Scatter plot for predictions of Decision Tree with 10-fold cv and hyper-

parameter tuning .. 91
Figure 7.22 Scatter plot for predictions of Random Forest Regression run with raw data

 ... 92
Figure 7.23 Scatter plot for predictions of Random Forest Regression run with

normalized data ... 93

Figure 7.24 Scatter plot for predictions of Random Forest with 10-fold cv and hyper-
parameter tuning .. 94

Figure 7.25 Scatter plot for predictions of XGBoost Regression run with raw data 95
Figure 7.26 Scatter plot for predictions of XGBoost Regression run with normalized

data .. 96
Figure 7.27 Scatter plot for predictions of XGBoost Regression with 10-fold cv and

hyper-parameter tuning ... 97
Figure 7.28 Scatter plot for predictions of ANN run with raw data 98
Figure 7.29 Scatter plot for predictions of ANN run with normalized data 99
Figure 7.30 Scatter plot for predictions of ANN with 10-fold cv and hyper-parameter

tuning ... 100
Figure 7.31 Scatter plot for predictions of CNN run with raw data 101
Figure 7.32 Scatter plot for predictions of CNN run with normalized data 102
Figure 7.33 Scatter plot for predictions of CNN with 10-fold cv and hyper-parameter

tuning ... 103

LIST OF TABLES

Table 1.1 Overview of the Related Work .. 15
Table 4.1 Parameters of the micro-modem ... 35
Table 6.1 Pseudocode for SA .. 46
Table 6.2 Pseudocode for GSS .. 47
Table 6.3 Pseudocode for GA ... 48
Table 7.1 Runtimes for optimizations ... 56
Table 7.2 Dataset statistics .. 58
Table 7.3 Runtimes for ML algorithms ... 70
Table 7.4 Scores and errors of analyzed methods using raw data 72
Table 7.5 Scores and errors of analyzed methods using normalized data 72
Table 7.6 Scores and errors of analyzed methods via 10-fold cross-validation and

hyperparameter optimization ... 73

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

ANN Artificial Neural Network

BER Bit Error Rate

CNN Convolutional Neural Network

GA Genetic Algorithm

GSS Golden Section Search

LR Linear Regression

KDE Kernel Density Estimation

KNN K-Nearest Neighbors

NSR Network Success Rate

MIP Mixed Integer Programming

ML Machine Learning

SA Simulated Annealing

SNR Signal to Noise Ratio

UASN Underwater Acoustic Sensor Network

WSN Wireless Sensor Network

To Kaan Ege and Asya

1

Chapter 1

Introduction
In this chapter, we introduce the study by giving a brief background information

about Underwater Acoustic Sensor Networks (UASN). Then the motivation and the scope

behind the idea of the study is presented.

1.1 Background of UASNs

The surface of the Earth is encircled by water with a percentage of approximately

70%. Oceans, seas, lakes, and rivers forming this colossal water body have remained

unexplored for centuries. The humans neither had adequate technology nor tools that

would allow them to observe the realm under the water surface.

Thanks to the technological developments in the last decades, new smart vehicles

and tools were developed that can operate and accomplish desired operations under the

water surface. This has made several applications possible including academic research,

commercial and military applications. Moreover, there are numerous natural resources

residing such as mines, natural gas, and oil, which can be used for humankind if

processed. Academic research involves examining underwater ecosystem, measuring

pollution, and observation of various aquatic living beings. Commercial applications are

generally developed for human transportation, gas, oil and drinking water transportation

and telecommunications. To maintain these facilities, monitoring the pipelines or cables

against any accidents or leakage has utmost importance to recover from unwanted

situations. Military applications are mostly implemented for security purposes such as

intrusion detection and sea-mine detection.

In the conventional approach, for amassing data from the underwater environment,

several sensors were being deployed around a desired area, where they were left for a pre-

determined period. After the waiting time ends, the sensors were collected back, and their

sensing data was exported for examination [1]. However, this approach had some

2

drawbacks. First of all, there was no communication between the operator and the sensor

nodes during the data gathering period, which portends that there was no possibility for

detecting device failures in the traditional approach. If a node halted for a reason after it

was deployed in its location, the remaining time until the end of the application would be

wasted without being able to collect data from the failed node. Moreover, there was no

opportunity for reconfiguring or tuning the instruments according to different operational

purposes. On the other hand, due to the lack of communication with the nodes, it was not

possible to implement real-time applications. In some studies, like ecological research,

real-time data might not be very essential as long-term observations are sufficient for

conducting studies. Notwithstanding, time critical applications like monitoring pipelines

against leakage or military invasion detection cannot be carried out without real-time data

flow from the sensors. Second, the storage capacity of the sensor nodes was narrow and

the amount of data that could be stored during the application period was bounded.

Keeping the instruments in the area for a long time was unhelpful, because after the data

storage was full, new data could not be saved. Furthermore, deploying and re-collecting

the instruments was not easy, thus adjusting the duration of the application according to

storage capacities would bring new challenges for the professionals.

As it can be understood from the mentioned drawbacks of the conventional

underwater sensor approach, the most essential function for developing better

applications comes out as real-time communication ability. In the most accepted

application scenario, a sink node or base station is placed at the surface of the water,

which receives broadcasted data from the sensor nodes that are scattered below the

surface. To add real-time communication ingenuity to the network, building wired lines

between the sink and the sensor nodes is not a good choice because it is practically

inapplicable due to long distances, and the nodes might move further from the sink

because of the water current. Thus, wireless communication has been agreed as the de-

facto practice by the researchers in the field. In terrestrial sensor networks, radio waves

are used for wireless communication between the nodes. However, the propagation

distance of radio waves underwater is limited up to a few meters and it has a weak

performance [2 - 4]. Because of this problem, acoustic waves are used for wireless

communication in most of the underwater networks instead of radio waves, while new

studies are being held about using optical waves for transmissions. The transmissions may

3

not always be directly, and intermediary nodes might act as relays to deliver the data

coming from another node to the sink, in a multi-hop fashion.

1.2 Motivation and Idea

In this thesis, a novel study is presented about designing a UASN with maximum

applicability, considering several arduous application challenges. This study takes

reliability, security, and energy efficiency problems into its focus, which have not been

studied jointly to the best of our knowledge.

In the literature, network lifetime is roughly defined as the period from the

initialization of the network until the moment when the network becomes unworkable [5].

In this study, we define network lifetime as the span between the beginning of network

operation and the moment when the first node in the network depletes its battery and stops

working. The nodes forming the network operate using the power supplied by their

limited batteries. Because of the wide application space of the networks and sharp

environmental conditions, changing depleted batteries with new ones may not always be

straightforward. Thence, it is important to design the network such that the energy

consumption of the nodes is more controllable. This is the main justification of significant

number of studies existing in the literature, which suggest new methods for using the

energy efficiently and increasing the network lifetime. In addition to the limited battery

matter of UASNs, the broadcast channel and data transmission qualities are narrow due

to harsh underwater conditions. In some cases, the nodes need to use steep transmission

power for successful data delivery, which leads to an increase in energy consumption and

decrease in the network lifetime. From here, it is apparent that energy efficiency is an

important design issue to be handled for UASNs. Furthermore, most of the UASN

applications demand high number of packet transmissions, which makes reliability and

energy efficiency problem more formidable.

In this study, reliability is defined as the rate of successful deliveries of data packets

generated by the sensor nodes to the sink node. When a desired portion of the transmitted

packets of a source node reach the sink favorably, the network is designated as reliable.

As noticed, due to the sharp channel conditions of underwater environment, packet

delivery failures can occur frequently, and to maintain the desired reliability level,

sending copies of the packets can become necessary. As mentioned above, transmission

4

operation requires high energy consumption, which draws a trade-off between reliability

level and energy consumption of the network. Thus, being able to manage the number of

duplications and the transmission channels for copied packets to preserve a desired

reliability level is an essential feature that can limit energy spent for this task.

Another important issue, which needs to be discussed while designing an

underwater sensor network is the security of the communications. In this thesis, we define

security as keeping the transmitted data out of reach for an adversary or rendering it

meaningless even if it is captured. Security is a critical concern for UASNs because

depending on the application, nodes may generate sensitive data that has to be kept as

concealed. The sensors deployed in the underwater space run autonomously and the

communications take place in a broadcast medium. As a consequence of this, there exists

various types of attacks that a UASN can encounter. In this work, we take a special type

of attack called eavesdropping into consideration. In eavesdropping attacks, a silent

listener approaches as close as possible to the nodes or links in the network and tries to

capture the transmitted data among the nodes without being caught [6]. Since data is

broadcasted freely in the space, the eavesdropper can find a suitable place easily, from

where it can record the data flowing in the medium. Differing from active type of attacks

like physical attacks or jamming attacks in the field, eavesdropping is a passive type of

attack because it does not aim at giving damage to the network, but it tries to stay stealth

to record the data roaming on the network instead. Moreover, since it is a passive attack

and the attacker preferably does not interfere with the network, detecting this type of

attack is genuinely hard and needs excessive effort. For this reason, rather than trying to

detect eavesdropping attacks, professionals try to keep the data undisclosed even if it is

captured. To avoid the theft of sensitive data, the de facto application is encrypting the

data before transmission, which renders the data meaningless unless it is decrypted.

Encryption is a powerful technique for securing communications; however, it requires

additional computing that leads to additional energy consumption, which is a

disadvantage for underwater nodes operating with limited batteries.

One more method that is suggested in this thesis as a countermeasure for

eavesdropping attacks is data fragmentation. In this technique, instead of sending a whole

packet over a single link, a node fragments its packet into pieces and transmits each piece

of packet over a different link. This technique comes out as an efficient countermeasure

against eavesdropping attacks, because even if the listener captures one piece of the data

5

over a link, other pieces of data are still missing, and the original data cannot be

defragmented without having reach to the other pieces [7]. Furthermore, as different

pieces of the data are transmitted over different links, it is nearly impossible for an

adversary to travel around the network and capture other pieces to combine them.

Fragmentation technique appears to be an efficient precaution for concealing the data,

nevertheless if it is used along with encryption, it can provide even more protection

against eavesdropping attacks. With this motivation in hand, fragmentation method is also

examined in this work.

Considering these important problems for designing an efficient UASN, our main

motivation in this thesis is to propose robust solutions for the following questions:

• If the UASN application requires a certain network reliability, such as a certain

packet success rate, how can we design a system that maintains this requirement?

Moreover, what is the effect of providing a certain reliability level on the energy

consumption of the nodes and overall network lifetime under different conditions?

• If the UASN application generates sensitive or confidential data, what are the

methods that are applicable to increase the security of the communication? Which

encryption algorithms are more convenient to use in UASNs, and in more detail

what is the impact of assigning a single encryption algorithm to all nodes in the

network instead of choosing a logical algorithm for different nodes? What is the

impact of encryption and data fragmentation on the network lifetime, and should

these two methods be used jointly to increase system security?

• To address all abovementioned design issues, can an optimization framework be

developed? Taking the computational complexity and long time that an

optimization needs to complete into consideration, are other methods like heuristic

algorithms or ML algorithms adequate for solving these design problems?

1.3 Proposal

In this study, to examine all the challenges and design issues mentioned in the

previous section, an optimal multi-path routing strategy has been developed and analyzed

via mixed integer programming (MIP) formulations. The MIP framework is prepared

according to the necessary constraints to investigate the effects of multi-path routing on

6

the network lifetime along with packet duplication for reliability, encryption and data

fragmentation for security. The developed MIP model maximizes the lifetime of the most

energy-consuming sensor node while it guarantees a pre-determined reliability

requirement. In addition, two different encryption algorithms, AES and Twofish, have

also been utilized to balance the trade-off between security supplied by encryption and

network lifetime in UASNs. A brief definition of these algorithms and why they were

selected will be presented in the following chapters.

Although the proposed optimal multi-path routing strategy has been modeled using

an MIP framework, the computational complexity and long solution times arising from

the nature of MIPs encouraged us to examine meta-heuristic solutions, ML regression

models and neural network models as alternative design methods. Even in some cases

optimizations cannot provide feasible solutions because of different arguments like the

intricacy of the problem or the size of the network model.

With this incentive, in this study, we propose using ML methods to reduce the

computation time and energy spent on optimization operations. ML methods can generate

models that have the potential to predict new values quite close to the optimal values with

slight errors. Several regression and neural network methods are investigated during the

studies to identify if ML is practical to be used in our network scenario. To the best of

our knowledge, this study is the first one in the field, concentrating on energy efficiency,

reliability, and security of the UASNs jointly. Moreover, meta-heuristic approaches and

parameter prediction via ML methods has not been applied in UASNs before.

The meta-heuristic approaches examined in the study are Simulated Annealing

(SA), Golden Section Search (GSS), and Genetic Algorithm (GA). In the ML part, the

regression methods that have been analyzed are Linear Regression (LR), Support Vector

Machine (SVM), Gradient Boosting, k-Nearest Neighbors (kNN), Ridge Regression,

Decision Trees, Random Forest and XGBoost Regression, and the neural network

methods that have been analyzed are Artificial Neural Networks (ANN) and

Convolutional Neural Networks (CNN). For each meta-heuristic algorithm, we

investigate the near-optimal solution performance and for each ML algorithm we

investigate the accuracy of the model and its predictions using several scores and error

metrics. To this end, the main contributions of this study can be summarized as follows:

7

• We have developed a multi-path routing strategy via MIP formulations. The MIP

model has the objective of maximizing the lifetime of the network by minimizing

energy consumption of most energy depleting node and balancing the energy

consumption among the nodes while satisfying a pre-determined link reliability

requirement. The MIP model captures the energy consumption trends of using

different encryption algorithms and employing packet fragmentation under the

harsh channel conditions of underwater environments.

• There are some certain network applications like military surveillance, where the

network must maintain a requested data delivery rate to complete its duty

successfully. In this study, we designed a network model which uses packet

duplication in case of packet failures to provide a desired network success rate

(NSR), i.e., desired network reliability. The nodes might send duplicated packets

repeatedly over the same link or send them over separate paths.

• We proposed the usage of two symmetric encryption algorithms, AES and

Twofish, in the network to conceal the transmitted data during wireless

communications. Against silent listening attacks, we also proposed using data

fragmentation and transmitting each data fragment over separate links to make it

harder for an adversary to collect all fragments and gather the entire data.

• We have developed three meta-heuristic approaches and examined the near-

optimal solution performance of these algorithms.

• We have employed eight regression methods and two neural network methods and

examined their prediction performance using several scores and error metrics.

1.4 Related Work

The sensor nodes forming the UASNs commonly operate in a multi-hop fashion,

where contiguous nodes towards the sink node are utilized as relays during data

transmissions. The intermediary nodes both transmit their own sensing data and the data

they receive, coming from farther nodes to the sink node. These nodes naturally spend

more energy than farther nodes since they make more transmission and reception

operations. Routing protocols can help unraveling this problem by sharing and balancing

the operational loads among the nodes more equally.

8

Cao et al. suggested a new transmission method named Energy Level Based Hybrid

Transmission (ELT) that uses the remaining energy information of the nodes to decide

whether using single-hop or multi-hop paths during data transmissions [8]. By using

single-hop links, the load of the nodes close to the sink are balanced. Multi-hop paths are

used only if relay nodes have adequate remaining energy. ELT maintains better network

lifetime when compared to using single-hop paths only.

Su et al. presented another routing method, which chooses the relay node based on

a cost parameter calculated for each link [9]. The cost parameter calculation considers the

remaining energy levels of the nodes and the necessary transmission power between each

connected node for achieving a high SNR value. They show that the algorithm increases

network lifetime reasonably.

In our proposed routing protocol, the nodes utilize packet duplication to be able to

reach a desired NSR. A trade-off between reliability and network lifetime appears here,

since maintaining a reliability level requires more energy consumption caused by packet

duplication and multiple transmissions. Different authors tried to find a balance between

reliability and network lifetime using by suggesting new routing protocols. In their paper,

Pompili et al. presented two routing methods to minimize energy consumption for delay-

sensitive and delay-insensitive applications [10]. Both methods mitigate energy

consumption by exploiting quality of the path from the source node to the next hop,

necessary transmission power, and forward error correction rate. Using these parameters,

the number of retransmissions needed for desired reliability level that cause higher energy

consumption is evaluated.

Chen et al. suggested blending reliability and network lifetime in a routing

algorithm. They proposed an algorithm named Reliable and Energy Balanced Routing

algorithm (REBAR), where a flexible packet transmission radius is set for the nodes

according to their distance to the sink [11]. Nodes closer to the sink are given smaller

radii to limit the possibility of them to become relays to prevent high energy consumption.

However, while a small transmission distance is a positive idea for supporting energy

efficiency, it decreases the probability of successful packet delivery. By optimizing the

parameters of the network, the authors manage to provide energy efficiency and

reasonable reliability during packet transmissions.

9

In the literature, using encryption for concealing the transmitted data generated by

the nodes of the UASNs is also suggested by scientists. In their paper, Xinbin et al.

proposed an energy-efficient and secure data transmission method that uses encryption,

based on chaotic compressive sensing (CCS) [12]. First, the method employs compressive

sensing (CS) using the sparsity of sensing data in time domain. The method reduces

number of transmissions in a period by sampling the data at each frame and transmitting

the final data at the end of the period. Then, a CCS-based encryption scheme is used to

cypher the data at the end of a period to maintain the secrecy of transmission. They

compare the proposed scheme with a conventional TDMA scheme and RACS scheme to

show that the proposed scheme improves bandwidth and reduces energy consumption

while providing concealment.

Castelluccia et al. proposed a simple and secure additively homomorphic stream

cipher to achieve efficient aggregation of encrypted data [13]. The proposed cipher is

lightweight, it uses modular additions, and it is suitable for CPU-constrained devices such

as sensor nodes. They verify that data aggregation based on the proposed cipher can be

used to efficiently compute statistical values such as mean, variance and standard

deviation of sensed data, while achieving significant bandwidth gain and security.

Uluagac et al. introduced an energy-efficient Virtual Energy-Based Encryption and

Keying (VEBEK) scheme for traditional wireless sensor networks (WSN) that reduces

the number of transmissions for rekeying to refresh stale keys [14]. VEBEK encodes the

data generated by the nodes using a coding scheme based on a permutation code generated

via RC4 encryption. The key to the RC4 encryption changes continuously as a function

of the remaining virtual energy of the nodes. In the scheme, a one-time dynamic key can

only be used for one packet. They show that the proposed scheme can eliminate malicious

data from the network in an energy-efficient manner with a 60% to 100% improvement

in overall energy efficiency of the network.

Multi-path routing along with data fragmentation is another countermeasure that

can be used against eavesdropping attacks. Moreover, multi-path routing can provide

several other benefits, such as energy load balancing, reliability, and quality of service

[15]. In their paper, Incebacak et al. investigates the energy overhead of route diversity

for security against node capture and eavesdropping attacks in WSNs [6]. They define

route diversity similar to data fragmentation, where each piece of data is sent through

10

diverse links toward the sink node. They developed an LP framework to model energy

consumption and effects of route diversity in conventional WSNs. They conclude that

energy overhead of route diversity increases with the level of security. If security is

decreased, then the energy overhead also decreases, and for high degrees of security,

energy overhead can be immense.

Lee et al. studied data distribution as a remedy for silent listening attacks. They

investigate the problem of data distribution over multiple paths to minimize the maximum

harm that a network suffers when a single link attack occurs [16]. The solution is

formulated as a maximum-flow problem that can be solved in a distributed manner. They

show that both routing security and algorithm performance can be successfully achieved

during real applications.

Chen et al. proposed a safe method for choosing multiple paths as next hops for a

source node and transmitting data over these paths [17]. Their objective is to minimize

the percentage of captured data by an adversary. Every path is determined with a

parameter that contains previous performance of the path about reliable data delivery.

Multiple paths are selected based on these parameters and data is transmitted over these

paths using min–max optimization and game theory.

Metaheuristic methods are valuable for solving optimization problems in shorter

time with less resources than optimizations for complex problems. These methods strive

for finding approximately optimal solutions. Optimizations about routing protocols,

reliability, and energy efficiency problems of WSNs are typically NP-hard problems,

which encouraged researchers to use meta-heuristic approaches in order to bypass

optimizations or solve the problems with alternative ways. In their paper, Xenakis et al.

propose employing SA method to optimize network lifetime with regard to topology of

the network, transmission power needed for the nodes and size of data packets [18]. The

results of their simulations demonstrate that SA method, regarding given parameters can

converge to near optimum values of minimum energy cost.

Alrashed et al. proposed using meta-heuristic approach for solving the optimization

of automatic actor deployment problem in WSNs [19]. In their WSN scenario, actors are

described as nodes that do not have constraints about resources, and they are deployed in

the network to improve computation and communication capability so that lifespan for

11

other nodes can be increased. Experimental results given in the paper shows that the meta-

heuristic approach can solve the problem adequately by covering at least 80% of the

sensors with optimum number of allocated actors in the network.

Zhong et al. used ant colony optimization method in their study to maximize the

lifetime of WSNs by introducing mobile sink node [20]. To implement the algorithm,

multiple parameters such as restricted areas and the maximum movement range of the

sink are considered. Outcomes of the simulation indicate that the proposed method has a

very propitious performance for solving the maximization problem.

Han et al. proposed a meta-heuristic approach named CPMA, which is a clustering

protocol for WSNs based on harmonic search and artificial bee colony algorithms [21].

The method aims at maximizing the lifetime of the network by selecting cluster heads

that reduce the overall energy consumption while distributing the energy among the

nodes. Their simulation results demonstrate that the approach can improve network

lifetime and throughput. They also state that the approach can be adapted to work well

for different network lifetime definitions.

In their paper, Guleria et al. proposed a novel meta-heuristic method named unequal

clustering based on ant colony algorithm for selecting optimal cluster head in WSNs [22].

Their approach focuses on choosing the optimal links among the nodes that increases the

number of packets delivered. By this, the number of transmissions is reduced, and energy

consumption of the nodes is decreased effectively. Analysis of proposed method with the

existing approaches demonstrate the effectiveness of their work in WSN applications.

Yildiz et al. proposed an MIP optimization model to maximize network lifetime and

maintain non-repudiation security [23]. They consider communication/computation

energy characters of some Digital Signature (DS) algorithms. This problem is stated as

NP-hard and computationally complex, thus they implement and use SA and GSS

methods to solve the problem in reasonable time.

Hosseini et al. implemented GA for solution of the multi-objective optimization

problem to design a self-organized WSN with minimum interference and power

consumption [24]. In the study, reliability and power consumption of the nodes are

evaluated jointly. Moreover, they proposed a Hierarchical Sub-Chromosome Genetic

Algorithm (HSC-GA) to further decrease the solution time. Comparative analysis shows

12

that the proposed approach can poise power consumption and data reliability of the nodes

and increase the network lifetime.

The nodes in an UASN deplete the energy residing in their limited batteries to carry

out their operations. While building an underwater sensor network, it is essential to follow

the energy consumed for different sensor node processes, such as transmission, reception,

and encryption. Nodes usually forward their sensing data to sink in a multi-hop fashion,

where consecutive nodes have the role of relays, transferring the data to the sink node.

To investigate energy consumption of the sensors, scientists mostly run optimizations and

examine the outcome of them. Variously, instead of running heavy optimizations for

individual networks, machine learning methods can be used to conceive accurate

predictions about different network construction parameters.

Hu et al. proposed a flexible and energy efficient routing protocol named QELAR

built on reinforcement learning [25]. The presented routing protocol aims at extending

lifetime of the network by trying to produce a balance and have the remaining energy of

sensor nodes distributed equally. They compute a reward function using the residual

energy of the nodes and the energy distribution among a node group. Then this reward

function is used for deciding the next target for data transmission in a multi-hop manner.

Their comparative analysis with existing protocols shows that the method can achieve

20% longer network lifetime.

Alsalman et al. introduced a balanced routing protocol for underwater sensor

networks based on machine learning named BRP-ML, which makes use of several

network parameters such as energy, latency, and void area [26]. The proposed protocol is

also based on reinforcement learning and it is designed to reduce the energy consumption

and latency in the network. Their simulation results show that the method is successful in

increasing energy efficiency and decreasing latency throughout the network.

Karim et al. proposed another novel routing protocol named QL-EEBDG built on

Q-Learning, which is a kind of reinforcement learning methods. The target of the protocol

is gathering data from the sensor nodes with commensurate and efficient energy

consumption [27]. The task of the protocol is to predict the optimal path to transmit the

data to the consecutive hop. They also define a method to avoid void hole probability,

where a node is selected as the next destination only if there exists another available

13

destination it can send the data. They have run several simulations to demonstrate the

efficiency of the proposed technique. The results of simulations shows that the method

achieves increased network lifetime.

Su et al. also proposed a deep Q-learning based routing protocol named DQELR,

which takes energy efficiency and latency problems of UASNs into consideration [28].

The aim of the suggested method is to minimize energy consumption and network delay

by finding global optima about routing paths. The method uses depth and energy values

of the sensor nodes at each communication frame to calculate scores named Q-values and

chooses the nodes with highest scores as the next hops. The results of the simulations run

by the authors display that the method can achieve a better network lifetime with

improved latency and energy efficiency performances compared to other widely used

methods in UASNs.

Ateeq et al. proposed a Deep Neural Network (DNN) based technique to model the

relationship between delay and several different parameters such as queue size, traffic

rate, and transmission power in an Internet of Things (IoT) [29]. According to the

evaluations given in the study, the proposed model provides an accuracy of 98% in

predictions, even if it is trained with a small amount of data.

Akbas et al. used machine learning in classical wireless sensor networks for

prediction of network parameters [30]. Instead of running optimizations to find optimal

operation configurations of a WSN, they used a neural network-based approach to reduce

the computational cost. They focused on predicting network parameters such as lifetime,

transmission power, and distance between the nodes. To train the neural network, they

have used the data generated via optimizations. The generated model makes predictions

about mentioned parameters with acceptable errors.

Huang et al. presented a deep learning method based on dual convolutional neural

networks to make predictions about link reliability in a WSN routing mechanism [31].

Their method flexibly checks topological features of the nodes to compute the reliability

of candidate target links. When compared to classical routing methods, the proposed

algorithm improves the resilience of the network while depleting the energy efficiently.

Yilmaz et al. suggested a machine learning model based on deep neural network

(DNN) to determine the lifetime of a terrestrial WSN [32]. The proposed model was able

14

to make good predictions about networks with high number of nodes even if it was trained

with a dataset generated with small number of nodes.

In their study, Akbas et al. used single-based and stack ensemble-based machine

learning models to make parameter predictions in terrestrial WSNs [33]. For single-based

ML models, their test results show that Adaboost makes better estimations when

compared to Elastic Net and SVR. Moreover, stack ensemble-based models make the best

predictions for WSN parameters when compared to single-based models.

In [34], Chen et al. used Logistic Regression algorithm to predict channel conditions

according to the measured BER before transmitting data. They have collected data from

the testbed that they set up to train and test the ML algorithm. Their results show that

packet loss rates and energy consumption of the network can be decreased by the method

they proposed.

Kalaiarasu et al. proposed using Logistic Regression to predict the performance of

an underwater sensor network based on several parameters like wind speed, tide, and

modem features [35]. They collected testing data from experiments conducted in the field.

Their results present that the proposed model can make predictions about network

performance with good accuracy.

Alamgir et al. used a Boosted Regression Tree method to predict a suitable link

adaption procedure for modulation and coding [36]. They used the dataset collected by

experiments in sea conditions. Their method makes predictions according to the data rate,

SNR and BER of the communication links. Their method generates a model to classify

moding schemes with an accuracy of 99%.

In [37], Eldesouky et al. implemented four machine learning algorithms for

handover prediction using the water flow speed and direction of the communication in

underwater wireless sensor networks. For the training process, they used the data

collected by The Korea Hydrographic and Oceanographic Agency from real marine

experiments. Their results show that the generated models can make predictions with an

accuracy of 95%.

Liu et al. proposed using deep neural networks to predict channel state information

for adaptive underwater downlink OFDMA system [38]. They used the data recorded in

15

marine experiments to train and test the model. They suggest that their model makes better

predictions than the existing solutions in the literature.

Table 1.1 Overview of the Related Work

Study [#] Channel
Model

Multi-
path

Min.
reliability

level
Encryption Data

fragmentation Heuristics ML

[6] ⨯ ✓ ⨯ ⨯ ✓ ⨯ ⨯
[8] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ⨯
[9] ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
[10] ✓ ⨯ ✓ ⨯ ⨯ ⨯ ⨯
[11] ✓ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯
[12] ✓ ⨯ ⨯ ✓ ⨯ ⨯ ⨯
[13] ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯
[14] ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯
[16] ✓ ✓ ⨯ ⨯ ✓ ⨯ ⨯
[17] ⨯ ✓ ✓ ⨯ ✓ ⨯ ⨯
[18] ✓ ⨯ ⨯ ⨯ ⨯ ✓ ⨯
[19] ⨯	 ⨯	 ⨯	 ⨯	 ⨯	 ✓ ⨯
[20] ✓	 ✓	 ⨯	 ⨯	 ⨯	 ✓ ⨯
[21] ✓ ⨯ ⨯	 ⨯	 ⨯	 ✓ ⨯	
[22] ⨯ ✓	 ⨯	 ⨯	 ⨯	 ✓ ⨯	
[23] ⨯ ⨯ ⨯ ⨯ ⨯ ✓ ⨯
[24] ⨯ ⨯ ✓ ⨯ ⨯ ✓ ⨯
[25] ✓	 ✓	 ⨯ ⨯	 ⨯	 ⨯ ✓	
[26] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯ ✓
[27] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[28] ⨯ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[29] ⨯	 ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[30] ✓	 ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[31] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[32] ⨯ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[33] ✓	 ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[34] ✓ ✓ ⨯	 ⨯	 ⨯	 ⨯	 ✓
[35] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓
[36] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓
[37] ⨯ ✓ ⨯ ⨯ ⨯ ⨯ ✓
[38] ✓ ✓ ⨯ ⨯ ⨯ ⨯ ✓
This study ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.1 gives an overview of the related work. There are recent studies in the

literature that proposes using machine learning algorithms for predicting different design

parameters for underwater acoustic networks. To the best of our knowledge, a study has

not been conducted that uses machine learning and neural network algorithms to predict

energy consumption values including reliability and security concerns in UASNs in the

16

literature. In the mostly used approach, setting up network parameters based on

optimization frameworks is widely studied and it is an unquestionably efficient method.

However, due to the hardness of the problems and the complexity of the calculations,

optimizations generally take too much time to finalize and sometimes they cannot bring

any feasible results forward. To avert running heavy and complex optimizations, we

suggest employing machine learning methods, which can be beneficial for predicting

network design parameters with nominal errors in a noticeably short amount of time. In

this study, several different ML methods have been investigated to offer suitable

candidates to be used for energy consumption evaluation and network parameter

prediction instead of running computationally expensive optimizations.

1.5 Outline

The rest of this thesis is outlined as follows. In Chapter 2, the network model is

presented along with application scenario, underwater channel model and network

success rate. In Chapter 3, the optimization framework is explained in detail. In Chapter

4, a brief description about encryption and the algorithms used in this study are given.

Chapter 5 represents the results and discussions about optimizations. Chapter 6 presents

an introductive information about heuristic approach and the algorithms used in this

study, along with the performance results of the implemented algorithms. In Chapter 7,

motivation of using machine learning is given, the algorithms and evaluation metrics used

in the study are explained and performance results of the algorithms are presented.

Finally, Chapter 8 concludes the thesis.

17

Chapter 2

Network Model

In this section, we demonstrate the network composition and application scenario.

Additionally, we explain the underwater channel model in detail, and we present packet

duplication method with formulas and definitions.

2.1 Composition and Scenario

The network architecture presented in this study is composed of arbitrarily

disseminated nodes in a three-dimensional underwater space. In the UASN application,

all nodes excluding the sink node generate data packets as they sense the environment.

Then these data packets are transmitted to the sink node. For distant nodes, sending the

generated data directly to the sink node requires high transmission powers and this is not

an efficient method since network lifetime is an essential subject that should be enhanced.

Hence, transmission of the generated data of the nodes is carried out over multi-hop paths,

where the nodes in-between the source node and the sink node have the role of relaying

the incoming data packets.

The sensor nodes operate in an autonomous fashion, and we presume that there is

not any data transmission from the sink to the sensor nodes. Moreover, we affirm

occupying a TDMA based approach for scheduling the communications among the nodes,

where each node sends its sensing data inside the timeframe allocated to it. Thence, we

assure that there occurs no signal interference among the communications.

In the network architecture, we use the parameters of micro-modems developed by

Gangneung-Wonju National University of Republic of Korea for sensor nodes [39, 40],

which make omni-directional broadcast and we assume that every sensor node is

equipped with a camera, namely CMUcam2 [41], that takes colored photographs form

the environment with a resolution of 87x143 pixels. With this resolution setting, the

camera produces 12441 pixels and 3 bytes of RGB data for each pixel, which means a

18

total of 37323 bytes of photographic data is generated at each sequence [42]. Figure 2.1

illustrates a sample deployment of a UASN where sensor nodes are scattered in three-

dimensional space.

Figure 2.1 Illustration of a sample UASN application

In the application scenario, the network needs to maintain a predefined reliability

level named Network Success Rate (NSR). In a network application, transmitting a

definite proportion of data packets to the sink successfully can be a critical feature.

Especially, for time-critical application scenarios delivering contiguous data profitably to

the sink node is imperative. In order to maintain this predefined reliability threshold, we

propose a multi-path routing protocol which uses packet duplication and transmits the

copied packets repeatedly. Sustaining NSR might affect energy consumption and network

lifetime, thus we have built an MIP optimization to analyze the possible effects.

19

At this point, it is important to mention that the network running autonomously is

vulnerable to several attacks. The attack types can be put into two categories as active

attacks and passive attacks. Examples of active attacks are physically harming the sensor

nodes or jamming attacks that render the network non-operatable. In passive attacks, the

adversary prefers not to engage with the network but tries to record the transmitted data

between the nodes silently without being noticed. It is nearly impossible to detect a

passive attack in a UASN because there is no interference between the nodes of the

network and the attacker. In such a case, it is more adequate to secure the sensing data

instead of trying to detect the attacker. In the network scenario, one silent listener roams

around a close location to randomly selected nodes of the network and it tries to eavesdrop

transmitted sensing data among the nodes. Thus, one of the focuses of the network design

is to keep the sensing data concealed.

Security of the network communications can be increased by using encryption and

data fragmentation. When the data is encrypted, it will stay concealed even it is recorded

by a silent listener unless the attacker knows how to decrypt the cipher. Furthermore,

transmitting data in pieces over diverse links, instead of sending the entire data over a

single link to the sink node can also be used as a security countermeasure in conjunction

with encryption. Although encryption is a good defense against silent listening attacks,

multi-path routing renders eavesdropping more difficult and helps augment the data

security of the network. By slicing the data into fragments and transmitting each fragment

through different paths, we force an adversary to record all fragments to be able to

reconstruct a node's original data. Another important point to mention is that, since the

nodes are allowed to transmit duplicated packets over different links in order to increase

the reliability of the network, it makes the listening task easier for an adversary to observe

any of these links that the duplicated data is transmitted. Hence, data fragmentation comes

out as an efficient solution for the security weakness caused by packet duplication.

Moreover, gathering fragments of data from scattered links will demand more energy

consumption for an attacker compared to gathering data from a single path. Definitely,

the adversary has to consume more energy to record all the data fragments to reconstruct

the complete original data if data fragmentation is employed. On the other hand, data

fragmentation not only makes the adversaries spend more energy but also it brings an

energy burden to the nodes in the UASN. When the data is fragmented and pieces are

transmitted through multiple paths, it is evident that all of these pieces cannot be

20

transmitted over optimal paths. Some pieces of the data will need to be transmitted over

non-optimal paths, which will in return increase energy consumption of the nodes and

cause a decrease in the network lifetime.

2.2 Underwater Channel Model

In the underwater medium, propagation distance of radio waves is very meagre,

limited to only a few meters. Due to this natural reason, using radio waves for underwater

communication is not suitable for applications, particularly the ones designed for

covering a wide range of space. Nevertheless, when the communications between aquatic

creatures are observed, it is discovered that especially whales and dolphins use sound

waves even in very long distances. This discovery has leaded researchers in the field to

use acoustic communications for underwater wireless sensor networks.

In the underwater acoustic channel model, one of the most critical problems about

evaluating lifetime of the network is calculating the transmission power of the sensor

nodes in communications, because most of the energy is spent for data transmission and

reception operations by the nodes. Considering that the underwater environment has

challenging channel conditions, minimum required transmission power to send a data

packet successfully between the nodes depends notably on the transmission distances. In

this study, we have used the underwater channel model proposed by Felemban et al. in

their research paper [43]. To calculate the required transmission power between the

nodes, we used the formulas presented below.

First, the propagation of acoustic weaves in the underwater medium are determined

by sonar equations that are commonly studied [44]. In the literature, there are two types

of acoustic systems that are called active or passive systems. In active systems, a node

generates a sound and listens back for its echoes like a radar. Oppositely, in passive

systems, a node simply listens to sounds coming from other sources. We define the UASN

as a passive system because the nodes listen only acoustic waves coming from other

nodes, and they do not listen to their own echoes. The passive acoustic formula uses the

produced sound and background noise.

In [45], Urick defines the passive acoustic formula as follows:

21

 𝑆𝐿(𝑑, 𝑓) = 𝐴(𝑑, 𝑓) + 𝑁(𝑓) + 𝑆𝑁𝑅 + 𝐷𝐼 (2.1)

In (2.1), DI represents directivity index. Nevertheless, since the sensor nodes use

omni-directional broadcast, directivity index is taken as 0. SNR is the abbreviation for

Signal to Noise Ratio that is observed at the receiver node. A(d,f) is the attenuation for

distance d and frequency f for underwater sound. N(f) is the power spectral density of

ambient noise for given frequency value f, which is modeled by four factors in

underwater environment. These four factors are water turbulence Nt, ship noise Ns,

thermal noise Nh, and wave noise Nw. From these factors, the equation of ambient noise

is found as:

 𝑁(𝑓) = 𝑁! + 𝑁" + 𝑁# + 𝑁$ (2.2)

In [44], formulas for these four factors given in the formula (2.2) of ambient noise

are defined as follows:

10𝑙𝑜𝑔(𝑁!(𝑓)) = 17 − 40log	(𝑓) (2.3)

10𝑙𝑜𝑔(𝑁"(𝑓)) = 40 + 20(𝑠 − 0.5) + 26 log(𝑓) − 60 log(𝑓 + 0.03) (2.4)

 10𝑙𝑜𝑔(𝑁#(𝑓)) = −15 + 20log	(𝑓) (2.5)

10𝑙𝑜𝑔(𝑁$(𝑓)) = 50 + 7.5𝑤
!
" + 20 log(𝑓) − 40 log(𝑓 + 0.4) (2.6)

Equation (2.3) calculates water turbulence for a given frequency, equation (2.4) is

given to calculate the ship noise for frequency f, equation (2.5) calculates the thermal

noise for the given frequency, and equation (2.6) calculates the wave noise for frequency

f.

In equation (2.1), A(d, f) defines the attenuation or path loss in underwater acoustic

medium and it is affected by two factors, energy spreading and wave-absorption. Energy

spreading factor is related to the transmission distance of the sound [45]. But wave-

absorption is related to communication frequency because signals with higher frequencies

are subject to more attenuation as acoustic energy turns in to thermal heat. In [46], the

equation for attenuation is given as:

𝐴(𝑑, 𝑓) = 𝑘𝑙𝑜𝑔(𝑑) + 𝛼(𝑓)𝑑	 ×	10%&	 (2.7)

22

In equation (2.7), a(f) is given as absorption coefficient while k is given as the

energy spreading coefficient. In common use, for spherical or omni-directional spreading,

k is accepted as 20. For absorption coefficient, the formula proposed by Ainslie et al. is

used [47], which considers various features such as water temperature, depth in meters,

acidity, and salinity of the water.

In Felemban’s study [43], Orthogonal Frequency Division Multiplexing (OFDM)

encoding technique and Quadrature Amplitude Modulation (QAM) scheme are adopted

for the communications. In our network model, we assumed using OFDM with 16-QAM

modulation, and the formula for calculating bit error rate (BER) for the channel is given

by Proakis in [48] as:

𝐵𝐸𝑅 = &
'(
𝑒𝑟𝑓𝑐 JK (

)*
+#
,$
L (2.8)

In formula (2.8), k is equal to log216 (=4), Eb / N0 is the power spectral density ratio

given by energy per bit-to-noise, and erfc is the complementary error function which

represents the area under a Gaussian probability density function and is used to compute

the probability of a Gaussian process. The following equations is given for calculating

Eb/N0:

+#
,$
= SNR -%

.
 (2.9)

In equation (2.9), R is the bit-per-seconds data rate and BN is the noise bandwidth

measured in hertz. Using equation (2.8) and (2.9), for a given BER, SNR (non-dB) is

derived as:

𝑆𝑁𝑅 = 10
&%'(),+)

!$ (2.10)

Equations (2.2) to (2.10) are used to calculate the components on the right-hand

side of equation (2.1), and SL(d, f) is computed accordingly. In the formula (2.1), SL(d, f)

represents the source level of sound broadcasted by a source node which is at a distance

d to the target node and uses frequency f for transmissions. Moreover, in [37] SL(d, f) is

also defined as:

23

 𝑆𝐿(𝑑, 𝑓) = 10log	(/-
/$
)	 (2.11)

In formula (2.11), I0 represents the reference intensity of sound in water, and it is

equal to 6.7 x 10-19 W/m2 [49]. The intensity of generated sound is It and it can be

computed by reversing the equation (2.11) as:

 𝐼! = 10
&.(),+)
!$ 	× 	 𝐼*	 (2.12)

Finally, from formulas (2.1), (2.11), and (2.12), the equation to compute

transmission power for a node that targets another node at distance d using frequency f

can be written using sound intensity It and depth of the node h (in meters) underwater as:

 𝑃! =	 𝐼! 	× 	2𝜋	 × 	1𝑚	 × 	ℎ	 (2.13)

According to the topology of the UASN nodes, for each node pair necessary

transmission power is calculated and given to the optimization as input for determining

optimal paths that will maximize lifetime of the network. Furthermore, throughout the

network, for each link the reception power of the destination node is accepted as 10% of

the transmission power that the source node uses.

2.3 Network Success Rate

In the proposed UASN scenario, the network needs to maintain a predefined

reliability threshold named Network Success Rate (NSR), which defines the minimum

necessary requirement for a generated packet to reach the sink node successfully, namely

the percentage of completed packet delivery. In the sharp conditions of underwater, if the

possibility of successful transmission of a packet on a single link is below the NSR

threshold, data packets might need to be duplicated, and copied packets need to be sent.

A copied data packet can be sent through the same path in multiple times, or it can be sent

through multiple paths synchronously. The decision for the number of duplications and

the paths to be used is taken according to a parameter named packet success rate (PSR),

which is calculated for a given packet with length l and bit error rate (BER) by:

24

 𝑃𝑆𝑅 = (1 − 𝐵𝐸𝑅)0 (2.14)

If a node transmits a packet to another node over a single path without using

duplication, PSR for the utilized path is equal to the NSR for that packet. But if packet

duplication is preferred, then the NSR for the transmitted packet from a node is computed

based on the PSRs of all the links where an individual packet is transmitted on according

to the following formula:

 𝑁𝑆𝑅 = 1 −	∏ (1 − 𝑃𝑆𝑅1)1∈3 	 (2.15)

In the equation (2.15), 𝐷 is the set of duplicate packets and 𝑃𝑆𝑅1 is the PSR of the

𝑖!# path where the packet will be transmitted through. For simplicity, BERs are assumed

equivalents for all paths, which makes PSR values same for all of them. Thence, whether

all the packets are sent through the same path or through different paths does not affect

NSR calculation. In this case, for both sending duplicate packets over 𝑛 multiple paths or

sending 𝑛 duplicate packets over one path, the formula of NSR can be written as:

 𝑁𝑆𝑅 = 1 − (1 − 𝑃𝑆𝑅)4	 (2.16)

From the formula (2.16), the minimum number of duplicate packets M, which is

enough to satisfy a predefined NSR threshold is given by:

 𝑀 =	 567()%,9.)	
567()%<9.)

 (2.17)

During data transmissions, an intermediary node might also need to duplicate the

data coming from a source node according to the PSR between itself and the sink node.

The decision of occupying multiple paths or single path for satisfying the NSR is

important for balancing energy consumption among the nodes, and it is taken by the

optimization model given in Chapter 3.

25

Chapter 3

Optimization Model

In this thesis, we have studied about building a UASN that focuses on reliability

and security. When designing a wireless sensor network, there are different parameters

that must be considered, nevertheless, the most essential issue that must be analyzed is

the lifetime of the network. For analyzing different design subjects, we have developed

an MIP framework with necessary constraints, definitions, sets, parameters, and decision

variables. The MIP model will be elaborated in this chapter.

3.1 Optimization Concept

A mixed integer programming model is built to solve an optimization problem

where a set of unknown variables is determined using a set of continuous variables. In the

model, the constraints that define the rules of the problem are linear equations or

inequalities, and the objective function is the target to be optimized either by minimizing

or maximizing [50].

Modelling composite frameworks using mixed-integer programming routinely

consists of a three-step operation [51]. In the first step, the decision variables of the

framework that describe the objective that is to be optimized are defined. Then the

constraints that the model must obey are written. Finally in the third step the determined

objective function is given. After preparing the initial framework, constraints can be

refined or sometimes re-written according to the problem definition.

3.2 MIP Framework

The main target of the proposed framework is to minimize the maximum energy

consumed by the nodes in every single transmission round. The problem of network

lifetime maximization is handled by minimizing the highest presumed energy consumed

26

by the nodes at each round. A transmission round can be defined as the required duration

for all the packets generated by all the nodes to arrive at the sink node. The optimization

model is given below:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝜃	 (3.1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:	

𝜃 ≥ 	 𝑡=`𝑃(

4

(>)

a ` 𝑃?,ℓ𝓎ℓ(
ℓ∈B/(C)

+	 ` 𝑃!,ℓ𝓍ℓ(
ℓ∈B0(C)

d + ` 𝐸(𝓍ℓ(
ℓ∈B/(C)

	 , ∀𝑗 ∈ 𝑁\{0},	 (3.2)

𝑀 ` 𝓎ℓ(
ℓ∈B/(C)

≥	 ` 𝓍ℓ(
ℓ∈B0(C)

	 , ∀𝑗 ∈ 𝑁\{0}, ∀𝑘 ∈ 𝑁\{0}, 𝑗 ≠ 𝑘,	 (3.3)

𝑀	𝑢1(≥ 𝓍1(, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\	{0},	 (3.4)

` 𝓍ℓ(
ℓ∈B0(C)

≤ 𝑀𝑟D , ∀𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝑁\	{0},	 (3.5)

` 𝓎ℓ(
ℓ∈B/(C)

≤ ` 𝓍ℓ(
ℓ∈B0(C)

, ∀𝑗 ∈ 𝑁\{0}, ∀𝑘 ∈ 𝑁\{0}, 𝑗 ≠ 𝑘,	 (3.6)

` 𝓍ℓ(
ℓ∈B0(C)

≥ 1, ∀𝑘 ∈ 𝑁\{0},	 (3.7)

𝓍1(= 𝑀𝓎1(, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.8)

` 𝓎ℓ(
ℓ∈B/(C)

≥ 𝑟D , ∀𝑘 ∈ 𝑁\{0},	 (3.9)

`𝑃(

4

(>)

a ` 𝓎ℓ(
ℓ∈B/(C)

+ ` 𝓍ℓ(
ℓ∈B0(C)

d ≤ 𝑡? , ∀𝑗 ∈ 𝑁\{0},	 (3.10)

𝑣!1(− 𝑣#1(+ 𝑛𝑢1(≤ 𝑛 − 1, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.11)

𝓍1(≥ 0, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.12)

𝓎1(≥ 0, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.13)

𝑢1(∈ {0,1}, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.14)

𝜃 ≥ 0, ∀𝑖 ∈ 𝐴, ∀𝑘 ∈ 𝑁\{0},	 (3.15)

` 𝓎ℓ(
ℓ∈B/(C)

≤ 𝐿4EFG , ∀𝑘 ∈ 𝑁\{0}.	 (3.16)

27

In the model, objective function (3.1) is given to minimize the maximum energy

consumption. Equation (3.2) states that 𝜃 must be greater than or equal to the energy

consumption of each node calculated by transmission, reception and encryption energies.

Equation (3.3) provides that if a relay does not receive a packet from node k, then it cannot

transmit anything originating from node k; (3.4) and (3.14) ensure that if there is traffic

on a path, then it is occupied; (3.5) limits packet duplication that will restitute only the

losses of the next path. (3.6) supports packet duplication and confirms that total outbound

traffic from a relay is at least as great as the total inbound traffic; and (3.7) confirms that

at least one packet should go out from original nodes, which approves packet duplication

if it leads to a better network lifetime. (3.8) models packet failures, while (3.9) ensures

that NSR is achieved. (3.10) limits the number of packets a node can send and receive to

the period of a single round (𝑡?). (3.11) confirms that there are no cycles in the routes; it

is acclaimed as MTZ constraints [52]. (3.12), (3.13), and (3.15) ensure the nonnegativity

of the decision variables and (3.14) ensures that 𝑢1(variables are binary.

Finally, (3.16) is given for packet fragmentation, the sum of all flows carrying node

k's data to node i is limited by 𝐿4EFG, so that only a fragment of the data of node k is

assured to reach the relay. For instance, if 𝐿4EFG is selected as 0.25, it means that we limit

the data fragments reaching a relay such that it can receive at most 25% of the source

node’s packets, which portends that source node must divide its packet into four

fragments. Similarly, if 𝐿4EFG is equal to 1, it implies that there is no limitation for a relay,

and it can receive a whole data submitted by the source node.

3.3 Explanation of the Symbols

The symbols given in the optimization framework consist of sets, indices,

parameters, and decision variables that define the connections among the nodes,

transmission and packet duplications rules, and constraints about data flow and energy

consumption. The explanation of the symbols used in Figure 3.1 is as follows:

Sets:

 N: Set of the sensor nodes.

 A: Set of the links between the nodes (arcs).

28

 δ+ (j): Set of arcs that are incoming to node j.

 δ- (j): Set of arcs that are outcoming from node j.

Indices:

 i: Indexes of set A; i∈1,…,m.

 j: Indexes of set N; j∈0,…,n.

 k: Index of the source node; k∈N\{0} implies that the sink cannot be a source

(no data outcomes from the sink).

 l: Indexes sets δ+ (j) and δ- (j).

Parameters:

 P(t,l): Transmission power spent over arc l.

 P(r,l): Reception power spent over arc l.

 Ek: Encryption energy spent by node k.

M: Number of duplicate packets.

ra: Success rate for the network.

 tr: Duration of 1 transmission round.

 tp: Duration needed for transmission of 1 packet.

 hi: Receiving node of arc i (head).

 ti: Transmitting node of arc i (tail).

Decision Variables:

 xik: Fraction of packets coming from node k to node i. i=(u,v) implies that u

transmits 100*xik packets to v.

 yik: Fraction of packets coming from node k received by node i. i=(u,v) implies

that v received 100*yik packets from u (and xik- yik is lost because of bit errors).

uik: Equals to 1 if arc i is occupied and 0 otherwise.

vjk: Used to break any cycles. It implies position of node j on the path between

node k and the sink.

29

θ: Maximum amount of expected energy consumption of nodes 1 to n.

30

Chapter 4

Encryption Algorithms

In the field, there are several types of UASN applications. Some of these

applications need utmost concealment for the data that is prepared and transmitted to the

sink node. In every kind of computer networks including computer networks, ad-hoc

networks, internet of things (IoT), and wireless sensor networks, cryptographic

encryption is a widely used technique that renders the data meaningless even if it is

recorded by adversaries. In this chapter, we will give brief definitions about encryption

and types of encryption algorithms, selection of suitable algorithms for UASNs, selection

of suitable employment of algorithms for different nodes, and energy consumption

evaluation of encryption operations for selected algorithms.

4.1 Encryption Concept

The convenience of telecommunications and network technologies allows people

to share vast amounts of information in various kinds of operations. Information is always

sensitive, and it is quite valuable in modern world. Because of its value, there are various

methods for accessing information, both legally and illegally. However, in most of the

cases, the valuable information must be kept secret.

Usually, it is not easy to detect an attacker especially if it tries passive attack.

Therefore, the shared data needs to be secured before transmitting it. In general

expressions, encryption is defined as the process that takes a plain text as input, cyphers

it, and returns the cipher text as output [53].

In cryptographic encryption, a plain text is the raw data that will be transmitted to

the target node. In the scenario depicted in this study, the plain text is the image data

generated using the cameras attached to the sensor nodes. On the other hand, the cipher

text is the processed version of the plain text. An encryption algorithm is used to generate

the cipher text.

31

The encryption process requires two components basically. One of the components

is called a key, which is used inside the second component that is the encryption method.

During the process, an encryption method applies several mathematical and binary

operations on the plain text using the encryption key to turn plain text into cipher text.

After encrypting data and completing the transmission, to be able to read the

original data, the receiver needs to apply decryption on the cipher text. Briefly, decryption

is the reversed process of encryption, which again uses the key along with several

computations to retrieve the plain text.

4.2 Encryption Types

In the literature, according to the type of encryption keys, there are two basic types

of encryption schemes named as Symmetric (Secret) Key Encryption and Public

(Asymmetric) Key Encryption [54]. As it can be understood from its name, in symmetric

key encryption schemes, the keys that are used for encryption and decryption operations

are the same. Both nodes that are communicating need to retain the identical key to be

able to complete the encryption and decryption operations successfully. AES, Blowfish,

Twofish, DES, 3DES, RC5 and RC6 are some of the example cryptography algorithms

that use symmetric key schemes.

In public key encryption schemes, there are two discrete keys, where one key is

used for encryption and the other key is used for decryption operations. This scheme is

called public key encryption because the key used for encryption is published for anyone

who is willing to encrypt a plain text with that key. On the other hand, the key that is

necessary to decrypt the ciphertext is only available to the intended receiver that is

authorized for decrypting and reading the plain text. The most well-known cryptography

algorithms that use public key schemes are RSA and Elliptic Curve Cryptography.

4.3 Selection of Encryption Type for UASNs

Encryption has been used for both military and civil purposes for a long time to

maintain security of the data shared in communications. In this study, we propose using

encryption to secure the data that is transferred between the sensor nodes against the type

32

of attacks that is called silent listening or eavesdropping to the network traffic by

unauthorized parties. When we have assessed which type of encryption scheme to use,

we ascertained that it is more convenient to use a symmetric key scheme in a UASN.

Because the nodes in the network are determined before deploying them underwater, and

we do not need to publish a public encryption key throughout the network after

deployment if symmetric key is used. Moreover, key distribution is an important issue in

WSN design, and it is another topic independent of our study.

Instead of distributing keys, we offer placing the symmetric encryption key -which

is different for every node- into the nodes’ memories before deployment and we use that

key for encryption operations during the lifetime of the network. The sink node does not

have ant constraint about memory, and it holds every source node’s encryption key to be

used for decrypting the received data. During the process, only the sensed data is

encrypted and the communication stack headers including routing data are clear so that

routing operations can be completed, and the sink node can understand from which node

the data is coming to use the symmetric key of the source node.

The sink node owns the whole set of the encryption keys of each sensor node while

sensor nodes have only the key that they will use for encryption. A relay node does not

have the key of other nodes and cannot decrypt the message coming from other nodes.

One of the reasons for giving only its own key to a node is to increase security under a

node capture attack. If an active attacker physically captures a node, it can access the data

in the memory of that node. And if encryption keys of other nodes reside in a node’s

memory in such a situation, the attacker will have the ability to decrypt data coming from

other nodes, which can render a security risk for the network. A point to be mentioned

here is that, under a node capture attack the symmetric key can be captured too, however,

if the node can be captured, the sensor data that it produces can be read directly without

the need of decryption.

Another reason for selecting symmetric key encryption scheme is that, despite

providing privacy and easy key management, public key algorithms make encryption

much slower than symmetric key algorithms and they need very intensive computation

[55]. For instance, a public key algorithm named RSA has been investigated and it is

shown that RSA is 10 to 10000 times slower than DES algorithm, which is a symmetric

33

key encryption algorithm, in various environments and it needs more computational

energy which is not a desired condition in a UASN.

Based on these ideas, we suggest that it is more convenient to use symmetric key

encryption in UASNs. The selected encryption algorithms have been explained in the

following subsections.

4.3.1 AES Algorithm

AES is an important encryption algorithm that is an example of symmetric key

schemes. It is a specific subset of the Rijndael block cipher, with a block size of 128-bits

and key sizes of 128, 192 and 256-bits [56, 57]. In 2002, it was selected as the US federal

standard, and it became a de facto encryption algorithm since then. The algorithm of AES

relies on the design principle known as substitution-permutation network [58], which

consists of several connected procedures. These procedures replace their inputs by

explicit outputs and these operations are called substitutions. They also shuffle the bits

around and these operations are called permutations.

AES uses a fixed, 128bit input block size and one of the predefined key sizes of

128, 192 or 256-bits [56]. The key size denotes the number of transformation rounds

where a higher key size means improved security with a price of more computations. The

algorithm runs for 10, 12 and 14 rounds for 128, 192 and 256-bit keys respectively. Each

round consists of several processing steps, with one specific step that depends on the

encryption key itself. Since AES is a symmetric key encryption algorithm, a collection of

reverse rounds is applied to decrypt the cipher text using the same encryption key. As a

remark, in the proposed UASN design, sensor nodes in the network will not make any

decryption operations, though decryptions will be carried out by the sink node or base

station which do not have any constraint about memory or energy consumption.

The reason behind the selection of AES algorithm for use in UASNs is that it is

much stronger and faster than its predecessors, it is comparably straightforward to

implement, and it can be implemented in both software and hardware easily. Since the

encryption operations will be done on the hardware of the nodes, it is convenient to select

this algorithm. To make the operations easier, we assume that the implementation of AES

algorithm is installed on the nodes before deployment, and it can be executed on the

sensed data as the plain text before transmission of the data. We propose using 128-bit

34

keys for encryption, which is more than enough for maintaining security of the encrypted

data. A 128-bit key provides 3.4*1038 possible combinations of keys which is almost

impossible to be cracked using brute-force attacks. Moreover, using a larger sized key

instead of 128-bit key makes the implementation more complex, increases the number

and duration of operations, and increases energy consumption as a result.

4.3.2 Twofish Algorithm

Twofish algorithm is another example of symmetric key encryption schemes. It was

first introduced in 1998 by Counterpane Labs, and it was one of the five finalists of

Advanced Encryption Standard (AES) but was not selected as AES [59]. It is one of the

most secure encryption algorithms presented in the literature [60] and it has not been

cracked until now [61]. Even though there is no incident in the history about cracking of

Twofish algorithm, it has some known vulnerabilities, and it is considered somehow less

secure than AES even though it has passed many tests [62]. This algorithm was not

patented, and it was placed in the public domain so that anyone willing to use the

algorithm is allowed.

As in Rijndael, Twofish also uses one of the key sizes of 128, 196 or 256-bits, and

a block size of 128-bits. However, it is more lightweight than AES-128, it can be

implemented easily, and as the most important feature for encryption in UASN, it

consumes lesser energy when compared to AES.

During the process, the algorithm uses pre-computed key-dependent S-boxes, and

a relatively complex key schedule. One half of a key is used as the encryption key while

other half of the key is used to modify the encryption algorithm (key-dependent S-boxes).

It is slightly slower than AES when 128bit keys are used while it is faster when 256bit

keys are used.

In our study, we include Twofish [19] as a second encryption algorithm. Two design

challenges for UASNs considered in this study are energy efficiency and security. To

maintain the security of the sensed data in the network, we suggest using encryption.

However, encryption operation needs additional energy consumption, and it is a

disadvantage for network lifetime. Since Twofish requires lesser energy than AES, we

proposed using it as a secondary encryption algorithm in the network. The selection

35

process for which node will be using which encryption algorithm is explained in the

following sections.

4.4 Calculating Energy Consumption for Encryption

In the network architecture, we provide that every sensor node is attached with a

camera that is able to generate approximately 36 kilobytes of raw photographic data at

each step. In order to measure the speed performance of the AES and Twofish algorithms,

we used the technique proposed by Akbas in [63].

First, we have implemented both algorithms in C language according to their

definitive documents to calculate their speed performances. To obtain the CPU runtime

values for the algorithms accurately, all unused CPU peripherals, interrupt routines,

timers, and ports were disabled before the algorithms were run.

Next, the encryption processes of both algorithms were executed a thousand times

in an infinite loop to avoid the looping latency in the measurements. Furthermore, in order

not to produce a delay, a logic analyzer was occupied to measure the runtime of the

algorithms electronically through the CPU port pin, which is toggled in the encryption

loop, generating the square waveform generated on the pin. The final measured wave

period was divided by 1000 to compute the average pure CPU time for the encryption

algorithms. In these experiments, we used the CPU parameters of the micro-modems

developed by Gangneung-Wonju National University of Republic of Korea, since we

used the same parameters to evaluate transmission and reception energies of the nodes.

The parameters of the micro-modem given in the researchers’ white sheet [40] are listed

in Table 4.1.

Table 4.1 Parameters of the micro-modem

Feature Description
CPU STM32F103 (Cortex-M3)
Size 70mm radius, 40mm height
Frequency 70kHz
Missing cells (%) 0.0%
Transducer size 34mm radius
Interface SPI, UART
Battery 29.6V, 8.8 AH (Li-ion)
Power 8W

36

After the experiments, execution runtimes of the algorithms were measured as

64,601 msec for AES and 31,549 msec for Twofish algorithms. Selected sensor nodes

draw 17,4 mA during the encryption process, consuming 57,42 mW of power. As a result,

energy requirements to complete AES and Twofish encryption operations are calculated

as 3,710 mJ and 2,038 mJ respectively.

Note that the selected sensor nodes are used in an “as is” style, which means we do

not consider any modification like adding a second board to the configuration for heavy

computation duties, because it needs both altering the software of the modem and it brings

an additional hardware cost as well. Furthermore, the newly added hardware would still

need a separate battery to operate, and energy consumption of a new configuration needs

a profound study that is out of scope of this thesis.

4.5 Assigning Encryption Algorithms

In the network scenario, each node can be assigned with one of the three encryption

options. A node can use either AES or Twofish algorithm for encryption, or it does not

use encryption and transmits the sensed data as plain text. Since encryption operation

requires additional energy consumption, there is a trade-off between securing the sensed

data and increasing network lifetime. While assigning the nodes with encryption schemes,

the aim is finding a balance against the mentioned trade-off.

To decide on assigning which encryption algorithm to be used by a node, we

consider depth of the node in the three-dimensional underwater space. The depth of a

node means the vertical distance of the node to the water surface. If the depth of a node

is shorter than half of the total depth of the network, it uses Twofish algorithm, and

otherwise it uses AES-128 algorithm for encryption. Figure 4.1 depicts an exemplar

encryption configuration for a 10-node network.

37

Figure 4.1 Example encryption configuration

The reason behind making the assignments in such a way is that energy

consumption of Twofish is nearly 45% smaller than AES, and the nodes that are closer to

sink consume more energy than further ones because they need to relay other nodes’

packets along with their own data. By using Twofish with less distant nodes, we still aim

to provide security for the data they produce, and we allow them to spend lower energy

for encryption operation. In the simulations, we have selected 4 encryption options: no

encryption, network-wide encryption with Twofish, network-wide encryption with AES,

and AES-Twofish mixed encryption according to the idea given in Figure 4.1.

38

Chapter 5

Optimization Results

In this study, we have designed a multi-path routing protocol for UASNs

considering energy efficiency, reliability, and security challenges. To evaluate the effects

of proposed methods, we have developed an MIP framework and we have implemented

optimizations. In this chapter, we present the results of the optimizations in detail.

5.1 Implementation of Optimization Model

The results presented in this work are gathered using MATLAB software [64] for

generating network parameters, and IBM’s CPLEX solver [65] for solving the

optimization model. The CPLEX solver calculates net energy consumption values at each

single transmission round. The maximum energy consumption among all the nodes is

represented with θ in the model. During each round, every node in the network -except

the sink node- generates a single packet. To deal with high amount of relay packets that

might be caused by packet duplication, period duration is set sufficiently long to let

transmissions of up to 500 packets. Size of each packet is determined as 10000 bytes.

The main target of this study is to analyze the effects of reliability and security

configurations on the network lifetime. During the simulations, the network parameters

are chosen accordingly: The simulations are run for networks consisting of 10, 20, 30 or

40 nodes, with 100 randomly chosen topologies for each network size. For simplicity, we

have chosen relatively small network sizes which are sufficient to demonstrate the

functionality of the proposed network model. Running simulations with larger sized

networks takes too much time to complete and in some cases the solver cannot come up

with a feasible solution or cannot terminate within an acceptable timeframe. Furthermore,

no assumption is made, and no default topology is adopted about the distribution of the

nodes in the 3D underwater space. Instead, we are investigating to gain a broad

39

understanding of the performance of the suggested techniques by choosing different

random topologies for each network size. In the simulations, NSR is taken as 0.6, 0.7, 0.8

or 0.9. NSR is not a computed parameter, and it needs to determined according to the

requirements of the UASN application. Thus, we selected these values by considering

different network scenarios that might demand these network success rates. For

simulating data fragmentation, Lnode values are selected as 1.0 (indicating no data

fragmentation), 0.5, 0.33, or 0.25, which means a node does not use data fragmentation

or splits its data at least into 2, 3 or 4 fragments before transmission respectively. For

encryption, we have four options as described in Chapter 4; no encryption, network-wide

encryption with Twofish, network-wide encryption with AES, and AES-Twofish mixed

encryption scheme according to the viewpoint given in Figure 4.1.

As a remark, in the simulations, the packet overhead coming from data

fragmentation and encryption operations are omitted, since they are relatively too narrow

(a few bytes) when compared to packet size. The final energy consumption results are

found by taking average of 100 different results found by solving optimizations for 100

randomly generated network topologies for each network size.

5.2 Optimization Results

The energy consumption values for each parameter combination are presented in

Figure 5.1 which represents energy consumption as a function of number of nodes,

encryption type, NSR and L_node.

Figure 5.1 indicates that, increasing the number of nodes increases energy

consumption of the nodes jointly. The main reason behind this is, larger number of nodes

generate and transmit more data and the relays between the source node and the sink node

need to make more reception and more transmission operations in larger sized networks.

Since transmission and reception operations require high energy in UASNs, larger

networks tend to spend more energy for these operations.

When different encryption types are considered, using only Twofish algorithm

throughout the network causes a short decrease in network lifetime, while using only AES

algorithm for all nodes causes a higher decrease. When AES and Twofish algorithms are

40

used together in a mixed fashion, energy spent for encryption is delimited and the system

still maintains the required security.

Figure 5.1 Energy consumption as a function of node number, NSR, Lnode and
encryption type

For different NSR values, it can be understood that imposing the nodes to maintain

a higher reliability threshold causes a higher decrease in the network lifetime. Enlarging

NSR causes extra packet duplications and increased data transmissions, some of which

are on sub-optimal paths, thus energy consumption of the nodes increases accordingly.

Similarly, increasing the number of data fragments causes some of the transmission

operations carried out over sub-optimal paths, which causes an increase in the energy

consumption. Nevertheless, when data fragmentation is used jointly with encryption, it

causes a small increase on the energy consumption depending on the number of

fragments, which is acceptable and makes it logical to be used along with encryption to

improve the security of the network.

Figure 5.2 depicts energy consumption values as a function of NSR only, for 10 to

40 nodes. To show only the effects of NSR, in this parameter combination no encryption

is used and Lnode is set to 1 meaning no data fragmentation is applied. As it can be seen

from the figure, increasing NSR increases energy consumption visibly. Carrying NSR

from 0.6 to 0.9 induces approximately 150% increase in terms of energy consumption at

41

each network size. This is an anticipated result because by increasing the NSR, we force

the system to make packet duplications and as a result more transmission and reception

operations are held, some of which are through sub-optimal paths.

Figure 5.2 Energy consumption as a function of NSR

Figure 5.3 shows the simulation results as a function of encryption type only, for

10 to 40 nodes. To show only the effects of encryption types, in this parameter

combination NSR is selected as 0.6 and Lnode is again set to 1. As the figure depicts, using

Twofish throughout the network causes around 4-7 Joules increase in terms of energy

consumption while this amount is about 8-13 Joules for using AES algorithm solely.

Employing AES and Twofish algorithms together limits the increase in energy

consumption while supplying a sufficient security level.

42

Figure 5.3 Energy consumption as a function of encryption type

Figure 5.4 depicts simulation results as a function of Lnode only, for 10 to 40 nodes.

Again, in this configuration NSR is selected as 0.6 and no encryption is applied

throughout the network. As the figure indicates, increasing the number of data fragments

increases the energy consumption of the network. For different Lnode values, it can be

understood that imposing the system to make more fragmentation causes a higher

decrease in the network lifetime. Because, as in packet duplication, increasing number of

fragmentations requires more transmissions, some of which are through sub-optimal

paths, and energy consumption increases accordingly.

43

Figure 5.4 Energy consumption as a function of Lnode

5.3 Understanding the Results

In the literature, there are several studies that present diverse routing protocols to

offer a reliability level for underwater sensor networks. However, our study is the first

one which suggests using packet duplication to maintain a reliability level and examines

the effects of packet duplication on the energy consumption of the network. Our study

presents that, if the network application is sensitive about the success of the transmission

of the data to the sink as in a military duty, packet duplication is a good method for

reliability. On the other hand, as Figure 5.2 demonstrates, a more reliable network needs

to consume more energy. Hence, optimization of energy consumption via the MIP

framework we prepared is an important contribution of this study.

Again, if we consider military applications, securing the submitted data is another

important challenge. Encryption methods are used in every kind of telecommunications

for maintaining security, however, in UASNs, the nodes have limited batteries and energy

44

consumption is very important. In this work, we present an encryption scheme which can

limit energy spent for encryption operations while maintaining secure communications,

and then we evaluate the energy consumption values of this scheme in our MIP

framework to show that it can be used in real networks. Moreover, we suggest using data

fragmentation together with encryption to improve the data security.

Finally, we believe that, analyzing packet duplication for reliability and encryption

and data fragmentation for security jointly is the most important contribution of this study.

Since packet duplication makes the network more defenseless against eavesdropping

attacks, an attacker can capture the data easily as the nodes broadcast the same data over

different paths. Against this vulnerability, we introduce the solution of encrypting the data

and employing data fragmentation so that it is still concealed even if it is captured, and

we analyze the effects of these methods on the lifetime of the network.

45

Chapter 6

Heuristic Approach
After gathering results of optimizations, we decided to implement some well-

known heuristic algorithms to ease the solution of the network model, because solving

optimization models can take seriously high amount of computing time and resources,

and even in some cases optimizations cannot come up with a feasible solution within an

applicable timeframe. We have implemented and examined three well-known heuristic

algorithms to solve the problem of assigning encryption algorithms to the nodes in the

network optimally. A brief description and pseudocode for these algorithms are given in

the following section.

6.1 Heuristic Algorithms

Heuristic algorithms require less resource than optimizations, however they do not

always provide optimal solutions, instead they usually produce approximately optimal

results. In general, heuristic methods start with an initial solution and try to improve the

solution iteratively by refining the results at each step. To be able to use heuristic

algorithms, we defined the problem as a binary search problem [66] to assign each node

to use one of the Twofish and AES encryption algorithms. We defined a binary solution

vector S = [S2, S3, ..., Sn] that is given as the initial solution for heuristic algorithms. In

the solution vector, Si = 1 means that node-i uses AES and Si = 0 means that node-i uses

Twofish method for encryption. The heuristic algorithms we implemented are Simulated

Annealing, Golden Section Search and Genetic algorithms, which will be introduced

briefly in the following subsections.

6.1.1 Simulated Annealing

Simulated Annealing (SA) algorithm is a probabilistic method for approximating

the global optimum. The name comes from the annealing technique used in metallurgy,

which is a technique used for heating and supervised cooling of a material to reduce its

46

defects. SA is an efficient method, and it can be used to approximate the global minimum

for a function with many variables. In 1983, this method was proposed for solving the

traveling salesman optimization problem [67]. At each iteration, SA chooses a random

step while searching for the global optimum. If the selected step improves the solution,

then it is accepted without any condition. On the contrary, if the new step does not

improve the solution, it can still be accepted with a probability given as 𝑒%(∆IJC/!)

depending on the success of the step, where ∆𝑂𝑏𝑗 is the difference with the result of new

step and the best result. The reason behind accepting a bad move within a given

probability is to provide an escape from getting lost in a local optimum and missing the

global optimum. The pseudocode for the algorithm is given in Table 6.1. In the algorithm,

curSol is the current solution, bestSol is the best solution, curE is the current energy

consumption given by curSol, bestE is the best energy consumption value, and candSol

is the candidate solution found.

Table 6.1 Pseudocode for SA
Simulated Annealing Algorithm
Input: Number of the nodes, initial temperature t, cooling parameter α, and maximum

iteration number maxite.
Output: Minimum energy consumption of the highest energy consuming node, best solution.
1: Initialize parameters; Iteration (ite ← 0), Best Energy (bestE ← 0);
2: Find initial solution and set it to current and best solutions (curSol and bestSol). Find

the energy consumption using current solution, set the result as current energy and
best energy (curE and bestE);

3: while ite <= maxite do
4: Assign temperature (t ← t × α). Find a candidate solution (candSol) by

reversing one random element in curSol. Find its solution as candidate energy
(candE);

5: if candE < curE then
6: curE ← candE;
7: curSol ← candSol;
8: if candE < bestE then
9: bestE ← candE;
10: bestSol ← candSol;
11: end if
12: else
13: ∆Obj ← curE – bestE. Assign candSol ← curSol with probability: 𝑒2(∆456/8).
14: end if
15: ite ← ite + 1;
16: end while
Return: bestE, bestSol.

6.1.2 Golden Section Search

Golden Section Search (GSS) was proposed by Kiefer for computing a

minimum/maximum of a unimodal function [68]. The notion of unimodality in

mathematics describes that there is only a sole minimum - maximum point for a defined

47

function. The target of GSS is continuously reducing the solution interval, namely section,

to locate the global minimum. Independent of how many iterations are passed and how

many points have been evaluated, the global optimum value always remains within the

interval defined by the two points adjacent to the point with the least value found. The

pseudocode for GSS is given in Table 6.2. In the algorithm, λ1 is the new lower bound, λ2

is the new upper bound for the interval and bestE is the best energy consumption value.

Table 6.2 Pseudocode for GSS
Golden Section Search Algorithm
Input: Number of the nodes (n), lower bound for interval (lb ← 0), upper bound for

interval (ub ← n -1), and golden ratio (Φ ← (−1+ √(5))/2).
Output: Minimum energy consumption of the highest energy consuming node, best

solution.
1: Compute λ1 ← ⌈(ub – Φ × (ub − lb)⌉ and λ2 ← ⌊(lb + Φ × (ub − lb)⌋;
2: while |ub−lb| >= 1 do
3: Assign AES to first λ1 + 1 nodes, and Twofish to remaining nodes for

encryption. Estimate the energy consumption as E1;
4: Assign AES to first λ2 + 1 nodes, and Twofish to remaining nodes for

encryption. Estimate the energy consumption as E2;
5: if E2 < E1 then
6: ub ← λ2; λ2 ← λ1; λ1 ← ⌈ub – Φ × (ub − lb)⌉; bestE ← E2;
7: else
8: lb ← λ1; λ1 ← λ2; λ2 ← ⌊lb + Φ × (ub − lb)⌋; bestE ← E1;
9: end if
10: end while
Return: bestE, AES ← 2 <= i <= lb, Twofish ← lb+1 <= i <= <.

6.1.3 Genetic Algorithm

In computer science, Genetic Algorithm (GA) is used as a metaheuristic impressed

by the means of natural selection phenomenon. GA is used to find adequate solutions to

optimization problems by imitating biological procedures such as mutation, crossover,

and selection. It is commenced by defining an initial population with a set of solution

vectors named chromosomes. Each chromosome in the population is evaluated by

considering the objective function. As in natural selection, the main idea behind GA is

searching for more healthy chromosomes within the population (which generate better

solutions for the objective function), and then crossover and mutation stages are applied

to the chromosomes to generate new solutions. Crossover operation is carried out to

generate new individuals in the population, and mutation operation is involved to make

slight changes for escaping the local minima or maxima. In the algorithm, chromosomes

are symbolized as binary values of 0s and 1s, which conforms appropriately to our binary

search problem. The pseudocode for GA is given in Table 6.3. In the algorithm, curE is

the current energy consumption, bestE is the best energy consumption found.

48

Table 6.3 Pseudocode for GA
Genetic Algorithm
Input: Size of population (pSize), maximum number of generations (maxGen), probability

of mutation (pMut).
Output: Minimum energy consumption of the highest energy consuming node, best

solution.
1: Initiate parameters; Current generation (curGen ← 0), generate population (P ←

{C1, … , CpSize}), evaluate best energy for population P (bestE ← bestE(P)).
2: while curGen <= maxGen do
3: Pick two chromosomes using Roulette Wheel function; {Cc1, Cc2} ←

rouletteWheel(P);
4: Crossover the picked chromosomes; Cnew ← crossOver(Cc1, Cc2);
5: Mutate Cnew with probability pMut; Cnew ← mutate(Cnew, pMut);
6: Evaluate the energy consumption for Cnew as curE.
7: if curE < bestE then
8: Assign new chromosome as best solution; bestSol ← Cnew;
9: Pick the chromosome giving highest energy consumption; Ch ←

pickChromosome(P);
10: Extract Ch from P; P.extract(Ch);
11: Include new chromosome to P; P.include(Cnew);
12: end if
13: curGen ← curGen + 1;
14: end while
Return: bestE, bestSol.

6.2 Evaluation of Heuristic Algorithms

We implemented and examined three heuristic algorithms in MATLAB to evaluate

their performances about making the decision of the encryption algorithm to be assigned

for each sensor node in the network. In this scenario, we configured the networks to use

data fragmentation with 𝐿4EFG 	= 0.5, we selected NSR as 0.8, and as initial solution we

have provided the encryption scheme according to Figure 4.1. Figures 6.1, 6.2 and 6.3

depicts the results generated by Simulated Annealing, Golden Section Search and Genetic

algorithms respectively. For the analysis of the system, we again ran the algorithms 100

times for 100 different randomly generated topologies for 10, 20, 30 and 40 nodes in the

network and we took the average of the 100 results as the final result. The reason for

running the algorithms 100 times with different topologies is to enlarge the number of

samples and generalize the performance of the algorithms.

49

Figure 6.1 Results of Simulated Annealing algorithm

Figure 6.1 shows the results generated by Simulated Annealing algorithm. It tries

to find the optimal energy consumption about assigning Twofish and AES algorithms for

encryption. When we examine the results, we can see that it gives lower results than

optimization for using Twofish and AES algorithms together as suggested by our

proposed method. We have not limited the algorithm with any constraint about which

encryption algorithm to use in the simulations, thus the optimal solution is to assign

Twofish algorithm to all nodes as energy consumption of Twofish is smaller than AES.

As expected, SA assigns Twofish algorithm to more nodes opposed to our proposed

method, and this is the reason behind producing lower energy consumption results. If we

consider the success of the algorithm, we can infer that it has a medium performance

about decreasing energy consumption of the nodes by assigning Twofish to most of the

nodes, which is the expected behavior. Moreover, if the iteration count of the algorithm

is increased, it can generate better results with a cost of longer runtimes.

50

Figure 6.2 Results of Golden Section Search algorithm

Figure 6.2 presents the results generated by Golden Section Search algorithm. From

the results, we can see that it produces quite lesser energy consumption results than

optimization and Simulated Annealing algorithms for using Twofish and AES encryption

algorithms in the network. When we compare the results generated by GSS with the

optimization results, we can observe that the algorithm can produce very close results to

optimization when only Twofish is occupied as the encryption algorithm for all nodes.

These energy consumption results indicate that the algorithm tends to assign Twofish to

every node as the encryption algorithm. The success of the algorithm can be observed at

this point such that energy consumption required for Twofish is lesser than AES and to

decrease the overall energy consumption, assigning Twofish to all of the nodes is the

expected behavior from the algorithm. Since we did not give any constraints about

encryption selection, GSS seems very successful about finding optimum energy

consumption values for the nodes. Another fact that the figure also presents is, GSS

algorithm works better when the network size is larger.

51

Figure 6.3 Results of Genetic Algorithm

Figure 6.3 presents the results generated by Genetic Algorithm. From the results,

we can see that GA produces close energy consumption results to optimization and

Simulated Annealing algorithms for using Twofish and AES algorithms together. But the

results are less successful when compared to GSS. If we compare the results of GA with

the optimization results as presented in Figure 6.4, we can observe that this algorithm

produces nearly close results to our proposed method for deciding encryption algorithm

for nodes and does not make a remarkable change about assigning different encryption

schemes to the nodes. This situation shows that GA does not work very efficiently for

solving this problem. The algorithm uses a method called Roulette Wheel for selecting

two chromosomes to generate new solutions via mutation and crossover, and in this

method weaker chromosomes (solutions) can also be selected to escape from local

optima. Nevertheless, in current case new solutions does not provide better results for the

problem. From here, one can infer that it is not a very suitable heuristic algorithm for the

proposed scenario.

52

Figure 6.4 Comparison of maximum energy consumption of optimization vs.
heuristic algorithms

Figure 6.4 depicts a comparison of optimizations ran with AES method only,

Twofish method only, and AES and Twofish method together against the implemented

heuristic methods. In the sub-plots, X-axis represents the number of nodes in the network

and Y-axis represents the minimum energy spent by the maximum energy consuming

node in the network. The results in the Y-axis of the sub-plots in the first row are found

by running simulations for 100 randomly generated networks with 10, 20, 30 and 40

nodes, and then taking their average.

From the figure, it can be observed that using Twofish throughout the network

achieves the best energy consumption results, oppositely AES produces the highest

energy consumption results. Using AES and Twofish together as proposed in this study

limits the increase in the energy consumption, while this strategy maintains an acceptable

security level. When we consider the heuristic methods, Golden Section Search comes

out as the best solution among the three implemented algorithms for generating the nearly

optimum values. The algorithm works better when the number of nodes in the network

53

are higher, and especially for networks containing 30 and 40 nodes, the results generated

by Golden Section Search is quite close to the optimization results.

An important point to express here is that, when running heuristic methods, we did

not give any constraints about which encryption algorithm can be selected, hence the

expected behavior from the heuristic algorithms is to find closer results to Twofish-only

optimization results. When viewed from this perspective, Golden Section Search gives

the best results among heuristic methods, while Simulated Annealing gives moderate

results and Genetic Algorithm gives poor results. On the other hand, Simulated Annealing

produces the best result for 10 node networks, which can imply that it might be suitable

to use this method for small sized networks. Figure 6.4 indicates that Genetic Algorithm

causes nearly zero change from the initially given solution and this makes it a weak

candidate for further usage in the studies.

54

Chapter 7

Machine Learning Approach
In this study, one of the main objectives is to make use of different machine learning

algorithms to generate predictions about the energy consumption values of the UASNs

instead of running ponderous optimizations. The main reason behind this idea is that

optimizations can provide accurate values about energy consumption of the nodes in the

UASN, however they take a long time, and in some instances, they cannot find feasible

solutions, or they cannot even finish in an acceptable time frame. Instead of running

optimizations, if we can build successful regression models using the data we have

produced, we can make very accurate predictions about the network parameters. In this

manner, after producing a good regression model, we can run simple mathematical

functions to predict data instead of running heavy optimizations, with a sacrifice of

accuracy in the range of 2 to 5 percent. Furthermore, this error rate is acceptable and ML

methods provide a way to avoid running optimizations.

7.1 What is Regression?

Regression is a statistical method used in many disciplines, that tries to discover the

relationship between a dependent variable and several independent variables and present

it mathematically [69]. A mathematical formula called a regression model is developed

by the regression method which tries to represent the relationship between the dependent

variable and the independent variables best. The general form of a regression function is:

 𝑌 = 𝑎 + 𝑏)𝑋) + 𝑏'𝑋' + 𝑏&𝑋& +⋯+ 𝑏4𝑋4 + 𝑢 (7.1)

In the formula (7.1), Y is the dependent variable that the function tries to express its

relations, Xs are the independent variables used for determining Y, a is the intercept, b is

the slope and u is the remainder.

A regression method receives a collection of variables as inputs that are related to

the independent variable and tries to discover the mathematical relationship between these

55

variables. The mathematical relationship is normally in the form of a straight line or

hyperplane that fits all the individual data points approximately. To produce a model, a

machine learning method must be provided with pre-generated data, so that it can try to

find the relationship between the variables.

7.2 Collecting Data

A machine learning algorithm needs to be fed with data to train the model and test

its performance. Input data can be collected either via running field tests by placing sensor

nodes in a testbed and recording the output of different network configurations or running

network simulations on a computer. Albeit, since we do not have a testbed setup, we have

used network simulations in this study. To collect the data that will be given as input to

the machine learning methods, we have begun by running optimizations with several

different network parameters. We have run the simulations according to the MIP model

that we have presented in Chapter 3. We have prepared our parameters using MATLAB

and run our optimization algorithm in CPLEX Solver with different combinations of the

parameters to generate a dataset to train and test the regression methods. We have run the

simulations with the following combinations of different parameters:

• Node Numbers: {10, 15, 20, 25, 30, 35, 40}

• NSR: {0.5, 0.6, 0.7, 0.8, 0.9}

• 𝐿4EFG : {1, 0.5, 0.33, 0.25, 0.2}

• BER: {1e-5 1e-4 1e-3 1e-2 1e-1}

• Packet Size: {256 512 1024 2048 4096 8192 10000}

• Encryption Type: {No encryption, Twofish, AES, Mixed}

We have run the optimizations with every combination of these variables. The

number of these combinations is 24500 in total. As in evaluating the performance of the

network using optimizations, we have run the simulations for every variable combination

100 times with different random topologies of the nodes and we took their average energy

consumption as the final value. As we stated in the introduction part of this chapter,

optimizations need a long time to complete, and we will also give a comparison for the

runtimes of optimizations and machine learning methods. Table 7.1 presents the runtimes

for the optimizations that were held with combinations of the parameters above. From the

56

table, it can be seen that increasing the number of nodes increases the runtime

exponentially, since the solver makes calculations for every candidate node on a path in

multi-hop fashion and high number of nodes increases the number of candidate nodes for

a source node to send its packet. The total runtime of the optimizations takes more than

60 days, which is an unacceptable long time, and this situation supports the motivation of

using ML for parameter predictions.

Table 7.1 Runtimes for optimizations

 Number of nodes

10 15 20 25 30 35 40 Total

Average time for
1 parameter
configuration
(sec)

0.106524 0.488621 1.11469 2.112113 6.016837 14.41891 38.23250 62.490

Average time for
running 100
times for random
topologies (min)

0.177540 0.814368 1.857828 3.52019 10.02806 24.03151 63.72084 104.15

Average time for
running 100
times for random
topologies (hrs)

0.002959 0.013573 0.03096 0.05867 0.167134 0.400525 1.062014 1.7358

Total time for
running 100
times for random
topologies (hrs)

2.485563 11.40115 26.00959 49.28263 140.3929 336.4412 892.0918 1458.1

Total time for
running 100
times for random
topologies (days)

0.10357 0.475048 1.083733 2.053443 5.849702 14.01838 37.17049 60.76

At the end of the optimizations, we were able to collect 5880 rows of data while the

rest of the simulations could not produce a feasible solution. As it can be seen, only 24%

of the simulations managed to produce feasible results, which supports the idea of using

regression methods for predicting data, both to avoid the computational and time burden

of the optimizations and to be able to make predictions where optimizations fail to

produce results. Figure 7.1 shows a flowchart for the steps taken while preparing the

dataset to train and test the machine learning methods.

57

Figure 7.1 Data preparation flowchart

After generating the dataset, we have used Python 3.9 [70] with Scikit-learn [71] to

produce regression models and Keras [72] running on Tensorflow [73] to model neural

networks for the prediction of energy consumption values. Before starting to build

58

models, we used Pandas package [74] to process and Pandas-profiling package [75] to

analyze our data. We employed Jupyter Notebook [76] as the development platform. We

have used Seaborn [77] package to plot our results. The results of data analysis generated

using pandas-profiling package are shown in Table 7.2. In the dataset, there are six

independent variables, which are Node Number, NSR, Lnode, Encryption Type, BER, and

Packet Size. The dependent variable in the dataset is the Energy consumption value. There

are 5880 rows of data that have been collected by running optimizations. Since the data

is not gathered via observation, there are no empty or duplicate cells in the dataset. While

generating the models, we have used the data in two ways. First, we used 80% of the

dataset for training and 20% for testing purposes. After that we used 10-fold cross-

validation which is a resampling process for evaluating models for a dataset. The process

is used with a parameter k which indicates the number of groups that the dataset is divided

into. Generally, this process is named as k-fold cross-validation. At each step, one of these

groups are used for testing and rest of the data is used for training and evaluation metrics

are calculated for the model. The final result of cross-validation is usually calculated as

the mean of the metrics.

Table 7.2 Dataset statistics
Dataset statistics
Number of variables 7
Number of observations 5880
Missing cells 0
Missing cells (%) 0.0%
Duplicate rows 0
Duplicate rows (%) 0.0%
Total size in memory 321.7 KiB
Average record size in memory 56.0 B

Figure 7.2 illustrates the Spearman’s correlations between the variables. The

Spearman's rank correlation coefficient (ρ) is a statistical nonparametric measure that

presents a description about the monotonic correlation between two given variables [78,

79]. To compute ρ for two variables, the covariance of the rank of these variables is

divided by the multiplication of their standard deviations. If there are no duplicated values

in the dataset, an absolute Spearman correlation of +1 or −1 appears indicating that each

one of the given variables is an absolute monotonic function for the other. Apparently,

the Spearman correlation for two variables should be higher if they have a similar rank,

and lower if they have a dissimilar or opposite rank between them. As it can be seen from

59

Figure 7.2, energy consumption is highly correlated with the encryption type, and it is

strongly correlated with Bit Error Rate (BER) and Packet Size.

Figure 7.2 Correlations between the variables in the dataset

Figure 7.3 demonstrates a pair-plot of the variables illustrating the relations between

them. Pair-plot visualization is a broadly used technique in data analysis that helps to

identify the best set of features that describes a relationship between two variables. The

pair-plots are shown in matrix composition where the row name indicates y axis and

column name indicates x axis. The sub-plots on the main-diagonal illustrate the

distributions for each variable, whereas the sub-plots under the diagonal present the data

distribution for each pair of variables. For instance, from the Energy – BER sub-plot in

the figure (row 7, column 5), it can be seen that energy increases if BER is higher, except

for a few outliers. This is an expected tendence because if BER is higher, nodes need to

use more transmission power to increase the SNR and complete the transmission

successfully. If Energy – NSR subplot (row 7, column 2) is examined, again it is obvious

that energy consumption increases if NSR is defined higher for the network. Again, this

60

is an expected tendence since higher NSR forces nodes to make packet duplications and

increase the number of transmissions. Similarly, if all the sub-plots are checked, energy

consumption is mainly affected by NSR, Encryption Type, BER and Packet Size.

Figure 7.3 Pair-plot of the variables in the dataset

In Figure 7.3, the subplots over the diagonal show the distributions of the variables

using kernel density estimation (KDE) [80]. KDE is one of the most acclaimed methods

for calculating density estimation and it is defined using the following equation:

 𝑝4t(𝑥) =
)
4#
∑ 𝐾(L1

#
)(

1>) (7.2)

In the equation (7.2), K(x) is called the kernel function which is commonly a

symmetric function and h is the smoothing bandwidth used for controlling the amount of

61

smoothing. Substantially, KDE smooths out every point Xi into small density areas and

sums these areas to find the conclusive density estimate. In the subplots over the diagonal

in Figure 7.3, smooth densities for each variable pair are pictured. For instance, Energy –

NSR subplot (row 2, column 7) in the figure shows the density of the energy values

according to NSR values including a few outliers. If the NSR is increased, energy

consumption values also increase as expected, since maintaining a higher NSR causes

more transmission and reception operations. Similarly, Energy – Lnode subplot (row 3,

column 7) in the figure presents the density distribution of the energy values according to

Lnode. It can be seen that if data fragmentation ratio is increased (Lnode is decreased),

energy consumption increases as some of the data fragments are transmitted over less

optimal paths.

7.3 Machine Learning Algorithms
In the study, we have examined eight regression methods and two neural network

methods to generate models for predicting energy consumption values in the UASNs. The

regression methods examined in the study are Linear Regression (LR), Support Vector

Machines Regression (SVM), Gradient Boosting, k-Nearest Neighbors (kNN), Ridge

Regression, Decision Tree, Random Forest, and XGBoost Regression. And the examined

neural network methods are Artificial Neural Network (ANN) and Convolutional Neural

Network (CNN).

While building prediction models, the data gathered via optimizations was used in

two ways. First, the data was used as raw and then it was normalized using min-max

scaler and used in the normalized form. Min-max scaler transforms features by scaling

each feature to a desired range, and generally values are scaled to the range [0,1]. The

formula used for min max scaling is given as:

 𝑥M = N%OPQ(N)
ORS(N)%OPQ(N)

 (7.3)

In the formula (7.3), X’ is the normalized version of X value which is calculated by

dividing the difference between the original value and the smallest of the values by the

difference between the highest of the values and the smallest of the values.

Normalization is an important technique used in machine learning, because it fits

the raw data into a definite range to avoid problems about datasets by generating new

62

values and maintaining a general distribution on the dataset. Furthermore, it extends the

efficiency and accuracy of the machine learning models. In the study, we used normalized

data to amend the performance of the ML models. Another method for finding the best

models is hyper-parameter optimization. In this method, the hyper-parameters that affect

the performance of the models are tuned so that the model can produce better scores and

make better predictions. After generating models with raw data and normalized data, we

have applied cross-validation and hyper-parameter optimization techniques using the

normalized dataset to further improve the success of the regression methods. Analysis of

these procedures will be presented in the following sections of the thesis.

7.3.1 Linear Regression

In the science of statistics and mathematics, linear regression is used for defining

the relationship between a dependent variable and one or more independent variables. If

there is a single independent variable, the regression operation is called a simple linear

regression, and if there are multiple independent variables, the operation is called multiple

linear regression [81].

In this method, the relationship between the variables is defined using linear

predictor functions where the parameters of the model are evaluated by processing a given

data. In general, the conditional average of the dependent variable according to the

independent variables is presumed as an affine function of these variables. Linear

regression is one of the first regression methods that has been studied commonly by many

researchers, and it is still used in many practical applications. A linear regression model

is learnt by computing the values of the coefficients (b values) used in the equation (7.1)

using the given variables.

7.3.2 Support Vector Machine

Support vector machines are a type of supervised learning models used in machine

learning both for classification and regression procedures. SVM was developed and

presented in 1995 by Vapnik et al [82]. The algorithm tries to discover a boundary or a

hyperplane that separates variables according to their given features. After that, it makes

predictions about a new instance according to the side of the hyperplane it remains.

63

When accomplishing a regression operation with SVM, the target is to find a

determinate boundary at some distance from the separation hyperplane such that the data

points close to the hyperplane are inside that boundary. Thus, it takes the points that

remain inside the decision boundary with the lowest error rate, or that are inside the

predefined margin of tolerance.

7.3.3 Gradient Boosting

In the field of machine learning, the expression boosting indicates integrating

several basic models into a single complex model. Boosting is also expounded as an

additive model because basic models are added to the compound at each iteration, without

altering the other basic models in the final composite model. Integrating more basic

models step by step makes the final model more forceful. In most of the applications,

decision trees are chosen as the basic models in gradient boosting method [83]. The term

gradient is selected because the algorithm utilizes a gradient descent to minimize the loss

and errors of the predictions.

At the end of every iteration, the algorithm calculates the error between the new

prediction and the pregiven test value. This error is called as the remainder or the residual.

After calculating the error, the algorithm generates a simple model to match the weights

of the variables to the residual. Finally, the residual is given as a feedback to the existing

model as input and the algorithm uses the feedback to move the model closer to the

accurate prediction value.

7.3.4 K-Nearest Neighbors

K-Nearest Neighbors is a simple yet powerful supervised machine learning

algorithm which can be employed for carrying out both classification and regression

operations. The algorithm was first proposed by Evelyn Fix and Joseph Hodges in 1951,

in their project report [84]. The fundamental assumption behind the KNN algorithm is

that similar objects or similar points reside closely to each other.

It is not hard to develop and comprehend the algorithm, however it can become

apparently heavy as the size of the evaluation data increases. First KNN starts by taking

a random prediction point. Then it continues with calculating the errors between the

prediction and the real data and chooses k samples (neighbors) which are nearest to the

64

prediction, and lastly it takes the average of the selected samples as the new prediction.

The k parameter can be changed to increase or decrease the number of neighbors to refine

the accuracy of the algorithm [85]. Nevertheless, selecting large numbers for k parameter

will cause the algorithm to work slower.

7.3.5 Ridge Regression

Ridge regression is another method that is used typically when the independent

variables in a dataset are strongly correlated [86]. It is used in a diversity of areas

including economics, natural sciences, and engineering. The method was first proposed

in 1970 by Hoerl et al. [87].

The method proposes a solution to the inaccuracy of least square calculations

particularly if the dataset has vastly correlated independent variables. Because, if there

is multicollinearity between independent variables, least squares are unbiased, but their

variances become higher, and the generated model might lead to predictions distant from

the target value. The contribution of the method is that it adds a level of bias to the

regression model to decrease the standard errors.

7.3.6 Decision Trees

Decision trees are one of the most acclaimed and most applied methods in machine

learning. A decision tree can be built from examinations about an attribute that is placed

at the branches of the tree and the tree completes with the predictions about the target

value that are presented at the leaves [88, 89].

To improve the accuracy of the predictions, a method called pruning can be applied

on the built decision tree. Pruning is a method used for compressing the data in machine

learning that aims at lowering the number of the branches by eliminating the parts that

are not essential or unnecessary to generate the regression model. Pruning also decreases

the composition of the decisive model, which enhances the accuracy of the predictions

by decreasing overfitting.

7.3.7 Random Forest

Random Forest is a composite machine learning method that can be used both for

classification and regression operations. As its name implies, the method is applied by

65

building and combining multiple decision trees while building the regression model.

After building the model, the average, or the mean of the prediction errors from

individual decision trees are calculated to evaluate its accuracy [90, 91].

The advantage of Random Forests is their defiance to overfitting that the decision

trees can face during predictions. Overfitting indicates that the model produces too close

or exact predictions with the real values by the means of memorizing the dataset. At first

glance, the accuracy of the regression model might seem quite good, however there is a

possibility that it might be unsuccessful at fitting additional data or making predictions

about extra observations [92]. On the other hand, random forest method usually runs

slower and needs more time to generate the regression model when compared to other

methods because building multiple decision trees is a costly operation.

7.3.8 XGBoost Regression

XGBoost is an abbreviation for Extreme Gradient Boosting, and it is developed as

an efficient successor of the gradient boosting algorithm [93, 94]. In the classical gradient

boosting, the basic models are usually decision trees, where every tree allocates an input

to a leaf that has a continuous value. As in gradient boosting, the training runs iteratively

in XGBoost, adding new trees at each step to make new predictions according to the

prediction errors of preceding trees. In gradient boosting, the decision trees are connected

to each other one by one, however in XGBoost the trees are connected parallelly and new

trees are merged with previous trees to complete the final model.

7.3.9 Artificial Neural Network

An artificial neural network (ANN) is a computational model that simulates the

nerve cells in human brain [95, 96]. An ANN consists of three or more layers that are

connected to each other. The first layer is called the input layer and it consists of the input

neurons. It moves the input data to the hidden layer(s), and hidden layers move the

computed data to the output layer.

The intermediary layers are hidden, and they adaptively change their weights

according to the information received from the previous layer. They both act as input and

output layers that help the model to complete more complex tasks. Each neuron in the

hidden layers holds a weight and at each iteration these weights are adjusted according

66

to the error calculated by comparing actual value and the predicted value. The calculated

errors are fed back to the first layer to restart the iteration and to refine the weights, and

this process is called backpropagation. By using backpropagation, the calculated errors

are employed to adjust the weight of the neurons and decrease the errors in the following

iterations.

7.3.10 Convolutional Neural Network

Convolutional neural networks (CNN) are a customized version of ANNs, which

use a mathematical procedure named as convolution for making general matrix

multiplication in at least one of its layers [97].

CNNs are especially developed to deal with pixel data of images and are frequently

used in image processing for making classifications. Nevertheless, they can also be used

for different classification and regression operations. In a CNN, there are extra hidden

layers which are responsible for convolution operations. These hidden layers include a

layer that calculates the dot product of the convolution kernel, which consists of a set of

weights, with the layer's input matrix. As the kernel moves over the input matrix, the

convolution process produces a feature map, which advances as the input of the next

layer.

After the convolutions, another operation named pooling is applied on the matrix.

Pooling receives results from convolution layer and compresses it. The number of

convolutions and pooling can be increased to decrease the number of features and the

size of the matrix for improving the accuracy of the model and decreasing the complexity

in the data. After finishing convolution and pooling layers, the results are flattened and

turned into a form of column vector and passed to the ANN layer to carry on the

conventional regression operation.

7.4 Evaluation Metrics
To evaluate the performance of the regression models, we have used nine metrics

including R2 score, mean absolute error, mean squared error, mean squared log error, root

mean squared error, mean absolute percentage error, median absolute error, max error,

and explained variance score metrics. R2 score and explained variance score are used to

measure how a dependent variable is defined the weights of independent variables in the

67

model. Maximum value that these scores can take is 1, and calculated scores for these

metrics that are close to 1 indicates that a model is good at defining the relation between

the variables. On the other hand, as the name implies, error metrics are used to calculate

the differences between the predictions of a model and the actual test values. For the error

metrics, a calculated value close to 0 indicates that a model makes predictions with less

errors. In the convention, scores and error metrics are analyzed together to decide the

success of a model and most acclaimed metrics are R2 score, mean absolute error and

mean squared error. In most of the cases, if errors are low then scores become high or

vice versa. Nevertheless, instead of analyzing metrics for each model separately,

comparing the errors and scores of models helps better interpret the success of the models.

The evaluation metrics that we have used in this study are explained in the following

subsections.

7.4.1 R2 Score

R2 score is a metric used in statistics that illustrates the fraction of the variance for

a dependent variable that is explained by some independent variables in a regression

function. R2 depicts how variance of a variable is defined by the variance of another

variable [98]. For instance, an R2 score of 0.50 for a regression model indicates that

approximately half of the calculated variations can be explained by the independent

variables of the model. R2 is formulated as:

 𝑅' = 1 − 𝑆𝑆?G"/𝑆𝑆!E!D0 (7.4)

In the formula (7.4), SSres is the sum of squares of the residual errors and SStotal is

the sum of squares of all errors. R2 score is calculated as a value between 0 and 1, where

a score closer to 1 means that the model is more successful for defining the relationship

between the variables.

7.4.2 Mean Absolute Error

The mean absolute error (MAE) value of a regression model is the average of the

absolute error values evaluated for separate predictions targeting all the data values in the

test set [99]. A prediction error is the difference between the correct value and the

predicted value for a data point. A lower MAE indicates that the predictions match the

expected values better while higher MAE means that the model is not very successful and

produces erroneous predictions about the given dataset.

68

7.4.3 Mean Squared Error

Mean squared error (MSE) indicates how distant a set of predicted values are from

a regression line. The formula takes the errors (distances of the predicted points to the

regression line) and takes their squares. The idea is to avoid negative signs in the values

and improve the weight of the errors [100]. A lower MSE value indicates that the model

is good at predictions while a lower value means that the model cannot explain the

relationship between the variables well.

7.4.4 Mean Squared Log Error

Mean Squared Log Error (MSLE) is a modification of MSE that considers the

proportional difference between the actual and the predicted values which are log-

transformed [101]. Its goal is to explain smaller errors between smaller real and predicted

values the same as larger differences between larger real and predicted values. Since it is

an error metric, smaller values of MSLE indicates that the predictions of the model are

less erroneous and higher values of MSLE indicates that the predictions have high errors

and the model cannot explain the relationship between the variables well.

7.4.5 Root Mean Squared Error

Root Mean Squared Error (RMSE) is defined as the standard deviation of the errors

of predictions generated by a regression model [102]. Prediction errors are the distances

of the predicted values from the regression line; and the aim of RMSE is to measure how

these errors are scattered around the line. It indicates how the predicted data is residing

around the best fit line.

In general, a prediction error tries to calculate how far the prediction values are from

the regression line. On the other hand, RMSE is a measure to express how these errors

are separated from the line. A lower RMSE indicates that predictions match the expected

values better while higher RMSE values mean that the model cannot make accurate

predictions.

7.4.6 Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) is another measure that helps the

observers to understand the efficiency of a regression model. It is also used as a loss

69

function in analyzing regression models. It considers accuracy as a percentage, and it is

computed as the average absolute percent error minus actual values divided by actual

values [103]. It gives better interpretations if there are no outliers in the data because the

outliers tend to produce higher error values in predictions and the MAPE value can be

misleading since the distribution of the variables are not balanced. To decrease the effect

of the outliers, normalizing the data into a defined range helps diminish the effects of

outliers while calculating error metric values.

7.4.7 Median Absolute Error

The median absolute error is a measure that is expected to be robust to outliers

oppositely to MAPE. The error value is calculated by computing the median of all

absolute errors between the target and the prediction values [104]. Smaller median

absolute error value indicates that the regression model is more successful while higher

error values mean that the model is not very good at explaining the relation between the

variables in the dataset.

7.4.8 Max Error

As its name implies, Max Error is directly the largest residual error among the actual

values and the predicted values. It might not have a significant meaning alone for

regression evaluation, but it can be useful to understand the accuracy of the regression

model when combined with other error metrics.

7.4.9 Explained Variance Score

Explained variance score (EVS) is used to measure the proportion of the variability

of the predictions produced by a regression model. It is calculated by subtracting variance

of the prediction error divided by variance of the correct data from 1 [105]. The difference

between explained variance and the R² scores is that explained variance score does not

consider systematic offset about the predictions. Hence, frequently the R² score is

preferred instead of explained variance.

7.5 Evaluation of ML Algorithms
In this section, the performance results and evaluations about these results are

presented. During the study, we have implemented ten ML algorithms, eight of which are

70

regression methods and two of them are neural network algorithms. To analyze the

performance of these algorithms, we have used several evaluation metrics and we have

shown the prediction points on scatter plots separately for the algorithms running with

raw data and normalized data. On the scatter plots, the line shows the regression line or

best fit line, which indicates the exact positions of the prediction points if they are 100%

accurate and the prediction points are shown as crosses (x). The distance between the

prediction points to the regression line are the errors of the predictions. If the prediction

points are farther from the regression line, it means the prediction highly erroneous.

Oppositely, the prediction points close to the regression line indicates that the predictions

have small errors.

Before discussing the evaluation scores, training and testing time of the algorithms

are presented in Table 7.3 for three processes, which are models generated with raw data

and normalized data with %80 of the dataset for training and 20% of the dataset for

testing, and 10-fold cross-validation with hyper-parameter tuning. As it can be seen from

the table, if hyper-parameter tuning is not used, model training times are quite short,

sometimes even negligible when compared to optimization runtimes given in Table 7.1.

This supports the proposal of using machine learning methods for network parameter

prediction instead of running heavy optimizations. Nevertheless, when doing hyper-

parameter optimization, we make the solver to try every possible combination of hyper-

parameters for a given method to find the best parameter combination, and this situation

increases the testing time apparently.

Table 7.3 Runtimes for ML algorithms

 Runtimes (secs)

Algorithms

Raw Data Normalized Data
10-fold cross-validation
with hyper-parameter

tuning
Train Test Train Test Train Test

Lin. Reg. 0.0421 0.0005 0.0011 0.0003 6.4800 0.0004
SVM 0.3438 0.0869 0.0853 0.0132 6878.7 0.0146
Grad. Boost. 0.1572 0.0028 0.1398 0.0023 31163 0.1905
KNN 0.0117 0.0059 0.0013 0.0041 3.0187 0.0221
Ridge Reg. 0.0059 0.0007 0.0007 0.0003 1.7849 0.0005
Dec. Tree 0.0103 0.0007 0.0042 0.0004 3.0954 0.0006
Rand. Forest 0.1726 0.0059 0.1704 0.0057 351.68 0.0273
XGBoost 0.1380 0.0021 0.1016 0.0017 428.16 0.0033
ANN 6.1751 0.0344 6.3844 0.0372 1498.2 0.1356
CNN 8.0554 0.0389 8.2937 0.0378 1735.8 0.1109

Table 7.4 demonstrates a comparison of scores and errors for all the examined

methods that were run using raw data. Regarding R2 scores, the highest values are

71

provided by Decision Tree and XGBoost. Furthermore, Gradient Boosting and Random

Forest methods provide quite good scores even when they are run with raw data. A

negative R2 score means that the chosen model does not follow the trend of the data and

scores close to 0 indicate that the model cannot interpret the data very well. Mean

Absolute Error is the mean of sum of all errors of the predictions against real values. A

MAE close to 0 means that the predictions of the model are less erroneous. When we

check MAE values, again Decision Tree and XGBoost provide very small error numbers.

Also, Gradient Boosting and Random Forest produce acceptably small errors which are

adequate for a successful regression method.

Table 7.5 represents a comparison of evaluation scores and errors for all the applied

methods that were run using normalized data. When compared to the results generated

using raw data in Table 7.4, the metrics show that all the methods perform better with

normalized data. The unsuccessful algorithms for the current dataset are Linear

Regression and Ridge Regression as they produce predictions with high errors against

low scores. However, the highest scores and lowest errors are again provided by Decision

tree and XGBoost algorithms, and the other successful algorithms are again Gradient

Boosting and Random Forest. From the results, it can be inferred that SVM and KNN

algorithms generate moderate results. When the metrics of neural network models are

observed, CNN generates very high scores and very low errors like Decision Tree and

XGBoost methods. On the other hand, ANN also generates a quite successful model with

low errors and high scores, and it can be used with the dataset in hand.

Table 7.6 presents a comparison of evaluation scores and errors for the implemented

methods that were run using 10-fold cross-validation and hyper-parameter optimization

with normalized data. If the results are compared to the values in Table 7.4, the metrics

indicate that all the methods perform better after hyper-parameter optimization. Again,

Linear Regression and Ridge Regression show poor performances. However, all of the

algorithms generate better scores as optimal hyper-parameters are selected for the dataset.

Gradient Boosting, KNN, Random Forest and ANN increase their scores the most. From

the results, it can be inferred that hyper-parameter optimization is quite important for

increasing the success of machine learning models. The names of the algorithms giving

the best performances are highlighted on the tables.

72

Table 7.4 Scores and errors of analyzed methods using raw data
 Method

Metrics

Lin.
Reg. SVM Grad.

Boost. KNN Ridge
Reg. Dec. Tree Rand.

Forest XGBoost ANN CNN

R2 score 0.076 -0.054 0.987 0.332 0.0237 0.999 0.981 0.999 -0.004 -0.660
Mean Abs. Err. 0.815 0.575 0.111 0.495 0.870 5.434e-6 0.118 0.001 0.906 1.630
Mean Sq. Err. 3.189 3.639 0.0450 2.304 3.369 3.081e-10 0.0672 2.049e-6 3.468 5.730
Mean Sq. Log Err. 0.275 0.241 0.0114 0.166 0.314 2.661e-10 0.009 1.386e-6 0.305 0.766
Root Mean Sq. Err. 1.786 1.908 0.212 1.518 1.836 1.755e-5 0.259 0.002 1.862 2.393
Mean Abs. Perc. Err. 264.84 150.53 52.49 2.219 157.58 0.1360 41.822 6.394 321.437 166.301
Median Abs. Error 0.493 0.101 0.052 0.0165 0.564 5.551e-17 0.031 0.0003 0.688 1.072
Max Error 16.335 17.959 1.273 17.995 16.379 0.0002 1.097 0.006 17.327 14.078
Expl. Var. Score 0.081 0.0015 0.987 0.333 0.027 0.999 0.981 0.999 0.0 -0.309

Table 7.5 Scores and errors of analyzed methods using normalized data
 Method

Metrics

Lin.
Reg. SVM Grad.

Boost. KNN Ridge
Reg. Dec. Tree Rand.

Forest XGBoost ANN CNN

R2 score 0.076 0.752 0.987 0.729 0.076 0.999 0.981 0.999 0.966 0.997
Mean Abs. Err. 0.045 0.028 0.006 0.020 0.0451 3.1e-7 0.007 0.0001 0.009 0.003
Mean Sq. Err. 0.009 0.003 0.0001 0.003 0.009 9.6e-13 0.0002 7.9e-8 0.0004 3.1e-5
Mean Sq. Log Err. 0.006 0.002 0.0001 0.002 0.006 9.5e-13 0.0002 7.5e-8 0.0003 2.3e-5
Root Mean Sq. Err. 0.0989 0.051 0.0118 0.054 0.0989 9.8e-7 0.0143 0.0003 0.0190 0.006
Mean Abs. Perc. Err. 445.23 229.79 86.25 1.764 445.12 0.220 47.532 16.580 61.873 9.557
Median Abs. Error 0.027 0.039 0.003 0.001 0.0273 7.8e-18 0.0017 9.9e-5 0.003 0.003
Max Error 0.904 0.442 0.0705 0.665 0.905 1.1e-5 0.061 0.001 0.095 0.039
Expl. Var. Score 0.081 0.773 0.987 0.729 0.0812 0.999 0.981 0.999 0.966 0.997

73

Table 7.6 Scores and errors of analyzed methods via 10-fold cross-validation and hyper-parameter optimization

 Method

Metrics

Lin.
Reg. SVM Grad.

Boost. KNN Ridge
Reg. Dec. Tree Rand.

Forest XGBoost ANN CNN

R2 score 0.084 0.772 0.999 0.882 0.084 0.999 0.999 0.999 0.990 0.998
Mean Abs. Err. 0.049 0.047 1.3e-7 0.017 0.051 5.0e-7 0.0003 9.56e-5 0.006 0.003
Mean Sq. Err. 0.013 0.003 1.3e-13 0.002 0.013 2.052e-6 6.37e-7 1.64e-8 0.0001 3e-5
Mean Sq. Log Err. 0.006 0.0019 2.1e-15 0.001 0.006 1.950e-6 6.56e-7 1.01e-8 0.0005 2.1e-5
Root Mean Sq. Err. 0.115 0.050 3.5e-7 0.040 0.116 1.416e-05 0.0007 0.0001 0.010 0.005
Mean Abs. Perc. Err. 263.84 357.85 115.04 64.80 403.66 0.250 25.47 107.02 501.01 9.417
Median Abs. Error 0.030 0.036 1.5e-8 0.001 0.030 1.582e-17 3.48e-6 7.19e-5 0.004 0.003
Max Error 0.900 0.100 3.8e-6 0.275 0.900 0.007 0.0037 0.0004 0.052 0.036
Expl. Var. Score 0.086 0.784 0.999 0.882 0.086 0.999 0.999 0.999 0.991 0.998

74

The first method we have implemented is Linear Regression (LR). When the

performance of this method is evaluated with the given performance metrics, it is visible

that the predictions generated by LR are quite erroneous. Both executions with raw data

and normalized data return similar results for the algorithm. R2 score calculated for LR is

0.076 both with row and normalized data, which is close to 0 and indicates that the

generated model cannot define the regression function well. Oppositely, the values

calculated for error metrics are thoroughly high indicating that the predictions of the

method are not very accurate.

Figure 7.4 Scatter plot for predictions of LR run with raw data

Figure 7.4 depicts the scatter plot of the predicted points against the best fit line for

Linear Regression algorithm run with raw data. The points represented as crosses on the

plot are the predictions generated by LR. As it can be seen from the figure, prediction

points are clearly distant from the regression line and the generated errors are very high

except for a few instances. This plot also helps to explain the high errors and low scores

calculated for the method.

75

Figure 7.5 Scatter plot for predictions of LR run with normalized data

Figure 7.5 represents the scatter plot of the predicted points against the best fit line

for Linear Regression algorithm run with normalized data. As the figure indicates,

prediction points reside visibly far away from the regression line and the generated errors

are very high except for a few instances like in the results generated with raw data. The

results shown on the plot is parallel with the high errors and low scores computed for the

method. When the evaluation metrics for models generated with raw data and normalized

data are compared, it is visible that the errors get smaller if data is normalized. This

situation shows the importance and the benefits of using normalized data in the machine

learning operations.

76

Figure 7.6 Scatter plot for predictions of LR with 10-fold cv and hyper-parameter
tuning

Figure 7.6 represents the scatter plot of the predicted points against the best fit line

for Linear Regression algorithm run with 10-fold cross-validation and hyper-parameter

tuning. Even though hyper-parameter tuning is applied, predictions are visibly far from

the regression line and the generated errors are still high. When the evaluation metrics are

analyzed, it is visible that the errors decrease, and scores increase after hyper-parameter

optimization, however linear regression still shows poor performance for the dataset.

The next examined method was Support Vector Machine regression. When the

results and evaluation metrics generated by this method are examined, the effects of

normalizing the data for the success of a method can be understood even better. The

algorithm gives inadequate results when run with raw data, especially the R2 score is

calculated below zero which indicates that the method cannot interpret the relations

between the variables. On the other hand, SVM works much better when it is run with

normalized data. Nevertheless, the scores and errors of the method show that it is still not

adequate to be used with the dataset in hand.

77

Figure 7.7 Scatter plot for predictions of SVM run with raw data

Figure 7.7 shows the scatter plot of the predicted points against the best fit line for

SVM regression algorithm run with raw data. As the figure presents, prediction points are

clearly distant from the regression line and the generated errors are quite high. Moreover,

the predicted values are highly scattered, they do not tend to follow the trend of the

regression line and they look independent from the real values. This plot also helps to

understand the high errors and low scores computed for the method.

78

Figure 7.8 Scatter plot for predictions of SVM run with normalized data

Figure 7.8 illustrates the scatter plot for the predicted points against the best fit line

for SVM regression algorithm run with normalized data. As the figure indicates,

prediction points tend to reside much closer the regression line and the generated errors

are lower except for a few samples, oppositely to the results generated with raw data. If

the evaluation metrics for SVM models generated with raw data and normalized data are

analyzed together, it is clear that the errors become smaller and more importantly the

model starts to follow the trend of the regression line if data is normalized. This situation

shows that even if the algorithm cannot interpret the dataset containing the raw data, it

can be much successful when the data is normalized before the model generation. This

also expresses the importance and the benefits of using normalized data in the machine

learning algorithms.

79

Figure 7.9 Scatter plot for predictions of SVM with 10-fold cv and hyper-parameter
tuning

Figure 7.9 represents the scatter plot of the predicted points against the best fit line

for SVM algorithm run with 10-fold cross-validation and hyper-parameter tuning. After

hyper-parameter tuning is applied, evaluation metrics for the algorithm are improved,

nevertheless performance of SVM is still not acceptable.

Another method we implemented was Gradient Boosting. It is a very effective

method, and it is used commonly by the data scientists. The results generated by this

algorithm prove that it works quite well both with raw data and normalized data. It

generates a successful model with quite high scores and low errors for evaluation metrics.

As shown in Tables 7.4 and 7.5, R2 score is 0.987 for both raw and normalized data,

meaning that the method defines the function very well. Still, error values calculated for

normalized data are lower than the error values of raw data.

80

Figure 7.10 Scatter plot for predictions of Gradient Boosting run with raw data

Figure 7.10 depicts the scatter plot of the predicted values against the regression

line for Gradient Boosting regression algorithm that was run using original dataset. As

the figure presents, prediction points are reasonably proximate to the regression line and

the generated predicted errors are very small. Moreover, the predicted values are grouped

together closely on the regression line, and they have a tendency to follow the slope of

the regression line. This plot also helps to understand the low error values and high scores

calculated for the method.

81

Figure 7.11 Scatter plot for predictions of Gradient Boosting run with normalized
data

Figure 7.11 illustrates the scatter plot for the predicted values versus the best fit line

for Gradient Boosting regression algorithm that was run using the normalized dataset. As

it can be seen from the figure, prediction values are placed very close the regression line

and the generated errors are lower except for a few instances, like the predictions

generated with raw data. If the evaluation metrics for Gradient Boosting models generated

with raw data and normalized data are examined, it is obvious that the errors become

smaller. Nevertheless, both of the models follow the trend of the regression line and the

algorithm works well both with raw data and normalized data. Even though the algorithm

shows success using raw data, it can be more successful when the data is normalized

before the model generation. This again shows that using normalized data is beneficial in

the machine learning algorithms.

82

Figure 7.12 Scatter plot for predictions of Gradient Boosting with 10-fold cv and
hyper-parameter tuning

Figure 7.12 represents the scatter plot of the predicted points against the best fit line

for Gradient Boosting algorithm run with 10-fold cross-validation and hyper-parameter

tuning. After hyper-parameter tuning is applied, evaluation metrics for the algorithm are

evidently improved, and the prediction points reside visibly close to the regression line.

The next investigated method was KNN regression. The scores and errors generated

by the model show that it can make acceptable predictions. Though, it is not the best

method to use for the generated dataset. The calculated evaluation metrics depict that

normalizing the data before training the algorithm generates a better regression model.

KNN produces a moderate fit of the predictions against the actual values.

83

Figure 7.13 Scatter plot for predictions of KNN regression run with raw data

Figure 7.13 shows the scatter plot of the predicted values against the regression line

for KNN regression algorithm that was run using non-normalized dataset. As the figure

indicates, prediction points are somewhat close to the regression line except for small

energy consumption values and the calculated predicted errors are relatively small.

Furthermore, the predicted values are generally grouped together around the regression

line, and they tend to follow the slope of the regression line. Nevertheless, the calculated

R2 score is 0.33 which is close to zero and error metrics are high for KNN with raw data

meaning that it is not adequate to be used with non-normalized dataset.

84

Figure 7.14 Scatter plot for predictions of KNN regression run with normalized data

Figure 7.14 illustrates the scatter plot for the predicted values along with the

regression line for KNN regression algorithm that was run with the normalized dataset.

As it can be seen from the figure, prediction values reside proximate to the regression line

and the generated errors are lower except for some points, as in the predictions generated

with raw data. If the evaluation metrics for KNN models generated with raw data and

normalized data are examined, it is obvious that the errors become smaller. Although both

of the models strive to follow the slope of the regression line, the algorithm definitely

works much better if normalized data is employed. When the evaluation metrics

calculated for KNN regression with normalized data are examined, R2 score is equal to

0.72 which is quite high compared to model generated with raw data. Also, the calculated

errors become smaller, and the success of the model improves visibly with normalized

data. This situation shows that using normalized data is important in the machine learning

algorithms.

85

Figure 7.15 Scatter plot for predictions of KNN with 10-fold cv and hyper-parameter
tuning

Figure 7.15 represents the scatter plot of the predicted points against the best fit line

for KNN algorithm run with 10-fold cross-validation and hyper-parameter tuning. After

hyper-parameter tuning is applied, evaluation metrics for the algorithm are evidently

improved, and the prediction points reside closer to the regression line. Nevertheless

performance of KNN is still not acceptable.

Another method that examined during the studies was Ridge Regression. The scores

and errors generated by the model indicate that it cannot make very good predictions both

with raw data and normalized data. However, the predictions of the model trained with

normalized data yield lesser errors and higher scores. Nevertheless, it is clear that ridge

regression is not suitable to be used for the current dataset.

86

Figure 7.16 Scatter plot for predictions of Ridge Regression run with raw data

Figure 7.16 shows the scatter plot of the predicted values with the regression line

for Ridge Regression algorithm that was run with the non-normalized dataset. It can be

observed from the figure that, prediction points are scattered, and they are mostly far from

the regression line except for some high energy consumption values, and the calculated

prediction errors are high compared to other regression methods. Furthermore, the

predicted values have generally high errors especially for small energy consumption

values, and they have no tendency about following the trend of the regression line. If the

evaluation metrics are examined, the calculated R2 score is 0.024 which is very close to

zero and error metrics are high for ridge regression with raw data, indicating that it is not

very suitable to be used with raw data.

87

Figure 7.17 Scatter plot for predictions of Ridge Regression run with normalized
data

Figure 7.17 presents the scatter plot for the predicted values together with the

regression line for ridge regression algorithm that was trained using the normalized

dataset. As it can be seen from the figure, prediction values generally reside away from

the regression line and the produced errors are visibly large except for some points, like

in the predictions generated with raw data. If the evaluation metrics for ridge regression

models generated with raw data and normalized data given in Table 7.2 and 7.3 are

examined, it is obvious that the errors become smaller if normalized data is used.

Although both of the models make erroneous predictions, the algorithm definitely works

better if normalized data is employed. When the evaluation metrics calculated for ridge

regression with normalized data are examined, R2 score is equal to 0.076 which is higher

than the model generated with raw data but still it is unacceptably small. From the

evaluation metrics and the figures generated for ridge regression algorithm, it can be

inferred that it is not a good candidate to be used with the current dataset.

88

Figure 7.18 Scatter plot for predictions of Ridge Regression with 10-fold cv and
hyper-parameter tuning

Figure 7.18 represents the scatter plot of the predicted points against the best fit line

for Ridge Regression algorithm run with 10-fold cross-validation and hyper-parameter

tuning. Even though hyper-parameter tuning is applied, predictions are still far from the

regression line and the generated errors are also high. When the evaluation metrics are

analyzed, it is visible that the errors decrease, and scores increase after hyper-parameter

optimization, however ridge regression still shows a poor performance for the dataset.

The next method we have implemented was Decision Tree. The performance

metrics calculated according to the predictions of the model shows that the algorithm

produces quite high scores against tiny errors. From the results, it is obvious that the

method also works really well without normalizing the data. Decision Tree seems to be

one of the candidate methods to be employed for the existing dataset.

89

Figure 7.19 Scatter plot for predictions of Decision Tree Regression run with raw
data

Figure 7.19 illustrates the scatter plot of the predicted values along with the

regression line for Decision Tree regression algorithm that was run using the raw dataset.

As it is obvious from the figure, prediction points are mostly adjacent to the regression

line and the generated predicted errors are very tiny. Furthermore, the prediction values

are grouped together, and they studiously follow the slope of the regression line. This plot

goes parallel with the low error values and high scores calculated for the method that are

presented in Table 7.4.

90

Figure 7.20 Scatter plot for predictions of Decision Tree Regression run with
normalized data

Figure 7.20 presents the scatter plot for the predicted values together with the best

fit line for Decision Tree regression algorithm that was run using the normalized data. As

it can be seen clearly from the figure, prediction points reside approximately on the

regression line and the generated errors are even lower as in the predictions generated

with raw data. If the evaluation metrics presented in Tables 7.4 and 7.5 for Decision Tree

models generated with raw data and normalized data are considered, it is visible that the

errors become smaller. Nevertheless, both of the models make predictions that reside

highly on the regression line, and the algorithm works undeniably well both with raw data

and normalized data. Both evaluation results for Decision Tree regression show that it is

one of the most successful algorithms among the implemented ones and can be employed

in UANS studies.

91

Figure 7.21 Scatter plot for predictions of Decision Tree with 10-fold cv and hyper-
parameter tuning

Figure 7.21 represents the scatter plot of the predicted points against the best fit line

for Decision Tree algorithm run with 10-fold cross-validation and hyper-parameter

tuning. The algorithm already showed a high performance before hyper-parameter tuning

is applied; thus, the effect of tuning is not essential for Decision Tree.

The next analyzed method was Random Forest regression. The calculated

evaluation metric values for the algorithm depict that it produces quite good scores with

very minor errors. The metrics also show that the method still works well without

normalizing the data, although running with normalized data improves the model.

Random Forest is another adequate algorithm that can be used with the dataset in hand.

92

Figure 7.22 Scatter plot for predictions of Random Forest Regression run with raw
data

Figure 7.22 depicts the scatter plot of the predicted values against the regression

line for Random Forest regression algorithm that was run using the raw dataset. As

depicted in the figure, prediction values are agreeably proximate to the regression line

and the generated prediction errors are relatively small. On the other hand, the prediction

points congregate jointly alongside the regression line, and they have an affinity to follow

the trend of the regression line. This plot also goes parallel with the low error values and

high scores calculated for the method.

93

Figure 7.23 Scatter plot for predictions of Random Forest Regression run with
normalized data

Figure 7.23 illustrates the scatter plot for the predicted values versus the best fit line

for Random Forest regression algorithm that was exercised using the normalized dataset.

As it is shown on the figure, prediction points are placed rather closely to the regression

line and the generated errors are generally lower, similar to the predictions generated with

raw data. If the calculated evaluation metrics are examined for Random Forest models

that were generated with raw data and normalized data, it is apparent that the errors

become smaller after normalization. Notwithstanding, both of the models adhere the slope

of the regression line, and the algorithm works considerably well both with raw data and

normalized data. Although the algorithm performs well if it is executed using raw data, it

can achieve even further if normalized data is used before building the model.

94

Figure 7.24 Scatter plot for predictions of Random Forest with 10-fold cv and hyper-
parameter tuning

Figure 7.24 represents the scatter plot of the predicted points against the best fit line

for Random Forest algorithm run with 10-fold cross-validation and hyper-parameter

tuning. After hyper-parameter tuning is applied, evaluation metrics for the algorithm are

apparently improved, and the prediction points reside evidently close to the regression

line.

The last regression method implemented in the study is XGBoost regression. The

computed evaluation metric values for the algorithm demonstrate that it produces visibly

high scores and very tiny errors. The metrics also indicate that the algorithm still performs

well without normalizing the data, however executing with normalized data improves the

accuracy of the model. XGBoost is another proper algorithm that can be utilized for

parameter prediction in UASNs.

95

Figure 7.25 Scatter plot for predictions of XGBoost Regression run with raw data

Figure 7.25 depicts the scatter plot of the predicted points along with the best fit

line for XGBoost regression algorithm that was executed using the raw dataset. As

illustrated in the figure, prediction values are grouped around the regression line and the

calculated prediction errors are immensely small. Furthermore, the prediction points

group altogether alongside the regression line, and they intimately trail the trend of the

regression line. The points on the plot also behave parallel with the tiny error values and

great scores calculated for the method which are rendered in Tables 7.4 and 7.5.

96

Figure 7.26 Scatter plot for predictions of XGBoost Regression run with normalized
data

Figure 7.26 depicts the scatter plot for the predicted values against the regression

line for XGBoost regression algorithm that was run using the normalized dataset. As it

can be observed on the figure, prediction values reside quite proximate to the regression

line and the generated errors are extremely lower, similar to the predictions generated

with raw data. If the calculated evaluation metrics are examined for XGBoost models that

were generated both with raw data and normalized data, it is evident that the errors

become much smaller after normalization. Nevertheless, errors calculated for the model

trained with raw data are still very tiny and acceptable. Both of the models generate

predictions that follow the slope of the regression line, and the algorithm works

appreciably well both with raw data and normalized data. Although the algorithm

performs great if it is trained using raw data, it can effectuate the model even better if

normalized data is used while building the model.

97

Figure 7.27 Scatter plot for predictions of XGBoost Regression with 10-fold cv and
hyper-parameter tuning

Figure 7.27 represents the scatter plot of the predicted points against the best fit line

for XGBoost algorithm run with 10-fold cross-validation and hyper-parameter tuning.

The algorithm already showed a significant performance before hyper-parameter tuning

is applied; hence, the effect of tuning is not crucial for XGBoost regression.

After implementing eight regression algorithms, we continued with training ANN

and CNN models to analyze their performance about the dataset we prepared with UASN

parameters.

First, we have trained ANN using raw data and normalized data separately. ANN is

the most common type of neural networks, and it performs very well for most of the

problems. When the results and evaluation metrics generated by this algorithm are

scrutinized, the importance of normalization for the success of a method can be

appreciated better. The algorithm gives inadequate results when it is trained with raw

data, particularly the R2 score is found below zero indicating that the algorithm cannot

construe the relations between the dependent variable and the independent variables.

98

However, ANN performs expectedly when it is trained with normalized data. The

evaluation metrics calculated for the algorithm show that it is adequate to be used with

the normalized dataset.

Figure 7.28 Scatter plot for predictions of ANN run with raw data

Figure 7.28 depicts the scatter plot of the predicted points against the best fit line

for ANN algorithm that is trained using the raw dataset. It can be seen from the figure

that, prediction points are scattered, and they are generally far from the regression line

except for a few energy consumption values, and the calculated prediction errors are

relatively high when compared to previous regression methods. Moreover, the predicted

values have generally high errors especially for small prediction values, and they do not

tend to pursue the trend of the regression line. If the evaluation metrics are examined, the

calculated R2 score is -0.004 which is below zero and values of error metrics are high for

ANN with raw data, indicating that it cannot interpret the data before normalization.

99

Figure 7.29 Scatter plot for predictions of ANN run with normalized data

Figure 7.29 shows the scatter plot for the predicted values against the regression

line for ANN algorithm that was trained with the normalized dataset. As it is visible on

the figure, prediction values group altogether around the regression line except for some

outliers and predictions for large energy values, and the generated errors are reasonably

small, opposite to the predictions generated with raw data. If the calculated evaluation

metrics are examined for ANN model generated with normalized data, it is clear that the

errors become much smaller and R2 score is 0.96 which is close to 1, indicating that the

algorithm interprets the data successfully after normalization. Moreover, the model

follows the slope of the regression line if data is normalized. This situation again indicates

that the algorithm can be very successful when the data is normalized before the model

generation.

100

Figure 7.30 Scatter plot for predictions of ANN with 10-fold cv and hyper-parameter
tuning

Figure 7.30 represents the scatter plot of the predicted points against the best fit line

for ANN regression run with 10-fold cross-validation and hyper-parameter tuning. After

hyper-parameter tuning is applied, evaluation scores of the algorithm are apparently

improved, errors become smaller, and the prediction points reside closer to the regression

line.

After ANN, we have trained CNN with raw data and normalized data. Similar to

the ANN method, CNN also produces inappropriate predictions when it is trained with

raw data, and the R2 score is computed below zero meaning that CNN cannot interpret

the relations between the dependent variable and the independent variables. Nevertheless,

CNN performs excellently when it is trained with normalized data. The evaluation metrics

calculated for the algorithm show that it is successful, and it can be used for UASNs after

the data is normalized.

101

Figure 7.31 Scatter plot for predictions of CNN run with raw data

Figure 7.31 depicts the scatter plot of the predictions along with the regression line

of CNN algorithm that is trained using the raw data. The figure demonstrates that, like

the predictions generated with ANN using raw data, prediction values are diffused, and

most of them reside away from the regression line except for a few random values. The

error metric values given in Table 7.4 for CNN are generally higher when compared to

other ML methods including ANN. If these metrics are explored, the calculated R2 score

is -0.66 which is below zero and values of error metrics are high for CNN with raw data,

indicating that it cannot understand the dataset. Additionally, almost all the predicted

values have high errors which are worse for small prediction values, and they do not

follow the trend of the regression line in anyway.

102

Figure 7.32 Scatter plot for predictions of CNN run with normalized data

Figure 7.32 shows the scatter plot for the predicted values along with the regression

line for CNN algorithm trained with the normalized data. As it is evident on the figure,

prediction values reside together over the regression line except for some predictions for

large energy values, and the generated errors are remarkably small, contrary to the

predictions that are generated with the previous model. If the computed evaluation metrics

are examined for CNN model trained with normalized data, it is seen that the errors

become much smaller and R2 score is 0.997 which is very close to 1, meaning that the

algorithm performs successfully after normalization. Furthermore, the model follows the

trend of the regression line if data is normalized. These indicators show that CNN

algorithm can be very fruitful when the data is normalized before training the model.

103

Figure 7.33 Scatter plot for predictions of CNN with 10-fold cv and hyper-parameter
tuning

Figure 7.33 represents the scatter plot of the predicted points against the best fit line

for CNN algorithm run with 10-fold cross-validation and hyper-parameter tuning. The

algorithm already showed a powerful performance before hyper-parameter tuning is

applied; thus, the effect of tuning is not critical for CNN regression.

To sum up, we have investigated ten ML algorithms and their performances when

they are trained with raw data and normalized data separately. Most successful regression

algorithms are Gradient Boosting, Decision Tree, Random Forest and XGBoost which

perform well with both datasets. SVM and KNN show poor performances if they are

trained with raw data, but their prediction results are much better if normalized data is

used. Nevertheless, their overall success is not sufficient. When we explore the scores and

error metric values for ANN and CNN methods, it is clear that they need to be trained

with normalized data and they perform very well in that case. Otherwise, neural network

algorithms cannot generate successful models. Moreover, optimizing the hyper-

parameters of an algorithm definitely increases performance of the generated model. For

some of the algorithms, hyper-parameter tuning takes a considerable amount of time, but

104

this time is still very short when compared with the runtime of MIP optimizations and it

is important to tune the parameters to be able to make more accurate predictions about

network parameters.

The motivation behind making the ML study can be explained in two ways. First

the problem of designing a UASN with optimal parameters can be solved using

optimization algorithms, however optimizations are computationally complex, they need

a long time execute and sometimes they cannot provide feasible solutions. But if we have

a dataset, we can train ML algorithms to generate regression models to make predictions

about the network parameters to avoid the complexity of optimizations and we can also

forecast parameters even if optimization fail to complete. Second, ML algorithms have

been used for long years, they are robust, and they help the researchers save time and

resources. The contribution of the ML study is that it shows ML can be used efficiently

for parameter prediction in network design and gives performance results to select

adequate methods to be used in further studies.

105

Chapter 8

Conclusions and Future Prospects
First, the general idea and a summary of the conducted studies included in the thesis

is presented in this chapter. Then the societal impact and contributions to the global

sustainability of the study are declared. Finally, the thesis is concluded with future

prospects and possible studies in the field.

8.1 Conclusions
In this thesis, an optimal multi-path routing strategy has been developed and a

mixed-integer programming (MIP) framework has been constructed to analyze the effects

of multi-path routing, packet duplication, encryption, and data fragmentation on network

lifetime. The constructed MIP model focuses on maximizing the network lifetime by

maximizing the operation duration of the most energy depleting sensor node while the

network guarantees a pre-determined reliability requirement.

In addition, to obtain security for the sensitive data generated by the sensor nodes

during the operation, the idea of utilizing encryption before broadcasting the data is

proposed. To balance the trade-off between security supplied by encryption and network

lifetime in UASNs, a method for selecting appropriate encryption algorithms for the

nodes in the UASN is presented. To benefit from the advantages of symmetric key

encryption schemes, the AES and Twofish encryption algorithms have been selected and

their effects on the network lifetime has been investigated with the MIP framework.

To further improve the security of the generated data, using packet fragmentation

method is suggested in the study. Against a silent listening attack, dividing a data into

pieces and transmitting each data piece over different paths to the sink comes out as a

smart method. Because the adversary cannot obtain the integrated data without collecting

all data pieces and collecting all the pieces is a gravely difficult task. On the other hand,

if the data is divided and transmitted in pieces, it is obvious that some of the pieces must

106

be sent using non-optimal paths. And using non-optimal paths for transmission might

have a negative effect on network lifetime. In this study, these possible effects of packet

fragmentation on the network lifetime is also examined with the MIP optimization.

Performance results of the proposed methods in this study are generated with the MIP

optimizations and they are listed as follows:

• In order to maintain a desired network success rate (NSR), the network

needs to sacrifice more energy; thus, more strict reliability rate requires

more energy consumption for the nodes. When the NSR is increased, energy

consumption of the nodes tends to increase. For NSR rates of 0.7, 0.8 and

0.9, the increase in the energy consumption compared to base state

(NSR=0.6) is 33%, 77% and 150% respectively.

• Encryption is greedy about energy consumption but to provide security for

the network traffic, encryption is a must against eavesdropping attacks.

Between the two encryption algorithms employed, using AES for all nodes

consumes about 100% more energy compared to using Twofish for all

nodes. It is clear that Twofish is better for energy consumption, and it is

considered a secure encryption algorithm. Hence, for adequate security we

employ Twofish for close nodes and AES for far nodes to the sink. In this

case, the decrease in the energy consumption against using AES for all

nodes is about 20%. By the proposed idea, we can limit the decrease in the

network lifetime while maintaining the security.

• Data fragmentation is another promising method against eavesdropping

attacks. Nevertheless, it also needs more transmission and reception energy

since some of these operations cannot be carried out using optimal paths.

The optimization results show that increasing number of data fragments

increases the energy consumption in a linear fashion. Forcing the system to

divide the transmitted data into 2, 3 and 4 fragments increases energy

consumption linearly about 0.002 Joules on average. When we consider the

high energy overhead introduced by encryption operation, it is very logical

to use data fragmentation jointly to improve the level of the security of the

system.

107

Although the proposed optimal multi-path routing strategy is modeled by an MIP

framework, the computational complexity arises from the nature of MIP encouraged us

to investigate meta-heuristic solutions and ML algorithms. In order to overcome the

computational complexity of the optimal multi-path routing strategy developed via MIP

formulation, we implemented different meta-heuristic approaches. For each meta-

heuristic algorithm, we investigated the near-optimal solution performance for the

problem of selecting encryption scheme for the nodes. Furthermore, we have

implemented eight regression and two neural network algorithms to be used for predicting

energy consumption values to help avoid running complex optimizations for different

network parameters.

When implementing the heuristic methods to decide which encryption algorithm to

use for each node, we expected them to find solutions similar to the case where all nodes

use Twofish without giving any constraints. For 30 and 40 node networks, Golden Section

Search (GSS) finds the approximate results compared to optimization results, which is

nearly 3% higher than optimal results. For 20 nodes, GSS still gives the best result that

approximates the optimum with 17%. For 10 nodes, Simulated Annealing (SA) finds the

best result that is nearly 21% higher than optimum value. From these results, we can infer

that it is better to use SA for small networks and GSS for larger networks. In the tests,

Genetic Algorithm (GA) was not able to provide good results, generating only about 1.5%

deviated results compared to initially given solution.

After analyzing the MIP framework and heuristic algorithms, in this study we have

built several regression models and two neural network models using Scikit-learn and

Keras tools and we have analyzed the success of these models using some scores and

error metrics. To collect the data to be used by the models, we have run the optimization

model with various combinations of the network parameters. The reason of proposing

usage of machine learning algorithms is that once we the model is implemented, it can be

executed very fast on any computer since the regression model simply consists of

mathematical formulas. Another advantage of ML is that instead of running

computationally heavy optimizations, basically the network parameters can be changed,

and the pre-generated model can be run with different parameters to make new

predictions. Moreover, optimizations sometimes cannot come up with feasible solutions

for the problem or finish in an acceptable timeframe. By using machine learning models,

we can avoid the high computation burden of optimizations. Besides, regression models

108

might not produce exact results, but they can predict new values with high accuracy and

low errors. Another point to express is that we can always make a prediction with different

parameters even though the optimization returns unfeasible solutions with those

parameters. Second point is, every regression method can generate different models for

different kind of datasets, thus we have investigated several algorithms to discover the

best method for generating the regression model for our dataset.

When we consider the regression methods and neural networks, we can see that

Gradient Boosting, XGBoost, Decision Tree and Random Forest are successful methods

for our dataset, and we can see that ANN and CNN also produce successful models. An

important point to stress is that the success of the neural networks increases if we

normalize the data before building the model. Normalization of the data is important for

our case because our data has a wide range of values and mapping these values to a range

helps the algorithms process the data better. Performance results of the examined

algorithms show that:

• Linear Regression, KNN, and Ridge Regression are not successful with the

given dataset as they produce R2 scores around 0.075 showing that the

model cannot define the relations between the variables well.

• Gradient Boosting, XGBoost, Decision Tree and Random Forest are the best

regression methods in terms of different performance metrics. They are

quite successful both with raw and normalized data, producing R2 scores

close to 1.

• ANN and CNN cannot define the model if they are run with raw data. On

the other hand, they produce quite successful models if they are run with

normalized data. With normalized data, R2 scores for ANN and CNN are

0.96 and 0.99 respectively.

• Normalization improves the prediction performance for all the examined

algorithms and reduces errors.

• Hyper-parameter optimization might take more time than training the

models with default parameters, but it helps improve the model a lot and it

is an important process that should be considered.

 An important point to stress is that the success of the neural networks increases if

the data is normalized before building the model. Normalization is important for our case

109

since our data has a wide range of values and mapping these values to a range helps the

algorithms process the data better. Moreover, even if optimizations cannot come up with

feasible results or cannot finish in an acceptable time frame, once a regression model is

built, predictions can be still made using the previously generated data which proves that

machine learning is an ancillary technique for optimizations.

8.2 Societal Impact and Contribution to Global

Sustainability

To assess the contributions of this work on global sustainability, first we would like

to introduce the Sustainable Development Goals presented by United Nations

Development Programme (UNDP). The Sustainable Development Goals (SDGs), also

known as the Global Goals, were endorsed by United Nations (UN) as a global call to

action to end poverty and protect Earth [106]. There are seventeen SDGs declared by

UNDP and each of these goals is related to different topics devoted for sustainability.

Among the seventeen SDGs, two of them are highly related to the subject of this

thesis. First SDG that this study targets is Goal 9 – Industry, Innovation and Infrastructure.

In the definition of the goal, it is stated that technological development -such as providing

new jobs and promoting energy efficiency- is essential about finding robust solutions to

global economic and environmental changes. Moreover, scientific research and

innovation are stated as important ways to support sustainable development. Parallel to

the declarations under Goal 9, in this study we have conducted innovative research for

improving UASN technology which contains energy efficiency in it. Here, the energy

efficiency subject is not limited to the energy efficiency discussed in the proposed routing

strategy, because prolonging the lifetime of a UASN means increasing its operation

duration too. If we consider the situation from a different perspective, deploying a

network and restarting a network study can be a costly operation involving both

economical and energy issues. Hence, this study contributes to sustainability by

decreasing the cost of network deployment and underwater operations.

The other SDG that our study targets is Goal 14 – Life Below Water. In the

definition of the goal, it is mentioned that oceans of the world, and its features like

temperature, currents, chemistry or salinity are essential that make the world habitable for

110

humans. More importantly, how this vital source is managed is grave for humankind. As

mentioned in the first chapter of the thesis, one of the application areas of UASNs is the

underwater ecological researches. With the help of UASNs, scientists can understand the

ecosystem residing underwater better, and can develop new ways to manage and sustain

this important resource. With this study, we help improving underwater studies by

contributing to the important field of underwater sensor networks.

8.3 Future Prospects

We have one journal and one conference paper published during the study of this

thesis. We have also submitted a second manuscript to the Ad-Hoc Networks Journal

containing the ML part of the study for publication. Nevertheless, there are still many

challenges awaiting in the design process of UASNs. For instance, studies should be

carried out about networks with multiple sinks and mobile sensor nodes or Autonomous

Underwater Vehicles (AUV).

As mentioned in the motivation of the thesis, one of the most important problems

about designing a UASN is managing the energy consumption of the network efficiently.

Because of this fact, for further studies, energy efficiency subject still needs to be in the

focus of network design.

When existing technologies and future ideas are examined, it can be seen that there

are some promising methods that can be used to increase the lifetime of the network. One

of these technologies is energy harvesting. There are various studies about harvesting

energy under the water some of which are Turbines and Piezoelectric beams that exploit

water current and Hydrophones that exploit acoustic noise of the ships. If any of these

technologies can be developed and efficiently used for harvesting energy, batteries of the

sensor nodes in the UASNs can be charged and the lifetime of the network can be

improved. Thus, conducting new studies about energy harvesting technologies can be a

good topic for future studies.

Another possible subject for future studies can be compressive sensing.

Compressive sensing is method used for reconstructing data from lower number of

samples and it is very efficient if there are sparse data to be integrated. In the UASNs,

most of the energy is spent for sensing, transmission and reception operations. In a sample

111

application scenario, let a node make sensing operation in every minute and transmit the

sensed data to the sink node. This way, the node needs to make 60 transmissions per hour.

However, the change in the environment might not be high during an hour. Since

compressive sensing is used for integrating sparse data, it can be used to reduce the

number of redundant operations. To make the integration of the data, a computation needs

to be done which requires an additional energy consumption. At this point, if the

compressive sensing method can be applied successfully, it is clear that it will contribute

to the energy efficiency of the network. Hence, making research about the applicability

of compressive sensing for the underwater nodes can be another topic for future studies.

112

BIBLIOGRAPHY

[1] M. Alsulami, R. Elfouly and R. Ammar, "Underwater Wireless Sensor
Networks: A Review," SENSORNETS 2022, pp. 202-214, (2022).

[2] K. K. Gola and B. Gupta, "Underwater sensor networks: ‘Comparative
analysis on applications, deployment and routing techniques’," IET
Communications, vol. 14, no. 17, pp. 2859-2870, (2020).

[3] L. B. VK5BR, "Underwater radio communication," Originally published in
Amateur Radio., pp. 1-8, (1987).

[4] R. K. Moore, "Radio communication in the sea," IEEE spectrum, vol. 4, no.
11, pp. 42-51, (1967).

[5] Y. Chen and Q. Zhao, "On the lifetime of wireless sensor networks," IEEE
Communications Letters, vol. 9, no. 11, pp. 976-978, (2005).

[6] D. Incebacak, K. Bicakci and B. Tavli, "Evaluating energy cost of route
diversity for security in wireless sensor networks," Computer Standarts &
Interfaces, no. 39, pp. 44-57, (2015).

[7] H. Zlatokrilov and H. Levy, "Session privacy enhancement by traffic
dispersion," Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), pp. 1-12, (2006).

[8] J. Cao, J. Dou, Z. Guo, S. Dong and H. Xu, "Elt: Energy-level-based hybrid
transmission in underwater sensor acoustic networks," IEEE 9th
International Conference on Mobile Ad-hoc and SensorNetworks, pp. 133-
139, (2013).

[9] R. Su, R. Venkatesan and C. Li, "An energy-efficient relay nodeselection
scheme for underwater acoustic sensor network," Cyber-Physical Systems,
vol. 1, no. 2-4, pp. 160-179, (2015).

[10] D. Pompili, T. Melodia and I. Akyildiz, "Routing algorithms for delay-
insensitive and delay-sensitive applications in underwater sensor networks,"
Proceedings of the 12th Annual International Conference on Mobile
Computing and Networking, pp. 298-309, (2006).

[11] J. Chen, X. Wu and G. Chen, "Rebar: A reliable and energy balanced routing
algorithm for uasns," 2008 Seventh International Conference on Grid and
Cooperative Computing, pp. 349-355, (2008).

[12] L. Xinbin, C. Wang, Z. Yang, L. Yan and S. Han, "Energy-efficient and
secure transmission scheme based on chaotic compressive sensing in
underwater wireless sensor networks," Digital Signal Processing, no. 81, pp.
129-137, (2018).

[13] C. Castelluccia, E. Mykletun and G. Tsudik, "Efficient aggregation of
encrypted data in wireless sensor networks," The Second Annual
International Conference on Mobile and Ubiquitous Systems: Networking
and Services, (2005).

[14] S. Uluagac, R. Beyah, Y. Li and J. Copeland, "VEBEK: Virtual Energy-
Based Encryption and Keying for Wireless Sensor Networks," IEEE
Transactions on Mobile Computing, vol. 9, no. 7, pp. 994-1007, (2010).

[15] E. Stavrou and A. Pitsillides, "A survey on secure multipath routing
protocols in WSNs," Computer Networks, no. 54, p. 2215–2238, (2010).

113

[16] P. Lee, V. Misra and D. Rubenstein, "Distributed algorithms for secure
multipath routing," Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), no. 3, p. 1952–1963, (2005).

[17] L. Chen and J. Leneutre, "On multipath routing in multihop wireless
networks: security, performance, and their tradeoff," Eurasip journal on
wireless communications and networking, pp. 1-13, (2009).

[18] A. Xenakis, F. Foukalas, G. Stamoulis and T. Khattab, "Energy-aware joint
power, packet and topology optimization by simulated annealing for wsns,"
7th IEEE GCC Conference and Exhibition, pp. 17-21, (2013).

[19] S. Alrashed, P. N. Marimuthu and S. J. Habib, "Optimal Deployment of
Actors using Simulated Annealing within WSAN," 17th International
Conference on Telecommunications, pp. 715-721, (2010).

[20] J. Zhong and J. Zhang, "Ant Colony Optimization Algorithm for Lifetime
Maximization in Wireless Sensor Network with Mobile Sink," Proceedings
of the 14th annual conference on Genetic and evolutionary computation, pp.
1199-1204, (2012).

[21] Y. Han, G. Li, R. Xu, J. Su and G. Wen, "Clustering the Wireless Sensor
Networks: A Meta-Heuristic Approach," IEEE Access, vol. 8, pp. 214551-
214564, (2020).

[22] K. Guleria and A. K. Verma, "Meta-heuristic Ant Colony Optimization
Based Unequal Clustering for Wireless Sensor Network," Wireless Personal
Communications, no. 105, p. 891–911, (2019).

[23] H. U. Yildiz, K. Bicakci, B. Tavli, H. Gultekin and D. Incebacak,
"Maximizing wireless sensor network lifetime by
communication/computation energy optimization of non-repudiation
security service: Node level versus network level strategies," Ad Hoc
Networks, no. 37, pp. 301-323, (2016).

[24] E. Hosseini, V. Esmaeelzadeh and M. Eslami, "A hierarchical sub-
chromosome genetic algorithm (hsc-ga) to optimize power consumption and
data communications reliability in wireless sensor networks," Wireless
Personal Communications, no. 2, pp. 752-757, (2015).

[25] T. Hu and Y. Fei, "QELAR: A Machine-Learning-Based Adaptive Routing
Protocol for Energy-Efficient and Lifetime-Extended Underwater Sensor
Networks," IEEE Transactions on Mobile Computing, vol. 9, no. 6, pp. 796-
809, (2010).

[26] L. Alsalman and E. Alotaibi, "A Balanced Routing Protocol Based on
Machine Learning for Underwater Sensor Networks," IEEE Access, vol. 9,
pp. 152082-152097, (2021).

[27] O. A. Karim, N. Javaid, A. Sher, Z. Wadud and S. Ahmed, "QL-EEBDG:
QLearning based energy balanced routing in underwater sensor networks,"
EAI Endorsed Transactions on Energy Web, vol. 5, no. 17, (2018).

[28] Y. Su, R. Fan, X. Fu and Z. Jin, "DQELR: An Adaptive Deep Q-Network-
Based Energy- and Latency-Aware Routing Protocol Design for Underwater
Acoustic Sensor Networks," IEEE Access, vol. 8, pp. 64857-64872, (2019).

[29] M. Ateeq, F. Ishmanov, M. Afzal and M. Naeem, "Predicting Delay in IoT
Using Deep Learning: A Multiparametric Approach," IEEE Access, vol. 7,
pp. 62022-62031, (2019).

114

[30] A. Akbas, H. U. Yildiz, M. A. Ozbayoglu and B. Tavli, "Neural network
based instant parameter prediction for wireless sensor network optimization
models," Wireless Networks, vol. 27, no. 3, pp. 2055-2065, (2019).

[31] R. Huang, L. Ma, G. Zhai, J. He, X. Chu and H. Yan, "Resilient Routing
Mechanism for Wireless Sensor Networks With Deep Learning Link
Reliability Prediction," IEEE Access, vol. 8, pp. 64857-64872, (2020).

[32] M. Yilmaz, M. A. Ozbayoglu and B. Tavli, "Efficient computation of
wireless sensor network lifetime through deep neural networks," Wireless
Networks, vol. 27, no. 3, pp. 2055-2065, (2021).

[33] A. Akbas and S. Buyrukoglu, "Stacking Ensemble Learning-Based Wireless
Sensor Network Deployment Parameter Estimation," Arabian Journal for
Science and Engineering, pp. 1-10, (2022).

[34] Y. Chen, W. Yu, X. Sun, L. Wan, Y. Tao and X. Xu, "Environment-aware
communication channel quality prediction for underwater acoustic
transmissions: A machine learning method," Applied Acoustics, vol. 181,
(2021).

[35] V. Kalaiarasu, H. Vishnu, A. Mahmood and M. Chitre, "Predicting
underwater acoustic network variability using machine learning techniques,"
OCEANS 2017-Anchorage, pp. 1-7, (2017).

[36] M. Alamgir, M. Sultana and K. Chang, "Link Adaptation on an Underwater
Communications Network Using Machine Learning Algorithms: Boosted
Regression Tree Approach," IEEE Access, vol. 8, pp. 73957-73971, (2020).

[37] E. Eldesouky, M. Bekhit, A. Fathalla, A. Salah and A. Ali, "A Robust
UWSN Handover Prediction System Using Ensemble Learning," Sensors,
vol. 21, no. 5777, (2021).

[38] L. Liu, L. Cai, L. Ma and G. Qiao, "Channel State Information Prediction
for Adaptive Underwater Acoustic Downlink OFDMA System: Deep Neural
Networks Based Approach," IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY,, vol. 70, no. 9, pp. 9063-9076, (2021).

[39] J. H. Jeon, S. H. Hwangbo, H. Peyvandi and S. J. Park, "Jeon, Jun-Ho, et al.
"Design and implementation of a bidirectional acoustic micro-modem for
underwater communication systems," 2012 Oceans, pp. 1-4, (2012).

[40] W. Lee, J. H. Jeon and S. J. Park, "Micro-Modem for Short-Range
Underwater Communication Systems," 2014 Oceans, pp. 1-4, (2014).

[41] "The CMUcam2," Carnegie Mellon University, [Online]. Available:
https://www.cs.cmu.edu/~cmucam2/. [Accessed 12 11 2022].

[42] I. Vasilescu, K. Kotay, D. Rus and P. Corke, "ata collection, storage, and
retrieval with an underwater sensor network," Proceedings of the 3rd
international conference on Embedded networked sensor systems, pp. 154-
165, (2005).

[43] M. Felemban and E. Felemban, "Energy-delay tradeoffs for underwatera
coustic sensor networks," International Black Sea confer-ence on
communications and networking (BlackSeaCom), pp. 45-49, (2013).

[44] R. Coates, Underwater acoustic systems, Macmillan International Higher
Education, 1990.

[45] R. Urick, Principles of underwater sound, New York: McGrawHil, 1983.

115

[46] M. Stojanovic, "On the relationship between capacity and distance in an
underwater acoustic communication channel," ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 11, no. 4, pp. 34-43, (2007).

[47] M. Ainslie and J. McColm, "A simplified formula for viscous and chemical
absorption in sea water," Journal of the Acoustical Society of America, vol,
vol. 103, no. 3, p. 1671–1672, (1998).

[48] J. Proakis and M. Salehi, Digital Communications, McGraw-Hill Education,
2008.

[49] J. Pike, "Underwater Acoustics," Federation of American Scientists, (1998).
[Online]. Available: https://man.fas.org/dod-101/sys/ship/acoustics.htm.
[Accessed 12 11 2022].

[50] L. A. Wolsey, "Mixed integer programming," in Wiley Encyclopedia of
Computer Science and Engineering, 2007, pp. 1-10.

[51] J. C. Smith and Z. C. Taskin, "A tutorial guide to mixed-integer
programming models and solution techniques," Optimization in medicine
and biology, pp. 521-548, (2008).

[52] C. Miller, A. Tucker and R. Zemlin, "Integer programming formulation of
traveling salesman problems," Journal of the ACM, vol. 7, no. 4, pp. 326-
329, (1960).

[53] E. Thambiraja, G. Ramesh and D. R. Umarani, "A Survey on Various Most
Common Encryption Techniques," International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 2, no. 7, pp.
226-233, (2012).

[54] S. Kansal and M. Mittal, "Performance evaluation of various symmetric
encryption algorithms," International conference on parallel, distributed and
grid computing, pp. 105-109, (2014).

[55] A. Piltzecker, The Best Damn Windows Server 2008 Book Period, Elsevier,
2011.

[56] J. Daemen and V. Rijmen, "AES proposal: Rijndael," (1999).
[57] J. Daemen and V. Rijmen, The Design of Rijndael, New York: Springer-

verlag, 2002.
[58] T. Baigneres and S. Vaudenay, "Proving the security of AES substitution-

permutation network," International Workshop on Selected Areas in
Cryptography, pp. 65-81, (2005).

[59] B. Schneier, "Schneier on Security," [Online]. Available:
https://www.schneier.com/academic/twofish/. [Accessed 12 11 2022].

[60] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson,
"Twofish: A 128-bit block cipher," NIST AES Proposal, vol. 15, no. 1, pp.
23-91, (1998).

[61] C. Saifurrab, S. Mirza and M. Tech, "AES algorithm using advance key
implementation in MATLAB," Int. Res. J. Eng. Technol., vol. 3, no. 4, pp.
846-850, (2016).

[62] S. Lucks, "The saturation attack—a bait for Twofish," International
Workshop on Fast Software Encryption, pp. 1-15, (2001).

[63] A. Akbas, "Comparative Analysis of Lightweight Cryptography Algorithms
on Resource Constrained Microcontrollers," 2019 1st International

116

Informatics and Software Engineering Conference (UBMYK), pp. 1-4,
(2019).

[64] MATLAB, v. R2022a, Massachusetts: The MathWorks Inc., 2022.
[65] "IBM Cplex Optimizer," IBM, [Online]. Available:

https://www.ibm.com/analytics/cplex-optimizer. [Accessed 12 11 2022].
[66] O. G. Uyan, A. Akbas and V. C. Gungor, "A Reliable and Secure Multi-Path

Routing Strategy for Underwater Acoustic Sensor Networks," Computer
Networks, vol. 109070, (2022).

[67] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, no. 4598, pp. 671-680, (1983).

[68] J. Kiefer, "Sequential minimax search for a maximum," Proceedings of the
American mathematical society, vol. 4, no. 3, pp. 502-506, (1953).

[69] C. Lewis-Beck and M. Lewis-Beck, Applied regression: An introduction,
Sage Publications, 2015.

[70] G. Van Rossum and F. L. Drake, "Python 3 Reference Manual,"
CreateSpace, Scotts Valley, CA, 2009.

[71] F. Pedregosa, "Scikit-learn: Machine Learning in Python," JMLR 12, pp.
2825-2830, (2011).

[72] F. Chollet, "Keras: Deep Learning for humans.," (2022). [Online].
Available: https://github.com/keras-team/keras. [Accessed 2022].

[73] M. Abadi, "TensorFlow: A System for Large-Scale Machine Learning,"
Proc. of the 12th USENIX Symposium on Operating Systems Design and
Implementation, pp. 265-283, (2016).

[74] W. McKinney, "Data Structures for Statistical Computing in Python," Proc.
of the 9th Python in Science Conf., pp. 56-61, (2010).

[75] S. Brugman, "Pandas-profiling.," (2022). [Online]. Available:
https://github.com/ydataai/pandas-profiling. [Accessed 2022].

[76] T. Kluvyer, "Jupyter Notebooks – a publishing format for reproducible
computational workflows.," Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pp. 87-90, (2016).

[77] M. L. Waskom, "Seaborn: statistical data visualization," Journal of Open
Source Software, no. 6, p. 60, (2016).

[78] J. Zar, "Spearman rank correlation," Encyclopedia of Biostatistics, vol. 7,
(2005).

[79] J. L. Myers, A. D. Well and R. F. Lorch, Research design and statistical
analysis, Routledge, 2013.

[80] S. Węglarczyk, "Kernel density estimation and its application.," ITM Web
of Conferences., vol. 23, p. 37, (2018).

[81] D. A. Freedman, Statistical Models: Theory and Practice, Cambridge
University Press., 2009.

[82] C. Corinna and V. Vapnik, "Support-Vector Networks," Machine Learning,
vol. 20 (3), pp. 273-297, (1995).

[83] J. H. Friedman, "Greedy function approximation: a gradient boosting
machine," Annals of Statistics,, vol. 29, no. 5, p. 1189–1232, (2001).

117

[84] N. S. Altman, "An introduction to kernel and nearest-neighbor
nonparametric regression," The American Statistician, vol. 46, no. 3, pp.
175-185, (1992).

[85] M. Azadkia, "Optimal choice of k for k-nearest neighbor regression," arXiv
preprint arXiv:1909.05495, (2019).

[86] D. E. Hilt and D. W. Seegrist, "Ridge, a computer program for calculating
ridge regression estimates," Department of Agriculture, Forest Service,
Northeastern Forest Experiment Station, (1977).

[87] A. E. Hoerl and R. W. Kennard, "Ridge Regression: Biased estimation for
nonorthogonal problems," Technometrics, vol. 12.1, pp. 55-67, (1970).

[88] X. Wu, V. Kumar and J. R. Quinlan, "Top 10 algorithms in data mining,"
Knowledge Information Systems, vol. 57(3), pp. 238-247, (2008).

[89] S. B. Kotsiantis, "Decision trees: a recent overview," Artificial Intelligence
Review, vol. 39, no. 4, pp. 261-283, (2013).

[90] T. K. Ho, "Random decision forests," Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, pp. 278-282,
(1995).

[91] M. Schonlau and R. Y. Zou, "The random forest algorithm for statistical
learning," The Stata Journal, vol. 20, no. 1, pp. 3-29, (2020).

[92] D. M. Hawkins, "The Problem of Overfitting," Journal of Chemical
Information and Computer Sciences, vol. 44, no. 1, pp. 1-12, (2004).

[93] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System,"
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 785-794, (2016).

[94] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho and K. Chen,
"Xgboost: extreme gradient boosting," R package version 0.4-2, vol. 1, no.
4, pp. 1-4, (2015).

[95] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in
nervous activity," The Bulletin of Mathematical Biophysics, vol. 5, no. 4,
pp. 115-133, (1943).

[96] A. K. Jain, J. Mao and K. M. Mohiuddin, "Artificial neural networks: A
tutorial," Computer, vol. 29, no. 3, pp. 31-44, (1996).

[97] K. O'Shea and R. Nash, "An introduction to convolutional neural networks,"
arXiv preprint arXiv:1511.0845, (2015).

[98] M. Kramer, "R2 statistics for mixed models," Proceedings of the conference
on applied statistics in agriculture, vol. 17, pp. 148-160, (2005).

[99] C. J. Willmott and K. Matsuura, "Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average model
performance," Climate research, vol. 30, no. 1, pp. 79-82, (2005).

[100] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas and
selected topics, Chapman and Hall/CRC, 2015.

[101] T. O. Hodson, T. M. Over and S. S. Foks, "Mean squared error,
deconstructed," Journal of Advances in Modeling Earth Systems, vol. 13,
no. 12, pp. 1-10, (2021).

118

[102] R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast
accuracy," International Journal of Forecasting, vol. 22, no. 4, p. 679–688,
(2006).

[103] A. De Myttenaere, B. Golden, B. Le Grand and F. Rossi, "Mean absolute
percentage error for regression models," Neurocomputing, vol. 192, pp. 38-
48, (2016).

[104] C. Leys, C. Ley, O. Klein, P. Bernard and L. Licata, "Detecting outliers: Do
not use standard deviation around the mean, use absolute deviation around
the median," Journal of experimental social psychology, vol. 49, no. 4, pp.
764-766, (2013).

[105] C. Achen, "What Does “Explained Variance“ Explain?: Reply," Political
Analysis, vol. 2, pp. 173-184, (1990).

[106] "Sustainable Development Goals," (2022). [Online]. Available:
https://www.undp.org/sustainable-development-goals. [Accessed 12 11
2022].

119

CURRICULUM VITAE

2000 - 2005 B.Sc., Computer Engineering, Bilkent University,
Ankara, TÜRKİYE

2015 - 2017 M.Sc., Electrical and Computer Engineering, Abdullah Gul
University,

Kayseri, TÜRKİYE
2017 - 2022 Doctoral Candidate, Electrical and Computer Engineering,

Abdullah Gul University, Kayseri, TÜRKİYE
2015 - 2021 Teaching and Research Assistant, Electrical and Computer

Engineering,
Abdullah Gul University, Kayseri, TÜRKİYE

SELECTED PUBLICATIONS AND PRESENTATIONS

J1) C. Deniz, O.G. Uyan, V.C. Gungor, “On the performance of LTE downlink
scheduling algorithms: A case study on edge throughput”, Computer Standards &
Interfaces, vol. 59, pp. 96-108, (2018).

J2) O.G. Uyan, V.C. Gungor, “QoS‐aware LTE‐A downlink scheduling algorithm: A
case study on edge users”, International Journal of Communication Systems, vol. 32, no.
15, (2019).

J3) O.G. Uyan, A. Akbas, V.C. Gungor, “A Reliable and Secure Multi-Path Routing
Strategy for Underwater Acoustic Sensor Networks”, Computer Networks, 109070,
(2022).

C1) V.C. Gungor, O.G. Uyan, “QoS-aware downlink scheduling algorithm for LTE
networks: A case study on edge users”, 2017 25th Signal Processing and Communications
Applications Conference, IEEE, pp. 1-4, (2017).

C2) O.G. Uyan, V.C. Gungor, “Lifetime analysis of underwater wireless networks
concerning privacy with energy harvesting and compressive sensing”, 2019 27th Signal
Processing and Communications Applications Conference, IEEE, pp. 1-4, (2019).

