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ABSTRACT 

BLOCKCHAIN BASED PEER-TO-PEER ENERGY TRADING 

APPLICATIONS  
 

Serkan SEVEN 
Ph.D. in Electrical and Computer Engineering 
Advisor: Asst. Prof. Gülay YALÇIN ALKAN  

June 2023 

 
This thesis explores the potential of innovative peer-to-peer (P2P) energy trading 

schemes for virtual power plants (VPPs) using blockchain technologies, smart contracts, 

and decentralized finance (DeFi) instruments. Traditional centralized approaches have 

limitations in terms of transparency and security, which can hinder the successful 

implementation and operation of VPPs and P2P energy trading systems. The dissertation 

begins by reviewing the current state of energy sources within the global energy 

landscape. Understanding the existing landscape provides valuable insights into the 

potential benefits and challenges of implementing P2P energy trading within VPPs. The 

focus of the dissertation is to develop and analyze innovative P2P energy trading schemes 

for VPPs that integrate blockchain technologies and facilities to enhance transparency, 

security, and automation of energy transactions. Furthermore, DeFi instruments, 

specifically decentralized exchange (DEX), are used as a novel approach instead of 

auction methods to determine P2P energy buying and selling prices. Along with 

blockchain technologies, optimization is used to maximize the economic benefits of 

peers. The sequential decision problem of the trading schemes is solved with mixed 

integer linear programming (MILP). In addition, machine/deep learning models are 

utilized to overcome the drawbacks of conventional mathematical programming like 

MILP. These models can accelerate the decision-making processes by learning from the 

optimization results obtained. Overall, frameworks for the successful integration of P2P 

energy trading within and among VPPs are developed to validate the effectiveness and 

feasibility of the proposed P2P energy trading schemes through case studies and 

simulations using realistic data sets and blockchain platforms. 

Keywords: Blockchain, Smart Contract, Peer-to-peer energy trading, Virtual Power 

Plant, Decentralized Exchanges 
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ÖZET 

BLOKZİNCİR TABANLI EŞTEN-EŞE ENERJİ TİCARETİ 

UYGULAMALARI 

 
Serkan SEVEN 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 
Doktora Tez Yöneticisi: Dr. Öğr. Üyesi Gülay YALÇIN ALKAN 

Haziran-2023 

 
Bu tez, blokzincir teknolojileri, akıllı sözleşmeler ve merkezi olmayan finans 

(MOF) araçlarını kullanarak sanal enerji santralleri (SES) için yenilikçi eşten-eşe enerji 

(EEE) ticaretinin potansiyelini araştırmaktadır. Geleneksel merkezi yaklaşımlar şeffaflık 

ve güvenlik açısından sınırlamalara sahiptir ve bu da SES ve EEE ticaret sistemlerinin 

başarılı bir şekilde uygulanmasını ve işletilmesini engelleyebilir. Bu tez, enerji 

kaynaklarının küresel ölçekteki durumunu gözden geçirerek başlamaktadır. Mevcut 

manzaranın anlaşılması, SES içinde EEE ticaretinin uygulanmasının potansiyel faydaları 

ve zorlukları hakkında değerli bilgiler sağlamaktadır. Tezin amacı, enerji ticaretinin 

şeffaflığını, güvenliğini ve otomasyonunu artırmak için blokzinciri teknolojilerini ve 

olanaklarını entegre eden SES için yenilikçi EEE ticareti planlamaları geliştirmek ve 

analiz etmektir. Ayrıca yeni bir yaklaşım olarak, açık artırma yöntemlerinin yerine MOF 

araçları özellikle de merkezi olmayan borsa, EEE alış ve satış fiyatlarının belirlenmesinde 

kullanılmaktadır. Blokzincir teknolojileri ile birlikte, eşlerin ekonomik faydalarını en üst 

düzeye çıkarmak için optimizasyon kullanılmıştır. Ticaret planlarının sıralı karar 

problemi, karışık tamsayılı doğrusal programlama (KTDP) ile çözülmektedir. Buna ek 

olarak, KTDP gibi geleneksel matematiksel programlamanın dezavantajlarının 

üstesinden gelmek için makine/derin öğrenme modelleri kullanılmaktadır. Bu modeller, 

elde edilen optimizasyon sonuçlarından öğrenerek karar verme süreçlerini 

hızlandırabilmektedir. Genel olarak, SES içinde ve arasında, EEE ticaretinin başarılı bir 

şekilde entegrasyonu için blokzinciri platformları kullanılarak gerçekçi veri setleri, vaka 

çalışmaları ve simülasyonlar yoluyla önerilen EEE ticareti planlamalarının etkinliğini ve 

fizibilitesini doğrulamak için çerçeveler geliştirilmiştir. 

Anahtar kelimeler: Blokzincir, Akıllı sözleşme, Eşler arası enerji ticareti, Sanal Enerji 

Santrali, Merkezi olmayan borsalar 
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Chapter 1 

Introduction 

Population growth, economic development, and energy availability have increased 

global energy demand during the past decade. However, growth rates vary by geographic 

region and energy type. The quantity of energy necessary to fulfill the demands of all 

sectors requiring energy, such as the generation of electricity, transportation, and other 

areas, is referred to as the total primary energy demand. As per the report from 

International Energy Agency (IEA), the world’s total primary energy demand rose by 

more than 10% between 2010 and 2019 and is expected to continue to increase in the 

coming decades, but at a slower pace than in the past owing to efforts to enhance energy 

efficiency and transition to low-carbon energy sources. Based on current policy 

commitments and announced government plans around the world, the IEA's "Stated 

Policies Scenario" forecasts a 25% increase in global total primary energy demand from 

2020 to 2040. However, if more ambitious climate policies are implemented to reach the 

goals of the Paris Agreement, the global total primary energy demand could plateau in 

the 2030s and begin to decline thereafter. In terms of energy sources, the IEA expects that 

renewable energy sources (RESs) (including solar, wind, hydropower, and bioenergy) 

will account for the largest share of new energy demand growth over the next two 

decades, followed by natural gas. The share of coal in the global energy mix is expected 

to decline, although it will remain an important source of energy in some regions [1], [2]. 

There is a vicious cycle between fossil fuel use for electricity generation, and the 

impacts of climate change on the electricity system. Burning fossil fuels releases 

greenhouse gases, which contribute to climate change by trapping heat in the Earth's 

atmosphere, causing temperatures to rise and altering weather patterns, sea levels, and 

other climatic phenomena. This, in turn, impacts the reliability and efficiency of the 

electricity system. For example, extreme weather events such as heatwaves, droughts, and 

storms can damage power plants and transmission lines, causing power outages and 

disruptions to energy supply. Sea level rise and coastal erosion can also damage 

infrastructure located in coastal areas. These impacts can subsequently make it more 
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difficult to generate and distribute electricity, which can lead to further reliance on fossil 

fuels as backup energy sources.  

As of 2021, the majority of the world's energy still comes from fossil fuels, such as 

coal, oil, and natural gas. However, the use of RESs, such as wind, solar, and hydropower, 

has been increasing in recent years. The exact percentage of the energy mix varies by 

country and region, but globally, it is estimated that approximately 80% of the world's 

energy consumption still comes from fossil fuels, while approximately 20% comes from 

renewable sources. Nevertheless, the share of renewable energy is expected to grow in 

the coming years as new approaches and mechanisms for the energy sector emerge [3]. 

More ambitious energy and climate legislation, technical advancements, and heightened 

energy security concerns are driving the shift to sustainable energy [4]. In 2022, clean 

energy investment reached USD 1.4 trillion, up 10% from 2021 and accounting for 70% 

of the increase in total energy sector investment. Despite this significant advancement, 

fossil fuels (oil, coal and low-carbon sources) continue to make up substantial portion of 

the primary energy mix [5]. Figure 1.1 depicts the relative contributions of fossil fuels 

(low-carbon and coal), nuclear, and RESs to global electricity generation over a 50-year 

period, from 1971 to 2021. As this figure shows, the growth of solar and wind has been 

noticeable in the previous decades. Our reliance on fossil fuels remains critical for 

electricity generation. Solar photovoltaic (PV) and wind seemingly will dominate the 

expansion of renewables in the electricity market over the next few decades.  

 

 

Figure 1.1 Share of low-carbon sources and coal in world electricity generation [3].  
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There has been a substantial uptick in the utilization of RESs and distributed energy 

resources (DERs) in recent years, as the world increasingly prioritizes sustainable energy 

solutions. The urgent need to combat climate change, lessen reliance on fossil fuels, and 

guarantee reliable energy supplies is behind this transition. Ingenious strategies for DER 

integration into the electricity grid are required to realize these objectives. 

Incorporating Virtual Power Plants (VPPs) is one such strategy; these platforms 

aggregate and manage the capabilities of DERs such as solar PVs, wind turbines, and 

energy storage systems (ESSs). In addition, with the imminent inclusion of electric 

vehicles (EVs) can greatly support VPPs by providing additional flexibility, storage 

capacity, and demand response. This integration can be achieved through vehicle-to-grid 

(V2G) technology, which allows EVs to interact with the grid, supplying electricity 

during peak demand periods and absorbing excess energy when needed. By combining 

the output of these resources, VPPs can effectively act as a single, flexible, and responsive 

power plant, enabling them to optimize energy production, consumption, and grid 

stability. Thus, P2P energy trading in local communities become feasible between VPPs 

and within the VPPs. 

1.1 Evolution of P2P Energy Trading 

P2P energy trading represents a transformative approach to traditional centralized 

energy markets. This approach is driven by the proliferation of DERs, the advancement 

of information and communication technologies (ICT), and the growing demand for 

environmentally responsible and sustainable energy solutions. P2P energy trading 

possesses the capacity to revolutionize the energy industry. Historically, the energy sector 

has been a centralized model, using extensive transmission and distribution networks to 

transfer electricity generated by large-scale power plants to end-users. The emergence of 

DERs, including but not limited to PV solar panels and wind turbines, has resulted in the 

development of P2P energy trading. The aforementioned structure enables prosumers to 

produce and consume electricity amongst their respective local communities. 

Blockchain and its associated technologies hold significant promise in enabling P2P 

trading. These technologies can establish a secure and transparent framework for 

transactions between prosumers. Blockchain technology, which is a distributed and 

decentralized ledger, has the potential to effectively manage and record energy 

transactions. By eliminating single point of failure and reducing intermediary expenses, 
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decentralization fosters a more robust and cost-effective system. All transactions recorded 

on the blockchain are viewable by all participants, ensuring a high level of transparency 

and nurturing trust among prosumers in the P2P energy market. The data is encrypted and 

tamper-proof, making blockchain a secure platform for energy transactions. This security 

can safeguard the P2P energy trading system from fraudulent activities and data 

manipulation, ensuring its integrity. Smart contracts in blockchain are self-executing 

agreements with the contract terms directly coded into them. Through the utilization of 

smart contracts, P2P energy trading platforms can automate transactions, allowing for the 

settlement of trades in real time and reducing the need for manual intervention. This 

automation can improve the energy trading process's efficacy, speed, and error-

prevention. Blockchain technology can eliminate the need for a centralized intermediary 

to validate and administer energy transactions. In the context of P2P energy trading, 

several intermediary actors could be involved in the process aside from utility companies. 

Some of these actors include: 

1. Energy retailers: These entities are responsible for selling electricity to 

consumers. They often act as intermediaries between energy producers and 

consumers, managing contracts, billing, and customer support. In a blockchain-

enabled P2P energy trading system, the role of energy retailers could be 

diminished as consumers could trade energy directly with each other. 

2. Distribution system operators (DSOs): DSOs are responsible for maintaining and 

operating the distribution networks that deliver electricity to consumers. They 

are also in charge of connecting energy producers and customers. DSOs might 

still play a role in grid infrastructure maintenance under a decentralized energy 

trading paradigm, but their position as a middleman in energy transactions could 

be minimized. 

3. Transmission system operators (TSOs): TSOs are responsible for overseeing and 

managing the high-voltage transmission grids that allow electricity to travel long 

distances. They ensure the stability of the grid and balance supply and demand. 

While TSOs may still be necessary for grid management, their role as an 

intermediary in P2P energy trading could be diminished. 

4. Energy service companies (ESCOs): ESCOs provide energy efficiency services 

(and also renewable energy services), demand response programs, and other 

services aimed at optimizing energy consumption. In a decentralized energy 
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market, these companies may need to adapt their business models to work with 

P2P trading platforms and blockchain-based systems. 

5. Meter data management providers: These companies collect, validate, and 

process meter data to calculate energy consumption and production for billing 

purposes. With blockchain-enabled P2P energy trading, meter data management 

could become decentralized and automated, reducing the need for these 

intermediaries. 

6. Energy brokers and aggregators: Energy brokers help consumers find the best 

energy deals, while aggregators bundle together energy from multiple producers 

to sell in the wholesale market. Both roles could be disrupted in a decentralized 

P2P energy trading environment, where consumers and producers can trade 

energy directly with one another. 

7. Regulatory bodies and government agencies: These entities oversee energy 

markets, establish rules, and ensure compliance. While regulatory bodies will 

still have a role in ensuring safety and fairness in a decentralized energy market, 

their functions may evolve as the market becomes more reliant on blockchain-

based systems and P2P transactions.  

The transition to a decentralized P2P energy trading market may reduce or eliminate 

the need for some of these intermediary actors. However, this will depend on the 

development and adoption of blockchain-based solutions, regulatory support, and the 

ability of these actors to adapt to new technologies and business models. By leveraging 

the power of blockchain technologies and smart contracts, P2P energy trading platforms 

can transform the way energy is produced, consumed, and traded. This transformation 

has the potential to empower prosumers, increase the adoption of RESs, and contribute to 

a more sustainable and resilient energy system. 

1.2 Blockchain Networks in P2P Energy Trading 

Blockchain is a distributed network of interconnected nodes. Thanks to these 

distribution, cryptographic techniques, and consensus algorithms, blockchain can keep 

digital information secure and unalterable. Blockchain technology is being used more and 

more for P2P energy sharing, which makes people capable of trading energy directly 

without the need for middlemen. P2P energy trade platforms can be built on public, 
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private, or consortium blockchain networks, each of which offers different levels of 

access, control, and collaboration. Here's an overview of P2P energy trading in the context 

of the three main types of blockchain networks: 

1. Public blockchains: These are also referred to as permissionless blockchains. A 

P2P energy trading platform built on a public blockchain enables anyone to join 

the energy market. Participants can buy, sell, or trade energy without needing 

permission from a central authority. This arrangement can potentially boost 

competition and lower costs since energy transactions occur directly between 

consumers and producers. However, public blockchains may encounter 

challenges related to scalability, transaction speed, and privacy, all of which are 

crucial factors in energy trading systems. Bitcoin and Ethereum are notable 

examples of public blockchains that use consensus algorithms such as Proof of 

Work (PoW) or Proof of Stake (PoS) to validate transactions and ensure network 

security. 

2. Private blockchains: Often called permissioned blockchains, these limit 

participation to a specific group of organizations or individuals. A central 

authority controls access to the network, managing read and write permissions, 

and allowing only authorized users to view the data. This setup provides a higher 

level of privacy and control over the network, at the expense of losing 

decentralization. Private blockchains are typically used by organizations that 

want to benefit from the security and transparency of blockchain technology 

while maintaining control over who can access and modify the data. Examples 

of private blockchain platforms include Hyperledger Fabric and R3's Corda. 

3. Consortium blockchains: Also known as federated blockchains, are a hybrid 

between public and private blockchains. Consortium blockchains can be an 

effective solution for P2P energy trading among multiple organizations, such as 

utility companies, energy producers, and regulatory bodies. By distributing 

control among trusted participants, consortium blockchains can facilitate 

collaboration and data sharing while maintaining security and transparency. This 

model allows different stakeholders to work together in managing the energy 

market, making decisions, and setting rules for P2P trading. Examples of 

consortium blockchains include Quorum and Hyperledger Besu. 
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In summary, the choice between public, private, and consortium blockchains for 

P2P energy trading depends on the desired level of openness, control, and collaboration 

among participants. Public blockchains offer a more open and competitive market but 

may face scalability and privacy challenges. Private blockchains provide greater control 

and privacy but may limit competition and openness. Consortium blockchains strike a 

balance, allowing multiple organizations to collaborate securely and transparently in 

managing the energy market. 

1.3 Motivation and Problem Statement 

The research in this thesis is driven by the significant impetus to tackle the 

challenges of effective energy management and P2P trading in VPPs and microgrids 

through the utilization of blockchain technologies. Traditional centralized approaches to 

energy trading and management have limitations in terms of scalability, transparency, and 

security, which can hinder the successful implementation and operation of VPPs and P2P 

energy trading systems. 

The problem statement for this research can be summarized as follows: How can 

novel P2P energy trading schemes for VPPs, using blockchain technology, smart 

contracts, decentralized finance (DeFi) instruments, and machine learning (ML)/deep 

learning (DL), improve the efficiency, security, and cost-effectiveness of energy 

transactions among DERs and electric vehicles (EVs)? To address this problem, the thesis 

aims to develop and analyze innovative P2P energy trading schemes for VPPs, with a 

focus on the following key aspects: 

• Enhancing the transparency, security, and automation of energy transactions with 

blockchain and smart contracts. 

• The utilization of DeFi instruments and decentralized exchange (DEX) for 

facilitating P2P energy trading within and between VPPs. 

• The application of ML/DL models in optimizing energy trading processes, with 

the goal of improving the scalability and efficiency of P2P energy trading in 

microgrids. 

• The evaluation of the proposed P2P energy trading schemes regarding 

contribution to global sustainability goals and their potential societal impact and 

environmental benefits. 
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1.4 Objectives and Contributions 

The main objective of this thesis is to offer a thorough comprehension of blockchain 

based P2P energy trading applications within and between local communities and agents, 

emphasizing its assimilation within VPPs and its consequences for DERs and EVs. In 

other words, the aim is to help broaden the perspective of P2P energy trading, which will 

become more prevalent in the near future through the use of blockchain and its related 

technologies as well as smart systems and algorithms.  

The increasing integration of RESs and DERs in power systems presents both 

opportunities and challenges for optimizing energy management and trading. The 

emergence of VPPs and P2P energy trading has paved the way for more efficient and 

decentralized energy systems. This thesis aims to explore the potential of novel P2P 

energy trading schemes in VPPs, employing cutting-edge technologies such as 

blockchain, smart contracts, DeFi instruments, and ML/DL models. The main points of 

the thesis are described by the following objectives: 

• To review and analyze the current state of RESs, DERs, VPPs, and EVs in the 

global energy landscape, highlighting their significance and potential for future 

growth. 

• To investigate the existing literature on P2P energy trading, including its 

underlying technologies, market mechanisms, and various models, to establish a 

solid foundation for further exploration. 

• To examine the economic, social, and environmental benefits of P2P energy 

trading within local communities, particularly in terms of energy efficiency, cost 

savings, and emission reduction. 

• To propose a framework for the successful integration of P2P energy trading 

within VPPs, considering the technical, economic, and security aspects. 

• To evaluate the potential of P2P energy trading in enhancing the role of DERs and 

EVs in the energy system, as well as its impact on grid stability and resilience. 

• To develop and analyze innovative P2P energy trading schemes for VPPs utilizing 

blockchain technology, smart contracts, and DeFi, to improve the efficiency, 

security, and cost-effectiveness of energy transactions. 
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• To find out how DEX can help P2P energy trading between VPPs and how 

ML/DL can be used to improve energy trading processes, with the goal of making 

P2P energy trading in microgrids more scalable and efficient. 

• To assess the contributions of the proposed P2P energy trading schemes to the 

broader goals of sustainability, specifically in relation to the United Nations' 

Sustainable Development Goals (SDGs), and to discuss the potential societal 

impact and environmental benefits of implementing these systems. 

• To validate the feasibility of the proposed P2P energy trading schemes through 

case studies and simulations using realistic data sets and the Ethereum Virtual 

Machine (EVM) based blockchain platforms such as Ethereum and Avalanche. 

The scope of this thesis is primarily focused on P2P energy trading within local 

communities. While other types of energy trading, such as wholesale, feed-in-tariff or 

utility-scale trading, may share some similarities with P2P energy trading, they are 

beyond the scope of this study. Furthermore, the analysis will primarily concentrate on 

the technical, economic, and security aspects of P2P energy trading, rather than the 

regulatory aspects and specific social or cultural factors that may influence its adoption 

in various communities. 

1.5 Thesis Outline 

The remainder of the thesis is organized as follows: 

The second chapter proposes a novel P2P energy trading scheme for a VPP using 

smart contracts on the Ethereum blockchain platform and presents the related literature. 

The chapter focuses on the financial aspects of P2P trading in a VPP framework and 

develops a P2P energy trading mechanism and bidding platform based on a public 

blockchain network. The proposed scheme operates an auction by smart contracts 

addressing both cost and security concerns. Finally, the proposed architecture is validated 

using realistic data with the Ethereum Virtual Machine (EVM) environment of Ropsten 

Test Network. This chapter was published in the journal of IEEE Access [6]. 

The third chapter introduces an inter-VPP peer-to-peer (P2P) trading scheme 

utilizing the Avalanche blockchain platform and presents the related literature. Moreover, 

the chapter describes the merits of DeFi contributing significantly to the workflow in this 

type of energy trading scenario. Finally, a detailed case study is used to examine the 
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effectiveness of the proposed scheme and flow, and important conclusions are drawn. 

This chapter was published in the journal of Sustainability [7]. 

In Chapter 4, a new approach to optimize peer-to-peer energy trading among Virtual 

Power Plants by combining Mixed Integer Linear Programming with Machine/Deep 

Learning models is presented. The approach accounts for Decentralized Exchange swaps 

and token pair value changes to minimize energy trading costs. To improve scalability 

and efficiency, ML/DL models are used to solve subsequent optimization problems faster. 

Overall, this approach aims to create a sustainable and decentralized energy system by 

improving P2P energy trading in microgrids. 

Finally, Chapter 5 summarizes the main contributions and findings of this thesis, 

along with some final remarks. Moving forward, future research directions for improving 

and expanding upon these approaches have also been identified. 
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Chapter 2 

Peer-to-Peer Energy Trading in Virtual 

Power Plant Based on Blockchain Smart 

Contracts 

A novel Peer-to-peer (P2P) energy trading scheme for a Virtual Power Plant (VPP) is 

proposed by using Smart Contracts on Ethereum Blockchain Platform. The P2P energy 

trading is the recent trend the power society is keen to adopt carrying out several trial 

projects as it eases to generate and share the renewable energy sources in a distributed 

manner inside local community. Blockchain and smart contracts are the up-and-coming 

phenomena in the scene of the information technology used to be considered as the 

cutting-edge research topics in power systems. Earlier works on P2P energy trading 

including and excluding blockchain technology were focused mainly on the optimization 

algorithm, Information and Communication Technology, and Internet of Things. 

Therefore, the financial aspects of P2P trading in a VPP framework are focused and, in 

that regard, a P2P energy trading mechanism and bidding platform are developed. The 

proposed scheme is based on public blockchain network and auction is operated by smart 

contract addressing both cost and security concerns. The smart contract implementation 

and execution in a VPP framework including bidding, withdrawal, and control modules 

developments are the salient feature of this work. The proposed architecture is validated 

using realistic data with the Ethereum Virtual Machine (EVM) environment of Ropsten 

Test Network. 
	

2.1 Introduction 

Distributed generation is electricity production from variety of distributed energy 

resources (DER) such as rooftop solar photovoltaic (PV) units, wind generating units, 
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open and closed cycle gas turbines, diesel generators, hydro or mini-hydro schemes, and 

battery storage. In contrast to the conventional electric power systems, distributed 

generation is alterable, amenable, acentric, and customizable owing to its structure 

adjacent to the ultimate consumer spot. DER are mostly arranged in microgrids which are 

being either connected or disconnected from grid [8]. 

Microgrids consist of localized set of power sources, loads, and DER. In few last 

decades, the notion of microgrids had been becoming more common and many microgrids 

operated in such a way to use energy effectively and efficiently. Some studies have been 

conducted to integrate DER into grid while guaranteeing system operations satisfactorily 

[9], [10]. The Virtual Power Plant (VPP) concept has been raised afterward to be able to 

incorporate DER into the grid enabling bi-directional power and information exchanges 

without affecting grid reliability and stability, utilizing the blessings of Information and 

Communication Technology (ICT) [11]. It is theoretically used for aggregation of DER, 

so that they can serve as a fully dispatchable unit managing information from a wide 

variety of physical infrastructures such as wind, hydro, solar photovoltaics (PVs), Energy 

Storage Systems (ESSs), market operation, and distribution system operator (DSO). 

Majority of the electricity customers, known as consumers in microgrid, VPP, and 

power system are connected with typical centralized energy trading systems where the 

energy trading is handled in wholesale markets regulated by the transmission system 

operator (TSO). On the other hand, the modern power systems including microgrid and 

VPP accommodate many DERs where the concept of energy consumers has been changed 

as prosumers, who can conceptually produce and consume energy. The generation of 

electrical energy by the components of DERs is stochastic and intermittent; therefore, the 

prosumers of the VPP who have surplus energy can store it if they have energy storage 

systems or sell it to the grid or other parties. This transaction of energy among prosumers 

is called Peer-to-Peer (P2P) energy trading [12]. In the smart grid framework, the energy 

trading algorithms are becoming important factors to fulfill the energy demand 

requirements considering the unpredictable generation pattern of DERs. These days, 

game theory has been identified as a potential analytical tool for energy trading and 

sharing in microgrid and smart grid which mathematically allows solving optimization 

problems with multi-objective functions [13]–[18]. A new scalable market design for P2P 

energy trading through bilateral contract networks is reported in [19]. In [20], an incentive 

prosumer based P2P energy trading is proposed. 
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It appears that P2P energy trading in VPP framework is relatively new and most of 

the reported works are either in the conventional ICT domain or using optimization 

algorithm to handle unpredictability of microgrid operations. Only few works and real-

world projects in microgrid and VPP domain are focused on decentralized mechanism 

using public blockchain technology. In this work, a novel VPP architecture has been 

developed to enable P2P energy trading mechanism with auction-based bidding model 

using smart contracts and priority was given to explain the stages of development and 

implementation over Public Ethereum Platform. Unlike others, this platform can be used 

among other VPPs and intra-VPPs since public blockchain is used, and it is relatively 

scalable and less costly compared to ICT operations needed for private blockchain usage 

for every single VPP. Because there is no need for keeping in-house servers and nodes 

up to create a private blockchain network. Essentially, the need for intermediary 

authorities such as aggregators in the use of private blockchain undermines the true 

decentralization and transparency concept of P2P trading. To reach that adaptivity, in this 

article, public blockchain environment is chosen over private and consortium 

(permissioned) blockchain networks because of high initial cost and limitations on 

physical structure, respectively. 

The proposed platform is implemented based on the needs of the VPP framework 

and includes several modifiable mechanisms for easy adaptation to the different inter- or 

intra-operations of VPP operators. In the auction mechanism, bidding, withdrawal, and 

control modules are developed to show the operability of the platform. Three different 

running schemes (RS) are considered and proposed also to address centralization, cost 

and security measures in P2P energy trading. A complete smart contract platform and 

real-life cryptographic testing environment have been realized using EVM, Remix, 

Metamask, Web3.js, Infura.io, Ropsten and the P2P energy trading in VPP is verified 

using realistic generation and load data. The contributions of the paper can be summarized 

as follows: 

• The proposed solution of P2P energy trading is solely for VPP architectures and 

new in VPP domain. 

• The implementation part is demonstrated step by step by integrating power system 

and blockchain ecosystem, as well as presenting several running schemes. 

• A modular smart contract mechanism is proposed which can be used effectively 

in P2P energy trading within VPP framework. Thus, each module can be 

improved and be easily adapted to several other use cases. 
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• Usage of public Ethereum network instead of private or consortium network and 

modular approach to VPP framework to make it applicable to both intra and inter 

VPPs; systematic way to implement smart contract to enable P2P trading, 

development of bidding, withdrawal, and control modules by properly integrating 

power system and computing software are the novel contributions of this article. 

• Therefore, unlike other studies, the proposed framework and approach in this 

article is able to be adapted and converted easily to Decentralized Application 

(dApp) which is the cutting-edge usage of smart contracts and blockchain. DApps 

are expected to be an important part of the new era in the world-web history, 

which is named as Web 3.0. 

2.2 Modern Energy Trading Approaches and 

Background 
Currently, there are quite a few projects and initiatives enabling trading between 

consumers and prosumers possible in microgrids by the help of the conventional ICT, 

mostly using client-server architecture [21]. Most of the energy management and trading 

platforms had been created by using these technologies are aiming general wholesale or 

retail business models [22]. Correspondingly Porto and US based two initiatives with the 

same name as Smartwatt, UK based Piclo, Netherlands based Vandebron and German 

project Smart Watts can be given as examples and these systems attempt to reach 

economic efficiency by making the trading easy and optimized [23]–[26]. Furthermore, 

Sonnen community [23] set their goal as sharing and trading energy in order to fulfil 

energy needs from RES in a decentralized manner. Therefore, it is easy for one to interfere 

that the inclination in the power market is towards P2P sharing and trading. Because 

eliminating the intermediaries brings efficiency to the grids in terms of time, cost, and 

effort spent. 

Potential instances of P2P usage include decentralized trading, i.e., mutual trading 

among prosumers, consumers, and conventional power suppliers. Hence, 

PeerEnergyCloud project’s objective in Germany was making research and development 

of cloud-based technologies for such a concept [27]. This covers the creation and the 

implementation of an advanced recording and prediction methodology to address the 

local excessive energy production issue, including a virtual marketplace for local energy 

trading. 
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While above-mentioned industrial projects are mostly the traditional server-centric 

and have a central authority to control the operation, energy trading efforts migrate 

towards blockchain since the intrinsic decentralizing nature of the blockchain architecture 

is consistent with the decentralized P2P trading. As a matter of fact, London-based energy 

technology company Electron [28] developed an energy metering and billing platform 

using blockchain. And TransActiveGrid, which afterwards took place under the umbrella 

of US-based energy technology start-up LO3 [29], established Brooklyn Microgrid 

successfully as the first P2P energy trading project within microgrids by using blockchain 

[30]. Blockchain based P2P energy trading companies akin to Power Ledger were 

established and projects similar to White Gum Valley project were realized in Australia 

[31]. The country has great potential for decentralized P2P trading thanks to its solar 

insolation, wind power sources and its relatively high-cost grid-sourced electricity [32]. 

There are several power-based applications that leverage blockchain platforms 

including data exchange scenarios between smart devices, digital P2P transactions, 

machine-to-machine (M2M) communication, business-to-business (B2B) energy trading, 

mutual transactions between prosumers and consumers in transactive energy networks, 

smart home, electric vehicle (EV), and microgrid development scenarios [33]. 

The usage of blockchain can contribute to fulfilling the strict security and privacy 

requirements of the IoT systems for local electricity storage systems. Hence, significant 

research studies focused on anonymous payment and safeguarding peers or EV owners’ 

privacy on the trading platform. Kang et al. [34] have come up with a localized P2P 

electricity trading system with consortium (permissioned) blockchain. Trading among 

plug-in hybrid electric vehicles (PHEVs) in smart grid is realized with an iterative double 

auction mechanism. In [35], a security model for trading between EVs and charging pile 

management on the blockchain that leverages the lightning network and smart contract 

technologies was focused. A decentralized energy trading system with blockchain was 

presented using multi-signatures to enable peers to perform transaction anonymously and 

securely [36]. In [37], a credit-based payment scheme and a Stackelberg game based 

optimal pricing strategy were proposed to support the scalability of transactions. A 

consortium blockchain is used for the security concerns. A local energy market operated 

with a double auction system that uses a smart contract on a private Ethereum blockchain 

to determine the market closing hours have been developed [38]. Nonetheless, limited 

information regarding the implementation of the smart contract and how the price is 

cleared during each trading session was given. An energy-trading system has been 
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developed using consortium blockchain so that it could be secure and privacy-preserving 

in the smart grid [39]. In [40], a blockchain based P2P energy trading and crowdsourcing 

architecture with an optimization model is developed. In [41], all transactions are stored 

on a consortium blockchain which is generally supervised by some kind of aggregators 

or energy traders and the financial institutions that support anonymous payment. In [42], 

P2P transactions between EVs and grid, and among EVs realized with an EV power 

trading model based on private Ethereum blockchain and smart contract, considering the 

randomness and uncertainty of the EV charging and discharging. A reverse auction 

mechanism based on a dynamic pricing strategy and aggregators is used. In [18], a P2P 

energy trading scheme with the cooperative Stackelberg game formulation was proposed 

to help a centralized power system to reduce the total electricity demand at the peak hour. 

Price-based control of DERs to support the grid is also a matter of concern in VPP-related 

literature. Di Silvestre et al. [43] studied ancillary services in the energy blockchain for 

microgrids and focused mainly on the technical issues related to power transmission. In 

[44], again it’s focused on secure and verifiable energy trading with blockchain. In the 

study, it’s emphasized that the blockchain should provide transparency, immutability, and 

auditability to the energy trading. A consortium blockchain based scheme was proposed 

to block energy sellers refusing to transfer the negotiated energy to the purchaser. In [45], 

a consortium blockchain is used to design a hybrid P2P energy trading market where 

consumers and prosumers trade each other and with the main grid. Although the study 

clearly elaborates on the concepts of P2P trading in a smart grid environment, it lacks the 

implementation details regarding blockchain and smart contracts and shows simulation 

results with local machine development tools of Ethereum. Han et al. [46] proposed a 

private Ethereum based smart contract architecture with the conventional double auction. 

A smart contract consisting of four core algorithms has been developed; the purpose of 

each algorithm is to save gas consumption and ensure security. Performance measures 

are given, energy trading supports 25 agents at the same time, with more than six miner 

nodes. In [47], introduces a private Ethereum blockchain based energy trading 

architecture for EVs within smart cities. It is not a clean slate approach and builds on to 

the existing infrastructure. Although transparency brought by blockchain is praised, the 

private version is used because it is considered to be more efficient than the public 

version. Also, it is noted that executing a large number of transactions causes a serious 

computational load. 
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In some scenarios, security can be the bottleneck due to the variety of the 

participants, however, in some cases, the architecture and transparency could be the key 

point for the platform. Please note that, unlike the trading environment of EVs, in a VPP 

environment agents are mostly stationary and naturally, there is a limitation for 

participating in the blockchain network because of the physical requirements i.e., power 

lines and infrastructure. Also, all the participants and roles are needed to be known by the 

VPP admin, which eliminates the random users, to assure connectivity and reliability for 

distribution network. Therefore, even if the public blockchain is used for the trading 

system, it is being restricted by the physical conditions, and benefiting the advantages of 

the public network simultaneously. 

According to the survey published by German Energy Agency, in power market 

and electricity value chain establishing smart contracts can be utilized for demand 

response services, cooperation and control of VPPs, grid and network, governance of 

energy storage systems, control of decentralized energy systems, community energy 

projects, and coordination of RES power plant portfolio [48]. There are some concerns 

and costs regarding the adaptation of the current power infrastructure to work with 

blockchain and smart contracts, i.e., deploying compatible smart meters and Internet of 

Things (IoT) appliances. However, the business processes for energy trading can likely 

be reconstructed by this trend, together with the capability of automation and big data 

analytics. Using this information analysis could yield to demand aggregation and 

response services being optimized, could promote VPPs, and possibly improve the 

involvement of active consumers, prosumers, and renewable energy. 

This study is focused to resolve the business processes associated with P2P energy 

trading of VPP. 

2.3 Blockchain and Smart Contract 

In the last decade, when the P2P money transaction is introduced in [49] without 

any intermediary authority such as banks, many cryptocurrencies mushroomed. The 

technology behind the cryptocurrencies, known as the Blockchain, leads many other 

future promising applications as well [50]. Blockchain is a distributed platform with 

interconnected blocks which constitute a vast immutable digital ledger in the end. The 

integrity and consistency of transactions are protected by cryptographic mechanisms such 

as hash functions, asymmetric encryption (public-key cryptography), and Merkel-trees 



18 
 

[51]. All the transactions are kept on the blocks just like the traditional bank records with 

the difference of generating a distributed universal public ledger eventually. Every block, 

except the first one known as genesis block, points out the previous block with its hash 

in order to create a chain of blocks. The entire system is based on a P2P network. Nodes 

keep the database distributed and decide which transactions will be approved. Since they 

work for the liveliness of the system, participants get rewards, which is called mining. 

Therefore, the blockchain becomes a very distinctive kind of immutable distributed large-

scale database and used in several fields in addition to finance. Ethereum is one of these 

blockchain-based platforms and differentiates itself by being capable of running 

programmable transactions, i.e., smart contracts on the system [52]. 

2.3.1 Consensus algorithms 

Distributed consensus algorithms are used to keep the truly decentralized structure 

of the network. 

The certain algorithm that is used to reach consensus among the network nodes, 

affects key parametric of that blockchain network such as scalability, transaction speed, 

security and even electricity consumption of the nodes. There are trade-offs between their 

certain advantage and disadvantages. Although there are variety of consensus algorithms, 

either of Proof-of-Work (PoW), Proof-of-Stake (PoS) or modified version of these two 

are generally in use of the majority of the blockchain applications. In general, every 

algorithm needs a way to generate blocks and accept the proposed block by network 

members, a process called reaching consensus. Using a PoW-based blockchain network, 

e.g., Bitcoin, is not very suitable, especially for energy applications, because of the 

computational power and energy consumption. On the other hand, Ethereum uses a hybrid 

version of PoW and PoS. However, it’s stated that the Ethereum platform is planning to 

use PoS or slightly modified version of it with the version of ETH 2.0 in a couple of years 

to reduce the energy and resource consumption [53]. 

2.3.2 Ethereum and virtual machine 

Ethereum is an open-source project developed by many people around the world 

and not controlled or owned by any particular person. It is not solely for storing or 

transferring value as its most counterparts. The main aim is to make anyone capable of 

building or using decentralized applications that run on blockchain technology [53]. 
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Ethereum Virtual Machine (EVM) is in the center of the platform as a runtime 

environment, as it’s fundamentally a level of abstraction between the machine and 

executing code. EVM helps development and portability of the code because it is an 

exquisite sandbox, a testing environment for those trying to create a smart contract 

without affecting the main blockchain operations. The remainder of the main network is 

fully isolated from an EVM instance. In the network, any Ethereum node can execute the 

same commands on their own EVM that provides code portability. 

Speaking of resources, in EVM, there is a fee named ‘gas’ for computational cost 

of running certain piece of opcode on the network in order to prevent the denial of services 

attacks and increase the efficiency of the system. 

Users can participate in the public Ethereum network and pay ‘gas’ to miner nodes, 

or a new private network can be created with permissioned miner/user nodes. In a public 

network, there is transparency, and the performance of the system is depended on the 

execution of the global network. On the other hand, in a private network, there is an initial 

ICT cost for servers and network, and a maintenance cost as well to have enough miner 

nodes, and it can cause centrality to certain degrees when more substantial nodes take the 

lead. In these networks, there are several factors, i.e., consensus algorithm, delay, number 

of nodes needed to be measured to show the performance. There are also semi-structured 

Ethereum networks, e.g., consortium blockchain that binds public and private networks 

on the same platform. There are pros/cons for public and private blockchain networks 

where the consortium blockchain is placed in the middle of these two architectures. To 

run consortium blockchain, there is a group of privileged nodes takes the lead over other 

participants. 

2.3.3 Understanding smart contract 

Smart Contract concept was envisioned by Nick Szabo as a computer-aided set of 

rules that provides an agreement in a group of peers. Vending machines are illustrated as 

a forefather of the smart contracts as it is a ‘contract with a bearer’ [54]. Smart contracts 

today are able to work autonomously on the Ethereum-based blockchain platforms that 

allow executing immutable digital agreements. In these platforms, agreement protocol 

among the contractors is initially implemented with a script and deployed to the network. 

When a specific data or command occurs, the deployed smart contract is being triggered 

automatically on the blockchain network, and the actions in this digital contract are 
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followed. Thus, the whole business is completed transparently without needing trusted 

central authorities. 

Smart contracts can be considered as wallets in the cryptocurrency concept since 

they have an account address and balance akin to standard cryptocurrency accounts. 

Hence, all other participants can transfer value between their own accounts and the smart 

contract. The only difference is that the business workflow, the protocol between the 

parties, is programmatically coded inside the smart contract. A function call or a 

transaction triggers the smart contract execution if the business logic holds at that time. 

When a new smart contract is implemented, it must be deployed to the Ethereum network. 

This process and all other execution steps are done by the peer nodes in decentralized 

concept. Thus, while deploying a new contract, or executing one, the system charges a 

little fee to handle these processes, which is called gas. 

Creating new applications on the Ethereum platform is relatively easy and suitable 

for many real-world scenarios. Smart contracts are robust to interventions from outside 

since they are deployed to a blockchain, and kept in blocks anonymously, yet all the 

transactions can be monitored and traced publicly. Smart contracts have a value 

(essentially, it is a balance in Ethereum), an address, state, and functions that can change 

the state during the operation and eventually emits output events. These events can be 

captured by the external web or mobile applications so that the dApps come to life. It is 

highly likely that dApps will embody the Web 3.0 infrastructure in the near future [52]. 

2.4 Proposed Architecture of Blockchain Based P2P 

Energy Trading in VPP 
The VPP architecture requires known participants and power lines during the 

trading process to guarantee power distribution among all known users. Thus, the 

blockchain based solutions cannot be truly decentralized because of the oracle problem, 

and it naturally has some limitations on participation. Instead of using consortium 

blockchain platforms, e.g., Hyperledger, Quorum, or modified private Ethereum network, 

the public Ethereum network is being set to make the whole process transparent and 

adaptable to various backbone architectures. Hence, the platform can run communication 

and power distribution processes on different rules or networks efficiently. In this work, 

the communication and agreement are moved on to the public Ethereum network, which 

gives the adaptability. Public network transparently decides a pair of participants to assure 
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power transfer between them, and it occurs when users become a part of the physical 

network. With this structure, it is also possible to run inter-VPP energy trading while we 

are offering an example of intra-VPP distribution in this work. 

Figure 2.1 shows the proposed VPP model consisting of twelve agents, including 

consumer/prosumer, a big scale energy storage system (ESS), a diesel generator, and a 

P2P Energy Trading Coordinator (P2P_ETC). The VPP is controlled by P2P_ETC and 

technical VPP, and it is also connected to the upper-level entity, named as Market 

Operator to enable P2P energy trading. P2P_ETC is responsible for financial issues, e.g., 

investment, optimized revenue for exchanged energy, economical paradigms with 

ancillary grid services and participates in auction mechanism. It relies on agents’ 

information shown with dashed line in Figure 2.1. Technical VPP (TVPP), as the name 

suggests, handles technical issues relevant to controls at agent and VPP level. There are 

information and power flow between the agents as shown in dashed and solid line in 

Figure 2.1. In order to make energy trading efficient, a bidding system between the agents 

that runs on the blockchain network is built. The Ethereum platform and smart contracts 

for these purposes are utilized. Every agent has public and private key pair to have an 

address on the platform. 

 
Figure 2.1 VPP model architecture. 

In this proposed architecture, agents mostly have a prosumer role since they are 

able to produce energy from renewable sources, i.e., solar, wind when it is available. On 

the other hand, their role might be changing to a consumer in parallel when it is not 
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available from the grid in accordance with VPP operation. When the agents have a surplus 

of energy, they will be able to sell those to other needful agents in VPP or connected 

VPPs. The seller agent will initiate the auction by deploying a smart contract, and buyers 

will bid for it to get the energy they require. 

2.4.1 Smart contract implementation 

Two smart contracts allow the system to handle a bidding mechanism between 

agents. The smart contracts are developed with the Solidity programming language and 

Remix browser IDE (integrated development environment). The stages of development 

and testing are summarized in Figure 2.2. The smart contracts are compiled by using 

solc.js over Remix Browser IDE [55]. By doing so, the bytecode and ABI (Application 

Binary Interface) of the smart contracts are generated. After this step, the bytecode can 

be deployed to the public or private blockchain test environments or real-time 

environment. A testing environment of Remix Browser’s JavaScript VM, and Ethereum 

Ropsten Test Network is used [56]. 

 

 

Figure 2.2 Overview of proposed smart contract development and testing platform. 
 

Implemented auction contract has a straightforward interface, allowing agents to 

place bids and withdraw funds after the auction ends. In unexpected situations, the auction 

owner must be entitled to cancel the auction and to withdraw the winning bid. There has 

to be an auction owner to whom the winning bid will go when the auction finishes 

successfully. The auctions must have a start and end time. The block numbers can adjust 

this period since it is not safe to use block timestamps, which are set by miners and can 

be easily spoofed. Ethereum blocks are generated in approximately every 15 seconds, so 
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the duration of auction can be calculated from these estimates instead of the easily 

modifiable timestamp fields of blocks. 

In auctions, users try to bid the maximum amount that passes the highest bidder of 

the auction. Although there exist many different approaches for realizing the auctions in 

the literature, ‘open English Auction’ workflow is adopted in this study, giving the focus 

on smart contract implementation hurdles behind the approach to enable a successful P2P 

system within VPP framework [57], [58]. With the usage of smart contracts, it is needed 

to reduce the gas price for economic operation as well as increase the security, privacy, 

and transparency at the same time. According to the needs of VPP, this scheme seems the 

fair solution since other complex mechanisms can cause costly operations and code-

security breaches of Solidity during Smart Contract implementation. Writing a smart 

contract is straightforward in terms of programming. On the other hand, avoiding logical, 

operational, and financial flaws in smart contracts that have complex mechanisms are 

difficult and significant. Due to this, ‘auditing smart contracts’ is becoming another 

special job description and requirement while developing distributed applications. 

Nevertheless, the proposed platform can be applied with different auction mechanisms 

with a small update as a modular design approach is followed in this study. Following are 

the essential key elements of the adopted auction: 

• increment: The bid increment amount which is set by the auction owner in the 

beginning. 

• highestBidLevel: Current highest bidding level, which will be the amount to pay 

when the auction finishes for the highest bidder. 

• highestBid: The highest bid that so far has been put in the auction. 

• highestBidder: The agent who made the highest bid until the current time. 

 

When a new bid is greater than the previously highest one, the current highest 

bidding level is calculated as the previous top added to the bid increment amount. With 

this algorithm, the fairness of the competition is secured; otherwise, rich participating 

parties could overact easily to win all the auctions. Algorithm 1 summarizes the whole 

pipeline clearly. 
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Algorithm 1: Part of Auction Algorithm 

Require: highestBid ≥ newBid > 0 

1: newAmount ← newBid + increment 

2: if newBid ≤ highestBid then 

3:     highestBidLevel ← MIN(newAmount, highestBid) 

4: else 

5:     if msg.sender ≠ highestBidder then 

6:         highestBidder ← msg.sender 

7:         newHigh ← highestBid + increment 

8:         highestBidLevel ← MIN(newBid, newHigh)  

9:     end if 

10:     highestBid ← newBid 

11: end if 
 

 

The auction smart contract works on top of four main modules. The user roles and 

implementation details for the public procedures are given as follows: 

2.4.1.1 Initialization/Construction module 

This module controls certain preconditions, then sets some variables in the storage 

of the contract. For instance, during the creation of a new auction, the start time and end 

time must be proper. The start time must be before the end time, and end block number 

must be bigger than the current block number. Whenever agents want to initialize an 

auction, they have to deploy the auction contract with constructor parameters. Auctions 

must have an owner for each deployed contract; otherwise, it would not be possible to 

withdraw the funds. According to the running schemes, the P2P_ETC can be the only 

agent to have the ability to start a new bidding period, or each agent can deploy their own 

auction with their parameters. 

2.4.1.2 Bidding module 

Making a new bid is not acceptable before the starting time, and after ending time 

or when the auction is canceled. It is very critical to block off the auction owner from 

making bids to their auctions. The owner can increase the price and manipulate the 

bidding to earn more. When a new auction starts, any agent can attend the bidding if there 

is no restriction rule made by the P2P_ETC. In Solidity programming language, the 
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programmer can impose these restrictions by using reusable function modifiers. Making 

modifiers as simple and straightforward as possible they can be, helps to use them 

together in an efficient way. Users are able to send ETH (Ethereum) to make bids with 

this function. There may be cases that bidders need to withdraw their ETH: 

• if someone makes a bid more than the highest bid. 

• if someone makes a bid more than the highest bid level but less than the highest 

bid. 

The smart contract does not automatically refund the funds; instead, the withdrawal 

module is used due to the security considerations. The smart contract sends ETH to a user 

when they explicitly request a withdrawal after all this bidding period is end [59]. 

2.4.1.3 Withdrawal module 

Upon completion of an auction, canceled or not, bidders should hold the ability to 

take their money (ETH) back. Only the auction participants can use this module for a 

withdrawing process. The cases that have to be handled by the smart contract for the 

requests are given as follows: 

• the owner who opened the auction should be able to withdraw the ETH amount 

of the highest bid level since that is the award of the winner. 

• the highest bidder should be able to withdraw their excessive part, which is the 

maximum bid minus highest bid level. 

• excluding these two cases and users, any amount of ETH that sent to the smart 

contract should be able to withdrawn. 

2.4.1.4 Control module 

When the system detects any fraudulent activities from the agents or the system 

itself, somehow, it cancels the whole pipeline automatically. It is implemented with the 

help of assorted modifiers in a smart contract. For instance, a canceled flag is changed to 

true under certain conditions such as ‘only before end’ and ‘by only owner’. 

In contrast to other programming contexts, writing Solidity contracts usually 

necessitates fewer lines of code, but attention to a great deal of detail. Until there are 

better tools to analyze security, gas, and readability considerations, which are very vital, 

developers will carry entire burden on their shoulders. 
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2.4.2 Execution 

Once the smart contracts have been implemented, to use or invoke them, they 

should have been deployed into the Ethereum platform. In our proposition, they are being 

developed, tested, and deployed on to the JavaScript EVM of the Remix. The ABI or 

bytecode of the contract can be obtained from the compilation plug-in part of the Remix 

IDE. Afterward, in order to reach a real-time simulation of the implementation, they have 

been deployed to the Ropsten, which is a public Ethereum Blockchain test network. 

In Figure 3.3, a sample execution of the contract is shown. First, three Ethereum 

test accounts had been created in Metamask, and their balance filled from some faucets. 

Faucets are third-party websites that are used to get some ethers (ETH) directly to related 

test network account address for testing purposes. Then the contract is deployed to 

Ropsten by using Metamask, which is a Web3 injection extension for the browsers and 

Remix. For contract creation 1520051 gas unit was used, and the gas price is in gwei 

(1/109 Ether), so it makes 0.001520051 Ether for deployment cost which converts to $0.32 

as of September 2019. Let us assume, Account1 is the owner of the contract and deployed 

it with the arguments as, bidIncrement: 75, startBlock: 1 and endBlock: 100000. In 

respective order, Account2 bids 40 wei (1/1018 Ether), Account3 bids 1 gwei, uses a not 

payable method without sending any value. In respective order, Account2 bids 40 wei 

(1/1018 Ether), Account3 bids 1 gwei, uses a not payable method without sending any 

value. As it is summarized in Table 2.1, this time Account2 bids 1 gwei, and its total bid 

becomes 1gwei + 40 wei. After that, Account3 bids 100 wei to win the auction. In the 

end, the highest bid becomes 1000000100 wei, Account3 becomes the highest bidder, and 

the smart contracts balance becomes 0.00000000200000014 Ether. Since a big interval 

for start and end blocks was set, the auction continues for a quite long time. It should be 

remembered that the accounts (agents) have to withdraw their related balances from the 

smart contract once the auction ends or canceled by the owner. 

In a public blockchain network environment, it is possible to verify and publish the 

contract source code. Verification of source code and uploading it to the system gives 

extra transparency for all. Like normal agreements, a smart contract should provide more 

data to both parties regarding what they are digitally opting for and offer them the chance 

to audit the code independently to confirm that they are genuinely doing what they are 

meant to do. 
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Table 2.1 Transactions and gas costs. 

From To Event Fee (Gwei) 

0x09d74e4a59a302... 0x0a44c9a35f9fe28... 
Account1 deployed the contract, 
bidIncrement:75 0.001520051 

0xd64bc9d9ef456c... 0x0a44c9a35f9fe28... Account2 bids 0.00000004 Gwei 0.000087221 

0x96dbf4ff6a2db8f... 0x0a44c9a35f9fe28... Account3 bids 1 Gwei 0.000057211 

0xd64bc9d9ef456c... 0x0a44c9a35f9fe28... 
Account2 bids 1 Gwei and its total bids and 
highest bid become 1.000000040 Gwei 0.000042221 

0x96dbf4ff6a2db8f... 0x0a44c9a35f9fe28... 
Account3 bids 0.0000001 Gwei, becomes 
highest bidder and winner 0.000042221 

 
 

 
(a) 

 
(b)                                        (c) 

Figure 2.3 Proposed smart contract in Remix. (a) executed transactions in Ropsten 
Test Network, (b) deployment, and (c) running. 
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2.4.3 Running schemes 

The proposed smart contract-based bidding platform can be adapted to different 

running schemes. In the given general scenario shown in Figure 2.4, once an agent has 

excessive energy to offer, it will inform the CVVP. After that, there could be three 

approaches to start a new auction: 

 

 
Figure 2.4 Running schemes, flow and model architecture used in the proposed P2P 
energy trading. 

2.4.3.1 Centralized approach - P2P_ETC deploys 

P2P_ETC itself deploys the smart contract periodically for definite durations for 

buying or selling windows. This approach may cause the centralization problem, which 

contradicts the blockchain and P2P phenomena. P2P_ETC checks its database and energy 

profile in order to decide when the RES generate more energy, and there is excessive 

energy available for P2P trading within the VPP. Accordingly, P2P_ETC starts the 

auction by deploying the smart contract periodically for each auction. For example, 

around noon, when there is enough daylight to generate energy, P2P_ETC can have 20-

minute-long buying auctions for every hour to collect energy from the producers. After 

that, in the rush hour, P2P_ETC starts selling auctions for the consumers, again with 20-

minute-long periods. 

2.4.3.2 Secure approach - agent deploys 

Agent itself deploys the smart contract, which could be safer but costly due to the 

initialization process. In this scenario, an agent, e.g., Agent 4, checks its smart meter and 

the system. Once the agent has excessive energy to sell others, informs P2P_ETC for 
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starting a new auction. Using its database and current energy profile does P2P_ETC make 

the decision to let the agent start this bidding period. When P2P_ETC approves the 

request, the agent deploys the smart contract using its bytecode and ABI, which is already 

given the agents. The auxiliary software or operators of agents interact with smart 

contracts, i.e., deployment, setting parameters, or input of preferences with Ethereum 

Client APIs, e.g., web3.js, web3.py. Transactions towards Ethereum platform and events 

from there, are transferred over the network via HTTP (Hyper Transfer Protocol). When 

the auction is deployed, other agents who want to join the auction can make a bid to join 

the process in certain conditions, which is explained in section 2.4.1. 

2.4.3.3 Economy approach – P2P_ETC adjusts parameters 

P2P_ETC deploys the smart contract factory that generates smart contracts on 

behalf of the agents. Here the smart contract named Auction Factory is used to create 

auction smart contracts to reduce initial costs. When a new auction request is submitted, 

P2P_ETC will adjust the parameters for the smart contract which is already deployed. 

With this approach, it is possible to avoid the deployment gas cost, but it may cause 

security risks due to the transparent background of the blockchain network. The whole 

communication among the agents and the P2P_ETC is made over the system via HTTP 

(Hyper Transfer Protocol). The proposed platform can run all these running schemes. 

P2P_ETC will decide to operate one of these schemes, according to worthwhileness to 

the system overall, i.e., cost or security. 

2.4.4 Security discussion 

In some other peer to peer energy trading applications, like vehicle-to-vehicle 

(V2V) or vehicle-to-grid (V2G) networks, privacy is very crucial since previously 

unknown EVs can come to charging stations to participate in the auctions [34], [42], [60]. 

At this point, the privacy brought by a private blockchain and sealing bids in auctions 

becomes important as well. However, in a VPP environment, there is no need for strict 

privacy or security measures like those platforms that have random participants. In the 

proposed framework participating agents are already known by the P2P_ETC and TVPP 

because of the backbone architecture. TVPP and P2P_ETC are in charge of all power 

transactions and financial transfer operations. Please note that, if the system has a 

potential random participant, in that case, the TVPP cannot assure to transfer energy to 

those nodes since they are not a part of the physical network. Bids made by the agents, 
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cannot be tracked easily in a huge, real decentralized public Ethereum network in which 

also Ether cryptocurrency transfers are conducted. Ether is also widely used outside of 

the energy sector; therefore, agents can use it outside of P2P trading and directly 

reimburse, and unlike permissioned or private blockchain, TVPP and P2P_ETC will not 

be able to misbehave the tender because they will not be authorities that have privileges 

on the blockchain network [61]. As can be seen very clearly from the current literature, 

there is a trade-off between public blockchain and private blockchain usage. Namely, 

privacy protection for certain applications is a problem when using a public blockchain, 

whereas keeping accountability and transparency for the transactions is the problem when 

using a private blockchain. Using cryptographic methods to overcome the privacy 

protection problem in public blockchains is a solution that increases cost and complexity. 

Yet, in private or consortium blockchains, [62], centrality can increase, and organizations, 

aggregators or selected set of nodes determine the consensus that becomes permissioned, 

which contradicts inherent features of a truly decentralized blockchain [39]. In addition, 

although this trade-off is mostly considered in the privacy area, it is very important that 

the structure of smart contracts is simple and do not have unnecessary functions in order 

to avoid cyber security vulnerabilities and financial frauds previously seen in these 

networks [63]. Therefore, in a hybrid manner both two is used to balance this trade-off 

and outcomes are discussed as well. 

On the other hand, by all means proposed framework inherently bears the security 

precautions and features that are coming to life by virtue of blockchain such as preventing 

double-spending, keeping transactions in a secure immutable common ledger, 

authenticating transactions and being in a true P2P manner. 

2.4.4.1 Random participants can attend the auction 

It is not a meaningful attempt for the random participant unless it tries to do DoS 

attack. This problem is solved by selecting the next highest bid as a winner when the 

winner is not in the physical network. In that case, the fake winner cannot withdraw the 

bid back and that keeps the system secure. 

2.4.4.2 Participants can see others' bids and decide their strategy 

It is assumed that all the participants are honest to reduce the cost of running the 

smart contract. In this article, the blockchain model is proposed and each module is 

abstracted to make the platform modifiable easily. When the network is heterogeneous 
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and privacy issue becomes important, the auction module could be supported with 

cryptographic applications like sealed auctions, or encrypted comparisons to find the 

highest bid as in [64]–[66]. In that case, the gas price will increase but the system can 

deal with the privacy issue. Otherwise, as previously mentioned, a hybrid model akin to 

[62] can be adapted easily by using private blockchain for privacy-driven portions and 

public blockchain for transparency-driven portions of the proposed platform. 

2.4.4.3 General security concerns are solved by blockchain platform 

Nobody can bid on behalf of some other nodes, it is not allowed to have double-

spending, transactions are kept in a secure distributed database, and smart contract assures 

the trusted agreements between peers. 

2.4.4.4 Participants can apply different characteristics to get the advantage over 

others and that can cause some deadlocks 

This issue is not about the platform itself, however, the proposed system can apply 

different penalty schemes on their VPP network. Please note that the proposed 

architecture is aimed to support VPP network with its peer-to-peer background. Different 

characteristics of participants will be analyzed as future work with game-theoretical 

approaches. 

2.5 Case Studies 

The proposed architecture is tested and validated under four different case studies 

by using a one-day realistic energy data from Australia, Perth Region. Figure 2.5 

represents the total generation and the total load changes on a specific day. In this figure, 

the green curve represents the total load, and total production is represented with the 

orange curve. Also, the yellow curve shows the gap between the total production and total 

load at a specific time, and the blue curve is the ESS-aided version of the yellow curve in 

the VPP in 24 hours. 
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Figure 2.5 Energy profile of the VPP (using realistic data). 

Based on the information given in Figure 2.5, it is observed that there could be four 

different cases that may occur during a day, as shown. In general, there could be two 

scenarios without ESS: (i) total generation could match with total load, or (ii) VPP needs 

to feed the system, e.g., trading with market operator, since the load is higher than the 

production rate. Please note that diesel generator and ESS are also considered as agents 

in the system. Therefore, they are able to buy/sell energy among all others in the proposed 

architecture. Thus, it is also needed to add two more cases to determine the roles of the 

ESS in these two general cases. Table 2.2 presents a general overview of the case studies 

whether the one-hour backup of ESS is sufficient, the energy demand in VPP is met or 

not, and the ESS is in charging or discharging status.  

Table 2.2 Overview of cases. 

Cases ESS Status Satisfying Demand Charging Status 

 I short not enough discharging 

 II short just enough charging needed 

 III charged enough charging 

 IV charged just enough discharging 

2.5.1 Case I 

When ESS is short, and the total production is not enough to feed the demand, VPP 

needs to buy the power from the grid. These hours are represented as Case I in Figure 

2.5. During these hours, there is definitely not enough energy in the system; however, 

smart contract must be still active in letting agents get energy from the producers. Since 
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the agents are already out of power, it is better to use RS 3 to avoid the cost of deploying 

smart contracts. In Table 2.3 line four, the difference between Total Generation (TG) 

together with one hour backup of ESS and Total Load (TL) is drastically low that 

represents the Case I clearly and VPP cannot run the system without the help of market 

operator. Even though total energy is not enough in the VPP, there may be agents 

exceeded or failed behind their forecasted production. In a penalty condition, peers can 

trade with each other with the proposed platform. For this specific situation, the system 

could also allow running RS 2, which gives truly P2P trading among the prosumers in 

need not to get punished. 

Table 2.3 Cases during the certain time of the day. 

Time TG (KW) TL (KW) TG + Backup - TL TG - TL Cases 

03:00 502.9069 518.8 0 -15.8930 IV 

08:00 551.3342 536.4 0 14.9342 II 

13:00 850.8720 479.0 331.8720 371.8720 III 

21:00 476.1627 694.6 -178.4372 -218.4372 I 

2.5.2 Case II 

When the total generation is enough to feed the demand, but there is not enough 

energy in the ESS, the system should also charge the ESS since all of them are in charging 

mode. Case II is represented in Figure 2.5, when the yellow part is above zero between 

8-9 am. In these hours, the number of trading and transactions occur on the blockchain 

architecture is increasing. In Table 2.3 at 8:00, the TG can match the TL but ESS cannot 

sell energy since they need to be charged. In this case, all three schemes are possible, but 

the first looks centralized, the third one is less secure, and so RS 2 is better to operate. 

2.5.3 Case III 

The difference between the Case II and Case III is the role of the ESS. In this case, 

ESS is probably in charging mode, yet they can sell energy as well. During this period, 

VPP is in islanded mode, and all trading and transactions are handled inside VPP. Thus, 

VPP could go to offline mode and let all peers manage themselves with the power of the 

blockchain architecture that eliminates third parties. In Table 2.3 line three, excessive 

energy is shown to explain that VPP can work in islanded mode with no doubt. It is 

recommended to operate RS 2 to be able to trade in a P2P manner and to reduce the 

communication cost that could happen when RS 3 is used. 
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2.5.4 Case IV 

This is almost the same as Case I, but the role of the ESS is different. The difference 

between TG and TL is not as low as in Case I and more precisely, at 03:00 the difference 

between TG with ESS backup and TL is zero in Table 2.3. ESS has just enough backup 

to compensate the difference, which means it's in discharging mode. Others need to trade 

the energy from the ESS, otherwise VPP should feed the system with the help of market 

operator. Although there is no need to buy energy from the grid, VPP and market operator 

is still connected, where the blue line touches zero, from midnight to 5 am and at 5 pm. 

For this scenario, all three RS can work, but it is offered to operate RS 3 since there are a 

few participants interested in selling energy. P2P_ETC can deploy a contract and modify 

it when a new one wants to start an auction to avoid the cost of deployment. 

2.5.5 Analysis 

Proper running schemes for the given cases are discussed in this section. A high-

level summarized overview and comparisons of running schemes for each case is given 

in Table 2.4. The proposed architecture requires P2P_ETC to open repeatedly buying and 

selling auctions, Running Scheme (RS) 1, for definite time periods regardless of the case 

to assure connectivity among all the participants. Other schemes can be applied based on 

the VPP power distribution conditions. There are two important factors while deciding 

the running schemes: (i) overall demand on the network, and (ii) ESS condition. When 

there is excess energy, in Case II and Case III, number of auctions will be increased for 

trading processes. Thus, RS 2 is recommended for both cases, especially for Case III it is 

strongly recommended to reduce the communication cost and assure truly P2P network. 

On the other cases, RS 2 is not recommended unless the penalty is not applied for 

unsuccessful peers that promise to generate a particular amount of energy in Case I. RS 

3 is recommended when generated energy is not enough to run the network. Optional 

schemes can be chosen depending on the requirements and operational conditions. 

Table 2.4 Recommended running schemes. 

 RS 1 RS 2 RS 3 

 Case I Recommended To reduce penalties Recommended 

 Case II Optional Recommended Optional 

 Case III Optional Strongly recommended Optional 

 Case IV Optional Not recommended Recommended 
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2.6 Performance Evaluation 

Blockchain-based solutions become hugely influential recently because of its 

transparent and distributed architecture. Since the technology is quite new, there are 

different evaluation metrics to measure the proposed system's performance. Each 

proposed platform can have distinct advantages over other solutions based on these 

metrics. The overall performance can vary depending on the description of the problem 

and its aims. According to the used platform, e.g., permissioned blockchain (Hyperledger) 

with chain code implementation or public Ethereum network with a smart contract, the 

measured performance metrics can be remodeled. 

In this work, smart contract enabled public Ethereum network is introduced, and 

average gas costs are discussed in Table 2.1. Some other metrics are recommended to 

measure the overall performance of the blockchain platforms [67]. Since the proposed 

system is working on the public Ethereum network, it is not required to test fundamental 

metrics for the core platform, like transactions per second (tps), which is well-known. 

Instead, the smart contract's performance on Average Execution Time for different loads 

and cases are presented in this section. The execution time shows the elapsed time 

between a transaction request time, 𝑡!"!"#$%, and its confirmation with state updating in 

the network, 𝑡!"&'"(!). In order to obtain the elapsed time between a bidding request from 

an agent to the smart contract and its confirmation notification from the network to the 

agent, web3.js scripts that we coded were utilized by connecting to the network via 

‘Infura.io’. The average value is calculated by taking an average for all the requests in a 

given time span, from ti to tj, as shown in Equation (2.1). 

 

𝐴𝐸𝑇 = 	
∑ (𝑡!"&'"(!) −	𝑡!"!"#$%*
#
$

𝐶𝑜𝑢𝑛𝑡 (𝑡𝑥	in	2𝑡$ , 𝑡#4*
 (2.1) 

 

The general performance of the platform is measured when 1, 5, 10, 15, 25, 50, and 

100 participants are located in the system. Furthermore, to show the case performances, 

tests are applied at different times. In this framework, the bidding mechanism is proposed 

for the agreement on the P2P matching process. The system is working on asynchronous 

mode, and two participants might try to increase the highest bid at the same time, which 

can cause conflicts. Hence, some of the bidding attempts could be refused when the 
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number of participants increases. In Figure 2.6, the average number of successful biddings 

are presented to show the robustness of the platform. When the system is overloaded with 

100 agents, 73 percent of the requests are approved by the smart contract. Figure 2.7 

shows the average execution time under different workloads. Average execution time is 

affected by the load, and increasing the number of agents raises the processing time. With 

this result, 50 seconds is recommended as a period between the following requests from 

the same participant, to keep the system consistent. The smart contract performance in 

different cases is also evaluated, without Case II since it is considered a transition period. 

The results are presented in Figure 2.8 for 100 agents which is an overloaded scenario. 

Since there are many transactions needed to be processed in Case III, the average 

execution time becomes higher than other cases. 

 
Figure 2.6 The general performance of smart contract under different workloads. 

 
Figure 2.7 Average processing time for bids when different number of agents use 
the system at the same time. 
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Figure 2.8 Performance of the system under different case scenarios when it is 
overloaded with 100 agents. 

2.7 Conclusion 

In this work, a blockchain-based bidding platform and cryptographic testing 

environment have been developed to achieve an efficient, transparent, and economic P2P 

energy trading within VPP framework using Smart Contract. A public blockchain, 

unlikely to other applications, is implemented, algorithmic steps are generated, and the 

usage schemes are discussed in detail. Smart contract development and implementation 

that facilitates P2P energy trading via auction-based bidding mechanisms are explained 

including the details of the functions. The proposed auction-based bidding platform 

interlinks various software, e.g., Solidity, Remix, Metamask, Infuro.io and Ropsten to 

enable blockchain-based energy trading which works in a real-life cryptographic 

environment. Possible running schemes are discussed to achieve effective bidding 

platform to deal with both cost and security concerns. In light of real generation load data 

from Western Australia, the suitable running scheme(s) for P2P energy trading under the 

developed platform is demonstrated and suitable recommendations are made. 

In order to reach an optimized and efficient operation of the model(s), deep learning 

and artificial intelligence algorithms may be utilized. Auto-managing tools with deep 

learning, game-theoretical analysis for profit maximization of VPP, and other security 

and defense mechanisms are considered as the future tasks before commercializing the 

developed energy trading platform. 
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Chapter 3 

Energy Trading on a Peer-to-Peer Basis 

between Virtual Power Plants Using 

Decentralized Finance Instruments  
 
 
 
 
Over time, distribution systems have begun to include increased distributed energy 

resources (DERs) due to the advancement of auxiliary power electronics, information, 

and communication technologies (ICT), and cost reductions. Electric vehicles (EVs) will 

undoubtedly join the energy community alongside DERs, and energy transfers from 

vehicles to grids and vice versa will become more extensive in the future. Virtual power 

plants (VPPs) will also play a key role in integrating these systems and participating in 

wholesale markets. Energy trading on a peer-to-peer (P2P) basis is a promising business 

model for transactive energy that aids in balancing local supply and demand. Moreover, 

a market scheme between VPPs can help DER owners make more profit while reducing 

renewable energy waste. For this purpose, an inter-VPP P2P trading scheme is proposed. 

The scheme utilizes cutting-edge technologies of the Avalanche blockchain platform, 

developed from scratch with decentralized finance (DeFi), decentralized applications 

(DApps), and Web3 workflows in mind. Avalanche is more scalable and has faster 

transaction finality than its layer-1 predecessors. It provides interoperability abilities 

among other common blockchain networks, facilitating inter-VPP P2P trading between 

different blockchain-based VPPs. The merits of DeFi contribute significantly to the 

workflow in this type of energy trading scenario, as the price mechanism can be 

determined using open market-like instruments. A detailed case study was used to 

examine the effectiveness of the proposed scheme and flow, and important conclusions 

were drawn.  
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3.1 Introduction 

Owing to the rising global demand for energy, growing political pressure, and 

public awareness regarding reducing carbon emissions, incorporating large-scale 

renewable energy sources (RESs) integration and contouring power system operation 

with information and communication technologies (ICT), modern electric power systems 

have been undergoing a revolution [68]. These concerns have led to the creation of the 

microgrid concept, which has seen significant developments and adjustments over the 

previous decade with the help of smart grid technology [69]. Despite the obvious benefits 

of microgrids, there are several technical obstacles, including stability and dependability 

issues, due to the inherent volatility and unpredictability of RESs [10]. Virtual 

aggregation methods, in which small-scale prosumers work together on a larger scale to 

acquire benefits that cannot be obtained on an individual basis, are now being 

implemented because of the legislative and economic constraints of the energy market. 

Virtual power plants (VPPs) come into play in that regard. They are theoretically utilized 

for DER consolidation such that they can serve as a completely dispatchable unit, 

processing data from a wide range of DER physical infrastructure, market operations, and 

distribution system operators (DSOs) [70], [71]. Moreover, VPPs can trade energy on 

behalf of small-scale DERs who cannot engage in the electricity market; therefore, VPPs 

can be considered an intermediary between DERs and the wholesale market. Inside VPPs, 

all the current ICT facilities are typically used to superintend the structure. Traditional 

cloud or fog computing systems are used to store the corresponding data necessary for 

VPP operations [11], [72]. 

Previously, electricity customers were connected to conventional central energy 

systems as only consumers. Nonetheless, this scenario has changed. In the new concept, 

customers are now called prosumers (combinations of producers and consumers) and can 

now generate electricity from DERs, the bulk of which are generally RESs [73]. 

Currently, excess energy is exported back to the grid based on net metering and Feed-in 

Tariff (FiT) billing schemes. A prosumer receives credit in kilowatt-hours for the amount 

of energy they export to the grid under net metering. The prosumer’s electricity 

consumption, supplied by the main grid, is then deducted from the prosumer’s credit. In 

the FiT scheme, the prosumer can export the surplus energy at a fixed price and receive 

a monetary credit rather than kilowatt-hours. However, these policies provide few 

benefits to prosumers and are being swiftly phased out in numerous countries worldwide. 
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Prosumers expect greater flexibility in allocating and managing their resources, as well 

as the elimination of intermediaries. The rise of prosumers necessitates a more 

decentralized and open energy market than the traditional, centralized market. Peer-to-

peer (P2P) energy trading has emerged as an innovative paradigm at this juncture. P2P 

trading eliminates the need for third parties, allowing prosumers to exchange their surplus 

energy production with their peers directly. Since electricity generation with RESs is 

sporadic and unpredictable, the prosumers have to store excess energy in their ESS or sell 

it to the main grid, their peers inside the VPPs/microgrids, or neighboring VPPs (inter-

VPP trading). However, a P2P trading platform is required to establish a marketplace for 

prosumers and consumers, providing them with flexibility and control over their 

generation and consumption. Furthermore, the platform must enable communication and 

exchange of information with peers, make agreements and transactions, and store this 

information in trustworthy databases. As the size of decentralized systems grows, so does 

the complexity of P2P trading [74]. Distributed ledger technology distinguishes itself 

from centralized servers and databases by enabling safe, decentralized communication 

and cooperation among peers. Distributed ledgers are databases that record transactions 

and other related data in multiple locations without the involvement of a central authority. 

Blockchain is one of the leading types of distributed ledger technology that offers unique 

features to support P2P trading by providing a high level of transparency, security, anti-

tampering, and lower operational cost due to the elimination of mediators. Thus, the new 

blockchain-enabled P2P trading approach differs from the conventional, centralized 

method of trading electricity [12]. 

In the design of P2P energy trading, game theory methodologies [75]–[79], auction-

based procedures [80]–[84], optimization methods [84]–[88], and blockchain-based 

technologies are commonly employed. In a competitive situation, game theory is applied 

when a player’s decisions and behavior affect other players’ results and vice versa. The 

paper in  [75] proposed a non-cooperative game theoretic approach to optimize the social 

benefits of P2P energy trading in virtual microgrids. The Stackelberg game was used to 

minimize consumer costs and maximize producer profit. P2P energy trading was realized 

using a multi-objective game-theoretic optimization in [76], [77] for a clustered microgrid 

with three microgrids. The Nash equilibrium of game theory in these papers was used to 

determine the best number of participants and payoffs for peer-to-peer (P2P) and peer-to-

grid (P2G) energy trading. Auction-based mechanism in energy, a significant subfield of 

game theory, can be thought of as competitive bidding processes among prosumers and 
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consumers. An auction-based energy trading among peers is discussed in [80]–[82]. The 

double auction approach, which is one of the most widely used auction methods, has been 

applied in [82], [83]. It facilitates the involvement of market participants who play a role 

in regulating the market price to optimize the trading strategy. A double auction-based 

energy trading system for smart energy communities was proposed in [84]. This paper 

dynamically handled the price of energy trading by integrating Lyapunov-based energy 

control. Optimization-based methods were also studied for the efficient realization of P2P 

energy trade among VPPs or microgrids [70], [84]–[88]. The optimization techniques in 

P2P energy trading have primarily aimed to maximize the financial benefits of 

participants. The study in [87] demonstrates the P2P energy trading among microgrid 

clusters and the shared energy storage system. Improvements in energy use efficiency and 

cost savings were achieved by optimizing the proposed structure. Authors in [88] present 

an equilibrium model of a P2P transactive energy market. In this model, each member 

seeks the maximum personal advantage while having the option of importing or providing 

energy from/to other peers. The market equilibrium condition is represented as a MILP 

and solved using a commercial solver to internally calculate the energy transaction price. 

Nevertheless, most of the methods mentioned above have a substantial computational 

burden, especially as the number of interconnected VPPs increases. These 

implementations do not consider data and financial exchange platforms, decentralization 

of the energy trading system, and the elimination of intermediaries. To address these 

limitations, this study proposes a P2P trading scheme for a distributed network of VPPs 

using Decentralized Finance (DeFi) instruments. 

Several survey articles can be found in the literature examining all aspects of the 

blockchain idea in P2P energy trading [73], [89]–[97] . Double auction variants stand out 

among the many financial approaches that can be categorized in the virtual layer of P2P 

energy trading designs [96]. Multiple vendors and buyers participate in a double auction 

to buy and sell energy. In order to match potential sellers’ asks and buyers’ bids with a 

clearing price, the intermediate market institution will receive submissions from both 

potential vendors and buyers [95], [97]. While using the blockchain to record energy 

trading transactions transparently and irreversibly, SCs take over the crucial role of these 

intermediaries [91]. Recent studies on P2P trading in the literature have mostly focused 

on local energy trading (intra-VPP/microgrid) utilizing blockchain and smart contracts 

(SCs). Our previous study also proposed an Ethereum-based intra-VPP P2P trading model 

with technical implementation details, analyzing the performance of public blockchain 
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usage [6]. The state-of-the-art blockchain networks have the ability to run SCs, paving 

the way for the deployment of blockchain-based general applications. Ref. [98] is an 

elaborated report from a software engineering perspective regarding the SCs for 

transactive energy. A fully P2P energy trading market design for households has been 

provided by [99]. The study incorporates two trading approaches to analyze the impact 

of bilateral trading preferences. The first approach seeks to balance extra power and 

demand, while the second is intended to encourage energy trading among nearby peers. 

Ref. [100] presented two frameworks using Ethereum’s SC functionality for a microgrid: 

a continuous double auction framework and a uniform price, double-sided auction 

framework. The paper’s findings demonstrated that integrating the microgrid with P2P 

energy trading can strengthen the traditional centralized energy grid. 

Some studies in the literature consider energy trading between VPPs as our study. 

The authors in [101] developed a hierarchical energy trading framework for both inter- 

and intra-VPPs. The MILP model was proposed to optimize the operation of the DERs in 

the system, considering the energy cost of each prosumer. A blockchain-based SC was 

used to record and automate transactions. Ref. [102] suggested a hybrid energy trading 

solution on a decentralized computer platform for microgrid clusters. This hybrid method 

combines linear programming with SCs on the Ethereum network. The other paper [103] 

proposed hierarchical energy trading between VPPs of small-scale prosumers using SCs. 

The optimization problem, which is to minimize the energy cost and meet energy service 

requirements, is addressed using a knapsack solution algorithm. However, the proposed 

solution was validated by a proof-of-concept prototype using Ethereum. Another 

authentic paper introduced a cryptocurrency-based energy trading platform (CETP) 

[104]. CETP uses the energy blockchain cryptocurrency (EBC) as a token for the 

electrical transaction between the stakeholders and performs the bidding indirectly 

through real-time bidding in EBC. This article aimed to improve the social welfare of the 

participants and inspired our work to be able to trade without the need to write SCs by 

ordinary system users. Nonetheless, CETP will probably not go from concept to practice 

since the designed trading system does not use an existing live blockchain environment. 

The proliferation of numerous VPPs and inter-VPP energy transfers seems likely, 

especially with the impending EV revolution. This possible inter-VPP trade requirement 

necessitates more efficient methods and flows by using more intensively the emerging 

tools and concepts of the blockchain ecosystem beyond the double auction approach in 

the financial layer. In order to perform a double auction in a blockchain-based solution, 
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it is necessary for the agents or system operators to write a SC [105]. Failure to properly 

develop and audit SCs can also cause security and financial fraud problems, which have 

not been considered until now in transactive energy research, although many notorious 

incidents have happened in the blockchain world [106]–[109]. Therefore, in this study, a 

P2P trading scheme and framework between VPPs were developed by leveraging the 

benefits of the Avalanche ecosystem, such as speed, scalability, backward compatibility 

with the Ethereum network, and interoperability of Avalanche’s C-chain together with 

multiple Ethereum Virtual Machine (EVM) based blockchain networks. Decentralized 

exchange (DEX) was used in the financial layer of our approach. To the best of our 

knowledge, our study proposes using DEXs for the first time in the financial layer of 

intercommunity P2P trading as a novel approach. Using DEXs to trade energy by 

tokenizing energy between VPPs can cut down on the use of SCs that are not written well 

and can be exploited. DEXs are run by SCs that have been developed and audited by 

professionals. They work in the public eye and handle much traffic. Experts in the field 

solve the problems they encounter in the live setting. 

In contrast to the articles that were stated earlier, the purpose of our research is to 

investigate how DEX operations can be used to regulate the financial functioning and 

flow of P2P trading. Through tokenizing the energy of each VPP, supply and demand 

determine the parity balance between the tokens of VPPs. Therefore, trading in energy in 

the proposed scheme does not always require an auction or a bidding process. It also 

paves the way for trading operations like the open market without using order books. 

The proposed scheme and flow are implemented based on the needs of the inter- 

VPP framework, using the Avalanche Platform (C-Chain, Fuji Test Network), Remix, 

and Pangolin, and the optimization model is formulated as mixed-integer linear 

programming (MILP), which is solved by the CPLEX solver included in GAMS. The 

contributions of this study can be summarized as follows: 

• As an extremely novel approach for a blockchain-based P2P trading scheme, 

trading has been realized with a workflow close to the open market mechanism in 

this study, which is completely distinguished from papers that feature auction or 

bidding. 

• It has been demonstrated that the trading on a model architecture is substantially 

realized; this scheme and workflow may be utilized in trading between VPPs. 

Further, energy prices can be calculated based on supply and demand. 
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• A workflow and schematic are presented where VPPs using different blockchains 

for trading can also trade with each other. 

• While peer-to-peer trading is conducted on the model architecture of the power 

system comprising VPPs with the proposed flow, MILP is employed to get the 

cost of energy transfers closer to the optimum. 

This study is structured into six sections. The Background Information section 

presents theoretical and conceptual details regarding the DeFi instruments. The System 

Description section describes the proposed methodology for the model architecture and 

problem formulation. The Proposed Scheme and Flow section details the inter-VPP 

trading platform’s proposed scheme and flow. Finally, Discussion Section presents the 

analysis and results, while the last section provides the conclusions and future research 

avenues. 

3.2 Background Information 

Blockchain is the technology behind cryptocurrencies and digital P2P money 

transfers, which have become increasingly popular in recent decades. Fundamentally, it 

is a vast, widely distributed, and immutable digital ledger. As the name suggests, many 

blocks cryptographically interconnect to embody a chain of blocks that keeps the 

transactions intact. Multiple nodes scattered worldwide operate in a distributed fashion 

by consensus between them, removing central intermediaries and creating a massive 

registry and computing device. Blockchain is pushing for significant, transformative, and 

disruptive development in many sectors. The most promising future features of 

blockchain are decentralization, security, transparency, and fault tolerance. SCs are one 

of the benefits of blockchain, which makes a substantial difference in practical usage. 

They are predefined protocols between parties, programmatically coded, and live over the 

blockchain network autonomously. The usage of SCs in P2P energy trading is primarily 

for business logic flow and mandating market rules, that is, auctions and bidding 

mechanisms. Ethereum is an open source blockchain platform that aims to make anyone 

capable of building or using decentralized applications (DApps) that run on blockchain 

networks primarily by using SCs [110]. DApps are expected to become a new phase in 

the worldwide web’s development process [111], [112]. 

Since its inception by [110], Ethereum has swiftly grown to become the world’s 

second largest cryptocurrency, with the potential to challenge Bitcoin’s dominance in the 
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future. The initial coin offering (ICO) tsunami, which swept the globe in 2017, increased 

Ethereum usage by a factor of ten. Although the ICO excitement has died down, the rise 

of decentralized finance (DeFi) and non-fungible tokens (NFTs) have sparked a second 

wave of Ethereum adoption, as the majority of DeFi and NFT platforms are built on the 

Ethereum blockchain. However, scalability concerns, such as high gas prices, network 

congestion, and slow throughput are becoming more common in Ethereum-based 

applications. Layer 2 alternatives—which use new consensus protocols such as Proof-of-

Stake and Byzantine Fault Tolerant to replace the energy-intensive and environmentally 

harmful Proof-of-Work protocols—have been developed to overcome the Ethereum 

scalability trilemma: Blockchains, such as Ethereum, are prone to the infamous trilemma, 

which states that it is impossible to accomplish decentralization, scalability, and security 

simultaneously. As they use the proof of work mechanism, both Bitcoin and Ethereum 

are extremely secure and decentralized, yet they have low transactions per second. The 

current solutions for this fall into one of the Layer 1 or 2 categories [113]. Layer 2 

protocols are based on the Ethereum Mainnet, whereas Layer 1 protocols are all new types 

of blockchain. Layer 1 protocols are blockchain architectures not constructed on top of 

another blockchain [114]. The Avalanche blockchain, for example, is a Layer 1 

blockchain system that has seemingly addressed the Ethereum trilemma using its own 

design and unique consensus mechanism. In contrast, Layer 2 is a protocol constructed 

on top of an extant blockchain. For example, Lightning Network is a Layer 2 solution for 

Bitcoin, whereas Loopring is a Layer 2 solution for Ethereum. The Ethereum 2.0 upgrades 

are another significant step forward in the attempt to increase Ethereum’s scalability. 

Ethereum 2.0 is a series of Ethereum blockchain modifications that are presently under 

construction to make the network more scalable, secure, and durable [115]. However, 

these development efforts have been on the agenda since 2014, as applying these changes 

to an existing operational network with backward compatibility is difficult. Therefore, 

many Layer-1 blockchains have recently emerged as significant alternatives. 

Nevertheless, there are other protocols that are neither Layer 1 nor Layer 2 solutions but 

separate blockchains that operate alongside another Layer 1 blockchain. They are 

primarily a fork of the Ethereum blockchain rather than a Layer 1 or 2 protocol. For 

example, the Binance Smart Chain is a fork of the Ethereum blockchain rather than a 

Layer 1 or 2 protocol. 
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3.2.1 Avalanche platform 

Avalanche is an open-source platform for deploying decentralized apps and 

business wide blockchain installations in a unified and highly scalable environment. 

Avalanche was the first decentralized SCs platform for global finance with near-instant 

transaction finality. Because Solidity works out-of-the-box, Ethereum developers can 

easily build atop Avalanche. The Snow family consensus protocols distinguish Avalanche 

from other decentralized networks. Generally, it is assumed that blockchains must be 

sluggish and non-scalable. To deliver strong safety guarantees, expedient finality, and 

high throughput without compromising decentralization, the Avalanche protocol adopts 

a revolutionary method for consensus and uses repeated subsampled voting. When a 

validator decides whether a transaction should be allowed, it polls a small, random group 

of validators for their opinions. If the queried validator believes that the transaction is 

invalid, has already rejected it, or prefers a different competing transaction, it will respond 

that the transaction should be rejected. Otherwise, the validator approves the transaction 

if a sufficiently significant share a (alpha) of the sampled validators respond that it should 

be accepted. That is, it will respond in the future when enquired about the transaction that 

it believes should be accepted. Similarly, if a sufficiently significant number of validators 

respond that the transaction should be refused, the validator will reject it. The validator 

repeats this sampling process until a of the validators questions the response in the same 

way (accept or reject) for b (beta) rounds in a row. When there are no issues in a 

transaction, it is typically completed quickly. When disputes occur, honest validators 

rapidly cluster around them, creating a positive feedback loop until all accurate validators 

prefer that transaction. Consequently, non-conflicting transactions are accepted, and 

conflicting transactions are rejected. If any honest validator approves or rejects a 

transaction, all honest validators accept or reject that transaction (with a high likelihood 

based on system settings) [116].  

Avalanche features three built-in blockchains: an exchange chain (X-chain), a 

platform chain (P-chain), and a contract chain (C-chain). All three blockchains were 

validated and secured using the primary network, a particular subnet. Further, all 

members of all custom subnets must be members of the primary network by stacking at 

least 2000 AVAX (explained below). 
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3.2.1.1 Principles 

Avalanche is intended to establish permissioned (private) and permissionless 

(public) blockchains for application-specific usage as well as to develop and deploy 

highly scalable DApps and digital assets with different complexities and unique rules, 

commitments, and bindings (smart assets). Avalanche’s overall goal was to provide a 

unified platform for creating, transferring, and digital trading assets. 

3.2.1.2 The native token: AVAX 

AVAX is a native token of Avalanche. It is a hard-capped (720,000,000 tokens, 

with 360,000,000 tokens available on mainnet launch), scarce asset that is used to pay 

fees, secure the platform through staking, and provide a basic unit of account between the 

multiple subnets created on Avalanche. One nAVAX is equal to 0.000000001 AVAX. 

Unlike other capped-supply tokens that maintain a constant pace of minting, AVAX is 

meant to respond to changing economic situations. AVAX’s monetary policy aims to 

strike a balance between users’ incentives to stake the token versus utilizing it to interact 

with many services on the platform. 

3.2.2 Decentralized finance (DeFi) 

Decentralized Finance (DeFi) uses the same blockchain technology as 

cryptocurrencies. DeFi is a catch-all word for the cryptocurrency world dedicated to 

creating a new, internet-native financial system, with blockchains replacing existing 

mediators and trust mechanisms. DeFi gives end users the level of transparency, control, 

and accessibility they lack when dealing with centralized finance [117]. Intermediaries 

such as banks or stock exchanges are required in the traditional, centralized financial 

system to transmit or receive money. All parties must trust that intermediaries will behave 

fairly and honestly to have confidence in the transaction. These intermediaries were 

replaced by software in DeFi. People trade directly with one another instead of going via 

banks or stock exchanges, with blockchain-based ‘smart contracts’ (SCs) handling the 

job of creating markets, settling deals, and guaranteeing that the entire process is fair and 

trustworthy. DeFi also comprises loan platforms, prediction markets, options, and 

derivative markets, all of which operate on decentralized blockchain networks. DeFi 

instruments have already processed tens of billions of dollars worth of cryptocurrency, 

and this number is increasing daily [118]. SCs are not available on every blockchain 

platform. Users can write open-source, self-executing code on SC-supporting blockchain 
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platforms to fuel more innovative, trustless transactions. Once SCs are deployed to the 

blockchain, their code cannot be modified anymore, and they continue to operate 

autonomously. These characteristics enable the development of a vast array of 

decentralized applications (DApps) on blockchain networks, with decentralized finance 

(DeFi) constituting a prominent subset. 

3.2.3 Decentralized exchange (DEX) 

A decentralized exchange is an excellent example of the growing suite of DeFi 

applications that allows two interested parties to conduct direct cryptocurrency trades, or 

more precisely, swaps. DEX was designed to address the shortcomings of centralized 

exchange (CEX). Trading cryptocurrencies has always necessitated the use of a 

centralized exchange (CEX). CEXs are administered by a firm or an individual with a 

profit motive. CEXs match cryptocurrency buyers and sellers in an order book, earn from 

the price spread between bids and asks, and commission per transaction. Therefore, they 

function similarly to traditional stock exchanges. However, DEXs are nothing but 

advanced DApps, which consist of professionally written and audited SCs in fact. In 

DEXs, the SCs that are deployed and living on the blockchain are doing most of the jobs, 

such as creating parity, managing parity liquidity pools, and swaps. They constructed P2P 

marketplaces directly on the blockchain, allowing traders to independently maintain and 

manage their assets. Users of such exchanges can conduct cryptocurrency transactions 

directly among themselves, without the need for a third party. 

Ø Pangolin 

The Avalanche Platform’s primary DEX is the Pangolin. It was introduced to the 

Avalanche network in February 2021 as a pre-tried idea for automated market 

makers (AMMs). In its first year, it enabled nearly $10 billion in trade activities. 

Pangolin can trade all tokens minted on the Avalanche and Ethereum platforms 

using the Avalanche Bridge (AB). Pangolin is a community-driven DEX, and its 

entire operation is executed by open-source and audited SCs [119]. 
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3.3 System Description 

3.3.1 Model architecture 

Figure 3.1 illustrates the model architecture used in this study, which comprised 

three VPPs. These VPPs utilize either the Avalanche platform (AVAX-based VPP) or the 

Ethereum Platform (ETH-based VPP) for their intra-VPP trading operations. They trade 

their excess power among each other (inter-VPP) and the grid while taking their optimal 

costs into account. AB takes the stage alongside the Pangolin DEX when transacting 

between different blockchain-based VPPs, and only the Pangolin DEX is used when 

transacting between the same blockchain-based VPPs. AB is used to transfer ERC-20 

tokens from Ethereum to Avalanche’s C-chain and vice versa. Every VPP has its own 

specific token minted on the Avalanche C-chain. Try Energy Token (TRY) is the name 

of the token minted for this purpose. TRY1, TRY2, and TRY3 are the tokens of the VPP1, 

VPP2, and VPP3, respectively. These are minted as per the ERC-20 Fungible Token 

standard using the SC from OpenZeppelin [120]. VPPs price the power they sell with 

their specific token, that is, VPPi sells the power to VPPj with TRYi token, where 𝑖, 𝑗	 ∈

	{1,2,3} and 𝑖 ≠ 𝑗. They used Pangolin DEX for swapping tokens to get other VPP’s 

tokens. The exchange rate/parity between them occurs in the Pangolin according to the 

supply/demand of the tokens in the liquidity pools. In fact, VPPs basically tokenize their 

energy. Thus, VPPs can reach optimum operation with minimum energy cost by trading 

with each other with the tokens. 

 

Figure 3.1 Trading flow between different blockchain-based VPPs. 
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3.3.2 Problem formulation 

The objective function is to minimize the sum of the income and expenses 

associated with all bi-directional energy transfers to and from other VPPs and the grid 

during a given time horizon. When a VPP sells energy to other assets, it receives a profit 

as income. Cost is defined as an expense when it purchases energy from other assets. The 

objective function (Ct) is formulated as written in Equations (3.1) and (3.2). 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	min{𝐶!},  (3.1) 

𝐶! =#$𝑃",!
$%&',()"' ∙ 𝑃𝑅!$%&' − 𝑃",!

*+),,()"' ∙ 𝑃𝑅!
*+),) +

"

#$𝑃",!
$%&',- ∙ 𝛾",! − 𝑃",!

*+),,- ∙ 𝛼-,!)
".-

,  (3.2) 

where 𝑖, 𝑗 ∈ {1,2,3} and 𝑡 ∈ {1,2,3, … , 24} are the indices of VPPs and time, respectively. 

𝑃$,!
&'(),*+$)and 𝑃$,!

,-+.,*+$) represent the power sold to and purchased from the grid at time 

t by VPPi, respectively. 𝑃$,!
&'(),# and 𝑃$,!

,-+.,# denote the power sold to another VPPj and 

that purchased from another VPP at time t, respectively. 𝑃𝑅!&'(), 𝑃𝑅!
,-+., 𝛾$,!, and 𝛼#,! 

indicate the power sell price to the grid, purchase price from the grid, i-th VPP’s selling 

price to the j-th VPP and purchasing price of j-th VPP from i-th VPP at time t, 

respectively. 

For the safe operation of the system, cooperative power balance should be taken 

into consideration as follows: 

𝑃",!$%&' =	#𝑃",!
$%&',- +

".-

𝑃",!
$%&',()"' 	,  (3.3) 
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𝑃",!
*+),,()"' ,  (3.4) 

𝑃",!/ = 	𝑃",!$%&' − 𝑃",!
*+), ,  (3.5) 

𝑃()"',!/ =#𝑃",!
$%&',()"' −

"

𝑃",!
*+),,()"' ,  (3.6) 

#𝑃",!/ + 𝑃()"',!/

"

= 0.  (3.7) 

Equation (3.3) shows the total power sold by the i-th VPP, 𝑃$,!&'(), to other VPPs and 

the grid at time t. Equation (3.4) indicates the total power purchased by the i-th VPP,	

𝑃$,!
,-+., from other VPPs and the grid at time t. The total power exchange of each VPP, 
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𝑃$,!/ , and grid, 𝑃*+$),!/ , at time t are given by Equations (3.5) and (3.6), respectively. The 

power balance equation of all system at time t is formulated by Equation (3.7). 

3.4 Proposed Scheme and Flow 

The scheme and flow are close to the open market, unlike preliminary P2P energy 

trading studies in the literature. The literature review clearly shows that the energy price 

negotiation procedure used for P2P trading so far involves auctions or bidding 

mechanisms. Figure 3.1 shows a general perspective that illustrates the capabilities of this 

scheme. An ETH based VPP as in our previous study, can trade with an AVAX based 

VPP via an ETH-AVAX bridge, for example, AB. When AVAX based VPPs are trading 

among themselves, they only need to use a DEX, for example, Pangolin, to swap their 

tokens. It is known that there will be many different blockchain-based VPPs and 

microgrids operating around. The interoperability and trading ability of these among 

themselves will be more significant than they are now. 

 

 
Figure 3.2 Inter-VPP energy trading workflow. 
 

Figure 3.2 further details this flow. Regarding the energy transfer that occurs 

between VPP1 and VPP2, VPP1 goes to the Pangolin to swap TRY1 for TRY2 tokens 

with the exchange rate at that time. Subsequently, VPPs can choose to add liquidity to 
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Pangolin’s liquidity pool, for example, TRY1/TRY2 if it would be beneficial for their 

own. They buy the required energy with swapped tokens from an SC that acts as 

custodian. Consequently, energy prices can be determined in a supply/demand manner. 

Note that payments are made using the counterpart’s tokens. 

 

3.5 Discussion 

Figure 3.3 shows the daily power profile of each VPP. From this graph, one can 

observe that VPP1 has a power deficiency of 25 KW at the 1st hour, whereas at hour 9, it 

has an excess energy of 68 KW to sell to other VPPs and/or the grid. These 

excess/deficient states of power vary from hour to hour, and from VPP to VPP. The hourly 

electricity price given by the utility is presented in Figure 3.4. The time of use (ToU) 

electricity tariff of $0.21, $0.27, and $0.42 is considered in this study. However, the 

electricity tariff is flat for power injected/sold to the grid, $0.1. 

 
Figure 3.3 Power states of the VPPs during the day (24 h). 
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Figure 3.4 Grid price levels during the day (24 h). 
 

 
Figure 3.5 Energy trading of VPPs. 
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VPP3 met the entire 28.78 kW energy deficit from VPP1, VPP2 purchased 6.07 kW of 

its 31.057 KW energy requirement from VPP1 and completes the rest from the grid. 

Figure 3.6 illustrates the effect of the number of tokens in the pool on the unit price 

of the token. As an example, the variation in VPP1 as a result of transactions between 

VPPs and the grid during a day is shown in the Figure 3.6. Initially, 3.5 AVAX and 1750 

TRY1 liquids were added to the AVAX/TRY1 liquidity pool with equal values for the 

two tokens. The AVAX/TRY1 parity in this case is 500, and the initial unit price of TRY1 

is $0.14. Moreover, the unit price of AVAX is assumed to be $70 throughout the study. 

As VPP1 purchased energy from the grid in the first transaction, 35.24 TRY1 tokens were 

added to the pool, bringing the total amount of TRY1 to 1785.24. In exchange, 

0.0688855630513128 AVAX was removed from the pool to pay the grid, leaving 

3.431114 AVAX in the pool. An increase in the amount of TRY1 in the pool caused the 

unit price to decrease to $0.136832844, while the AVAX/TRY1 parity increased to 

520.3090811. 

 

 
Figure 3.6 Changes in the parities and pools while swapping transactions during 
the day (24 h). 
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$0.124416114. VPP1 sold its excess energy to VPP3, as seen in Figure 3.5 at hour 7; thus, 

a transaction occurred between VPP1 and VPP3. This poll is a non-AVAX pool, which 

is why the liquidity was calculated by observing the price of the VPP3 token in 

comparison to AVAX. Hence, from this exchange between VPP1 and VPP3, VPP3 had 

to pay 28.718 TRY1 to VPP1, which is equal to 0.052080937AVAX. Consequently, 

0.052080937AVAX was added to the pool and 28.718 TRY1 left the pool. At the end of 

this swap, there was a total of 1826.549257 TRY1 and 3.35464422 AVAX in the pool. 

The AVAX/TRY1 parity decreased from 561.7658462 to 544.4837477 and the unit price 

of TRY1 increased from $0.124416114 to $0.126947058. 

Liquidity might be added to the pool at any time during the trading flow. Figure 3.6 

depicts the salient effect of this addition on pool and parity. In the 17th transaction, we 

added 982.7653475 TRY1 and 2 AVAX liquidity to the pool. Therefore, the pool has 

2718.171754 TRY1 and 5.531680093 AVAX with 491.3826737 AVAX/TRY1 and 

0.142455165 TRY1/$ after liquidity addition. This explains the dramatic shift in the 17th 

transaction in the figure. 

Finally, 5.1413 AVAX and 2925.8786 TRY1 remained in the pool owing to the 

transactions conducted over the day. Additionally, the remaining tokens can be observed 

in the Avalanche Fuji test network, as shown in Figure 3.7. Further, the AVAX/TRY1 

parity increased to 569.0857769, with a daily fluctuation of 13.81715% between the 

beginning and end of day. Similarly, the unit price of TRY1 fell to $0.12416 at the end 

of day, declining by 11.31036% owing to an increase in the amount of TRY1 in the pool. 

 
Figure 3.7 Last token balances in the pool. 
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Table 3.1 shows the transactions between the VPPs and grid. These transactions are 

swapping of VPP specific tokens through the Pangolin DEX to trade energy between 

VPPs. G, V1, V2, and V3 represent the grid, VPP1, VPP2, and VPP3, respectively. Every 

column represents transactions occurring between pairs stated in the column head. That 

is, during the 19th hour of the day, VPP1 swapped 57.36531253 TRY1 tokens for AVAX 

to buy energy from the grid. VPP1 again swapped the TRY1 tokens to 1.964588468 TRY2 

tokens to buy energy from VPP2. Finally, VPP3 swapped TRY3 for 24.12165254 TRY2 

tokens to buy energy from VPP2. Therefore, the positive and negative signs in the 

transactions specify the transaction direction. 

Table 3.1 Energy tradings among VPPs. 

Hour 
(h) 

V1 <> G 
[TRY1] 

V2 <> G 
[TRY2] 

V3 <> G 
[TRY3] 

V1 <> V2 
[TRY1/TRY2] 

V1 <> V3 
[TRY1/TRY3] 

V2 <> V3 
[TRY2/TRY3] 

1 -35.24 10.95 5.62 0.00 0.00 0.00 

2 -40.69 11.35 5.85 0.00 0.00 0.00 

3 -39.86 10.27 -8.56 0.00 0.00 0.00 

4 -43.44 10.52 5.68 0.00 0.00 0.00 

5 4.13 0.00 5.08 19.45 0.00 0.00 

6 4.16 0.00 4.96 19.30 0.00 0.00 

7 0.00 -23.08 0.00 8.41 28.72 0.00 

8 10.06 17.50 0.00 0.00 41.37 0.00 

9 8.58 0.00 11.88 56.89 0.00 0.00 

10 -25.76 0.00 14.41 -71.44 0.00 0.00 

11 -110.33 18.08 9.52 0.00 0.00 0.00 

12 8.24 0.00 10.67 57.48 0.00 0.00 

13 12.79 23.40 0.00 0.00 57.79 0.00 

14 0.00 0.00 -47.16 76.33 14.93 0.00 

15 0.00 -52.03 0.00 10.64 36.33 0.00 

16 -48.65 -96.61 0.00 0.00 -52.34 0.00 

17 0.00 0.00 -35.45 50.62 9.90 0.00 

18 3.94 9.17 0.00 0.00 15.85 0.00 

19 -57.37 0.00 0.00 -1.96 0.00 24.12 

20 -11.13 0.00 -20.01 -28.47 0.00 0.00 

21 5.58 14.94 0.00 0.00 25.20 0.00 

22 -30.53 -17.46 -7.23 0.00 0.00 0.00 

23 -42.90 -24.38 -12.80 0.00 0.00 0.00 

24 -36.06 -20.86 -10.78 0.00 0.00 0.00 
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3.6 Conclusions 

In this study, an inter-VPP trading platform scheme and flow were developed to 

achieve efficient, transparent, and economic P2P energy trading between the same or 

different blockchain based VPP frameworks without the supervision of the 

intermediaries. A DEX (Pangolin) running on a public blockchain platform (Avalanche), 

unlike other studies and applications in the extant literature, is utilized for the 

implementation. The primary purpose of this study is to demonstrate the feasibility of 

P2P trading with professional Defi instruments in current use. In line with this purpose, 

the entire flow was tested by making the token swaps via Pangolin and transactions on a 

realistic test network named Fuji of the Avalanche Platform. These transactions were 

performed according to the case study’s MILP-based power optimization model results. 

Obviously, the parity of the tokens against each other is shaped by the initial ratios of the 

pools on the DEX and the supply-demand balance that emerges after the swaps. Graphs 

showing these parity variations of tokens while swapping transactions are crucial and 

justifying outcomes for the proposed scheme. As the focus of this study was on the 

applicability and implementation of inter-VPP trading with DeFi blessings, trading 

advertisement requirements for sellers and buyers are still present in this scheme and 

flow, which can be easily overcome with off-chain solutions. Utilizing software 

controlled by an authority or a decentralized, intermediary-free blockchain structure with 

SCs can be necessary for the purchaser and vendor to peer with each other. This issue, 

intra-VPP optimization, and more technical drawbacks and impacts of DEXs on energy 

trading can be investigated in future studies. 
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Chapter 4 

Deep Learning to Optimize Peer-to-Peer 

Energy Trading via a Decentralized 

Exchange among Virtual Power Plants 

In this study, we propose a novel approach to accelerate the optimization of peer-to-peer 

(P2P) energy trading among Virtual Power Plants (VPPs) by combining Mixed Integer 

Linear Programming (MILP) with Machine/Deep Learning (ML/DL) models. The VPPs 

trade energy with each other through Decentralized Exchanges (DEX), exchanging their 

specific tokens while maintaining a balance between energy supply and demand. The 

MILP optimization problem accounts for DEX swaps and token pair value changes, to 

ensure cost-minimized energy trading. However, solving the optimization problem using 

MILP can be computationally expensive and time-consuming. As a result, we use ML/DL 

models trained on the optimization results to quickly address additional optimization 

problems that arise later in the trading process. Our approach aims to improve the 

scalability and efficiency of P2P energy trading in microgrids, paving the way for a more 

sustainable and decentralized energy system. 

4.1 Introduction 

Distributed generation has been promoted as a reliable alternative to traditional 

forms of generation, owing to rising energy demand and increased awareness of 

sustainability, as well as technological advancements in energy storage and the growth of 

smart grids, including microgrids and virtual power plants (VPPs). Therefore, the current 

old and cumbersome centralized power system is undergoing a significant transformation, 

driven by the increasing development and deployment of microgrids and virtual power 

plants. In addition, distribution grids have been gradually integrating distributed energy 
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resources (DERs) in recent years. Numerous factors contribute to the mentioned 

tendencies:  

• Energy is increasingly strengthening its strategic position in each country [121], 

[122]. 

• Global warming and climate change are becoming apparent worldwide. Thus, the 

tendency to use renewable energy sources (RESs) instead of fossil fuels is 

growing [121]–[123].  

• Recent tragic events around the world demonstrate that governments and regions 

with energy shortages must integrate even more flexible and distributed energy 

solutions into their energy production to avoid relying on other countries and 

regions [121], [122].  

• Residential rooftop photovoltaic panels (PVs), energy storage systems (ESSs), 

heat pumps, and small-scale wind turbines have fostered the number of prosumers 

who have the flexibility to be producers or consumers according to their needs 

[124]–[126]. 

• More electric vehicles (EVs) will be integrated into the grid by citizens, resulting 

in a new type of DER that will soon increase the number of transfers from vehicles 

to the load or grid and vice versa [127]–[129]. 

• The demand for increased power system reliability and flexibility, as well as the 

emergence of new business models that enable the integration of DERs, is 

growing [69], [72], [125], [126], [130]. 

DERs, such as small-scale power generation units and ESSs, have gained popularity 

as they located near the end-user. The adoption of DERs has a substantial impact on the 

energy infrastructure, leading to a decentralized, coordinated, and environmentally 

friendly energy system. The deployment of DERs contributes to power system stability 

and reliability, lowers energy waste, increases energy efficiency, and encourages 

renewable energy production. However, incorporating DERs presents certain challenges, 

including handling bidirectional power flows and integrating novel technologies with the 

existing grid infrastructure. Despite these difficulties, DERs are expected to continue as 

a major driving force behind the transformation of the energy sector [130], [131]. The 

combination of smart grid technologies and DERs creates a mutually beneficial 

relationship. Smart grid technology improves the integration and management of DERs, 

while DERs offer increased flexibility and resilience to the grid. This collaboration results 
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in a more efficient, reliable, and sustainable energy infrastructure that adapts to the 

evolving energy needs of society [132]. Smart grids enhance real-time communication 

between utilities and customers, improving electricity management. Integrating RESs, 

EVs, and ESSs reduces greenhouse gas emissions [133]. Furthermore, smart grids have 

played an important role in laying the groundwork for the emergence of microgrids and 

VPPs. Microgrids can consist of different types of DERs, and they can operate stand-

alone (islanded) or in conjunction with the main grid. Microgrids are frequently utilized 

in isolated places where the main grid is unavailable, or for critical infrastructure such as 

data centers, healthcare, and military facilities [69]. On the other hand, VPPs surfaced in 

the mid-2010s as an innovative way to aggregate and manage DERs through advanced 

software and communication technologies. VPPs create a flexible, cloud-based platform, 

combining diverse DERs into a single, coordinated power plant. This enables real-time 

monitoring and control of DERs, allowing for dynamic energy trading and management 

while also providing ancillary services to the grid, such as frequency regulation and 

voltage control. VPPs signify a considerable step towards decentralized energy 

management, optimizing energy resources and reducing reliance on large, centralized 

power plants [72]. In addition to these breakthroughs, peer-to-peer (P2P) energy trading 

has arisen, enabling prosumers and consumers to directly buy and sell energy without the 

need for a governing body. In line with the decentralized nature of P2P energy trading, 

blockchain technology enables safe and transparent P2P payments. Several research 

studies and technology businesses have rated blockchain-based P2P trading as one of the 

most promising platforms for decentralized energy management systems (EMS) [134]. 

Leveraging the capabilities of optimization, artificial intelligence techniques, namely 

machine learning (ML)/deep learning (DL), and blockchain technologies for energy 

trading can help increase the adoption of RES by making P2P trading more efficient and 

profitable, encouraging consumers to produce and sell excess energy. Furthermore, they 

can help reduce the burden on centralized EMS while providing economic incentives to 

prosumers [126], [133]. 

In this manner, optimization techniques and algorithms are commonly employed in 

P2P energy trading research to improve efficiency and minimize costs. The general goal 

is to determine the optimal set of transactions between peers, considering factors such as 

energy demand and supply, pricing, and the constraints of the energy trading network. By 

optimizing these factors, researchers mostly aim to maximize social welfare and overall 
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profitability for all participants in the P2P energy trading network, ultimately contributing 

to more sustainable and cost-effective energy system.  

For example, in [135], researchers address the problem of optimizing energy costs 

in smart homes connected for energy sharing. They propose a new almost optimal 

algorithm that decomposes their previously proposed optimal model (a non-convex mixed 

integer nonlinear programming model) into multiple Mixed Integer Linear Programming 

(MILP) modules that coordinate P2P energy trading with lower time complexity. 

However, their proposed approach is developed for a centralized architecture (e.g., 

cloud). Yan et al. proposed a two-level network-constrained transactive energy market 

for multi microgrids based on centralized optimization methods, where a market operator 

directly collects all the information and optimizes microgrid DERs. To address privacy 

concerns, only limited information exchanged with the market operator, which is 

sufficient for managing the microgrids but does not compromise their privacy [136]. 

Huang et al. made a P2P electricity trading system based on coalition game theory to 

figure out the trading price based on the minimum total amount of energy used in 

microgrids in different situations. They used MILP model again to find the best price to 

buy and sell energy in a microgrid over a period of 24 hours as real-world constraints 

change [137]. Yet, their research requires a central authority and does not involve any 

decentralized blockchain technology. The study in [138] offers a two-stage P2P energy 

trading model comprised of a local scheduling problem modeled as MILP and a price 

adjustment mechanism for energy trading between microgrids. The model is validated 

through simulation using 24-hour anticipated net load data from seven networked 

microgrids, incorporating their shortfall and excess power that cannot be exchanged with 

the utility grid due to tie-line limitations.  Similarly, a two-stage optimization approach is 

used to determine who participate in P2P trading and the amounts of exchanged energy 

taking the social utility maximization as the objective function at first stage, and then gain 

the optimal trading payoffs in [139]. Likewise, in [140], the authors suggested a novel 

P2P EMS across buildings that takes into account the multi-energy connection of 

electrical power, heating and cooling demands, and micro sources. Other peers' trading 

tactics in P2P energy trading are built up as a parameter optimization problem that can be 

translated into the MILP formulation, and an auxiliary optimization model based on 

maximizing total profit is constructed. Nevertheless, the time and computing complexity 

of such a model and optimization process is not stated. In the study [126], the proposed 

approach utilizes local execution of fuzzy logic and optimization algorithms, avoiding 
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any hindrance to the main computational system. Load and generation scheduling 

methods are provided for various end-users, including residential, commercial, industrial, 

and EV aggregators. Simulation results reveal that the suggested model outperforms a 

traditional power system when applied to a hybrid power system. Using a single server, 

the longest path was 6 minutes and 55 seconds, and the authors expect the time 

complexity to decrease dramatically with parallel computing. 

Also, researchers use distinct types of methods to achieve more robust and faster 

solutions for optimization as in [85], a multi-agent system uses an algorithm based on a 

multi-objective Bat algorithm, Pareto front, and fuzzy decision-making algorithm. The 

paper also includes four case studies to validate and prove that the proposed scheme 

works faster, providing comparisons with other algorithms. In [141], proposed model for 

multi objective optimization is levelized cost of energy and reliability index. These 

benchmarks are considered for optimization to determine the correct sizing of distributed 

energy resources (DERs) and optimum payoff values. The simulation model is built in 

MATLAB software, and the particle swarm optimization is exploited. 

According to the findings of [142], P2P trading in conjunction with Vehicle to 

Home (V2H) offers significant benefits; hence, P2P can serve as a catalyst for increasing 

PV and EV ownership. With the decline of internal combustion engine vehicles and the 

proliferation of EVs, there will be more actors in the energy trading scene. That will 

further complicate P2P energy trading and increase the need for instant and efficient 

optimization approaches [129]. Indeed, in the study [143], researchers aimed to develop 

multi-objective P2P trading optimizations for renewable energy systems with hybrid 

energy storage of hydrogen and battery vehicles to find optimal configurations of vehicle 

numbers in diversified building groups and time-of-use (TOU) management operations, 

for a comprehensive optimization considering the system supply, electricity cost, and 

decarbonization benefits.   

Researchers even investigate how EVs and shiftable loads affect P2P energy trading 

with increased V2H mode and present an optimized EMS to reduce grid energy exchange. 

MILP is used to optimize energy scheduling for community smart dwellings [144]. They 

report that using EVs in trading as storage sources and not only as loads reduces 

prosumer’s costs by 23% and community energy bills by 15%.   

As can be seen from the cited studies, optimization is mostly used to reduce the cost 

of energy trading for peers, but often the computational complexity is not considered. Our 

previous paper also used MILP-based optimization to plan energy transfers between 
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VPPs according to the case study's energy profile to minimize costs [7]. We proposed an 

inter-VPP P2P trading scheme between the same or different blockchain-based VPP 

frameworks without the supervision of intermediaries, taking advantage of the blessings 

of Decentralized Finance (DeFi), especially Decentralized Exchange (DEX). However, 

the main limitation in performing optimizations is the high computational complexity due 

to the nature of mathematical programming, and even in some cases (high number of 

agents/peers) optimizations may not be feasible solutions. 

In this regard, a new approach is needed to make trading scalable, run faster on the 

microcomputers of intelligent trading agents (smart meters and devices needed to realize 

P2P energy trading), and avoid using general optimization techniques that are slow or fail 

in scenarios with multiple actors. The present study puts forward a new approach that 

proposes to use ML/DL models as complementary practices to traditional mathematical 

programming techniques for the optimization of energy trading schedules. The primary 

motivation for this research is to address the high computational complexity and 

occasional infeasibility of optimization solutions using conventional methods. By 

incorporating optimization results into ML/DL models, we aim to mitigate these problems 

while maintaining and even improving the overall efficiency of the system. Ultimately, 

this approach aims to improve the effectiveness of real-time energy trading operations. 

The goal of this study is to highlight the benefits and viability of using ML/DL models to 

optimize P2P energy trading. 

Our proposed approach explores various regression and neural network-based 

models for optimizing P2P energy trading schedules within the context of our previously 

proposed inter-VPP trading scheme utilizing Decentralized Exchanges (DEX) on a public 

blockchain platform. The goal is to determine the practicality of employing ML/DL 

models in P2P trading scenarios and assess their performance compared to traditional 

optimization methods. The main contributions of this study are as follows: 

• We propose a novel approach of utilizing ML/DL models as alternative methods 

to traditional optimization techniques for energy trading schedule optimization in 

P2P energy trading systems. 

• We present the possible practical benefits and computational time improvements 

of using ML/DL models as a complement to P2P energy trading optimization and 

highlight how this approach can reduce computational complexity and improve 

decision-making based on optimization outcomes in energy trading scenarios. 
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• We investigate the use of several regression and neural network-based models and 

evaluate their applicability and effectiveness in DEX-based P2P energy trading 

optimization situations. 

• We compare the accuracy, computation time, and viability of solutions between 

ML/DL models and conventional mathematical programming technique. 

Following the introduction section, which include a literature review as well, 

Section 4.2 furnishes the contextual background information. Section 4.3 presents the 

methodology and proposed approach for optimizing energy transactions between VPPs 

and the grid. Section 4.4 presents our finding and analysis, including the ML/DL models 

utilized and the metrics to measure their performance. Finally, the research will culminate 

in Section 4.5, where we will provide a synopsis of our discoveries and deliberate on 

conceivable future avenues. 

4.2 Background Information  

This section presents a concise overview of the fundamental concepts and 

technologies associated with our research, including Pangolin, the Constant Function 

Market Maker (CFMM) model, Decentralized Exchanges (DEXs), and their relevance 

within the DeFi ecosystem. 

4.2.1 Decentralized exchange (DEX) 

A DEX is a type of DeFi platform that operates on a blockchain network, allowing 

coins and tokens to be swapped directly between users without intermediaries. DEXs 

utilize smart contracts and Automated Market Makers (AMMs) to execute trades, 

providing users with enhanced security, privacy, and ownership over their assets. DEXs 

have gained significant traction within the cryptocurrency ecosystem, providing a more 

inclusive and accessible financial platform for users worldwide. Despite their potential, 

certain challenges remain, and ongoing refinements to their operational mechanisms and 

AMMs are essential for continued growth and stability.  

4.2.2 Pangolin and uniswap 

Pangolin, a DEX developed on the Avalanche blockchain network later supported 

multi-chain, utilizes the Constant Function Market Maker (CFMM) model, which is a 

specific type of AMM. The CFMM model, characterized by a constant product formula 
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that keeps the product of the quantities of the two assets in the pool constant, is also used 

by well-known DEX platforms like Uniswap [145], [146]. As given in Equation (4.1), x 

and y represent the quantities of the two tokens in the pool, and k is a constant. This 

formula ensures that the relative token prices in the pool automatically adjust as trades 

are executed, providing instant liquidity, and minimizing slippage. When someone wants 

to trade token x for token y, they must deposit an equivalent value of both tokens (Δx and 

Δy) into the pool. This changes the values of x and y, but the product k remains the same. 

The new values of x and y are calculated in Equations (4.2) and (4.3). Fees are charges 

imposed on trades to incentivize liquidity providers and sustain the pool. The fee is 

typically a percentage of the transaction value and is distributed among the liquidity 

providers as a reward for their participation. The new exchange rate between token x and 

token y can be determined by dividing the new value of y by the new value of x as given 

in Equation (4.5).  

𝑥 ∗ 𝑦 = 𝑘 (4.1)                                                                                                                                                                                                          

𝑛𝑒𝑤_𝑥 = 𝑥 + ∆𝑥 + 𝑓𝑒𝑒 (4.2) 

𝑛𝑒𝑤_𝑦 =
𝑘

𝑛𝑒𝑤_𝑥 (4.3) 

∆𝑦 = 𝑦 − 𝑛𝑒𝑤_𝑦			 (4.4) 

𝑛𝑒𝑤𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒 =
𝑛𝑒𝑤_𝑦
𝑛𝑒𝑤_𝑥 (4.5) 

In the CFMM model, liquidity pools are created for each trading pair of tokens, and 

users trade against these pools instead of directly with each other. Liquidity providers 

(LPs) supply the pools with assets and receive LP tokens representing their share of the 

pool. These LP tokens can be redeemed for their proportionate share of the pool's assets 

plus any accrued trading fees. 

In our previous paper [7], we proposed an inter-VPP P2P trading scheme that 

leverages the Pangolin DEX. By utilizing the DeFi blessings like bridges, our proposed 

system enables P2P energy trading between same and different blockchain-based VPP 

frameworks without the need for intermediaries, thus reducing costs and improving 

efficiency. 
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In the current study, we further explore the potential of ML/DL techniques as 

complementary or alternative methods for optimizing energy trading schedules in the 

context of the inter-VPP P2P trading scheme. By evaluating the performance of various 

ML models and comparing them with traditional optimization methods, we aim to 

develop more efficient and scalable P2P energy trading systems that can overcome the 

limitations posed by traditional optimization techniques in terms of computational 

complexity and feasibility of solutions. 

4.3 Methodology 

This study aims to achieve optimal energy transactions between three Virtual Power 

Plants (VPPs) and the grid in a system by leveraging blockchain and DeFi. Each VPP 

mints its own specific token on the Avalanche C-chain: TRY1, TRY2, and TRY3 for 

VPP1, VPP2, and VPP3, respectively. These tokens are collectively called Try Energy 

Tokens (TRY). The VPPs sell their excess power to one another or the grid, pricing their 

power using their specific token. The tokenization of energy effectively allows VPPs to 

trade with each other in a decentralized manner, optimizing their operations and 

minimizing energy costs. The exchange rate / parity between the different VPP tokens 

occurs within the Pangolin DEX according to the supply and demand dynamics of the 

tokens in the liquidity pools.  

In this study, we have three pools which are AVAX/TRY1, AVAX/TRY2, and 

AVAX/TRY3. Each of these pools is associated with a different VPPs. At the beginning, 

all three pools contained the same amount of liquidity - specifically, 1000000 tokens and 

7500 AVAX. This means that the initial ratio of tokens to AVAX within each pool was 

133.33 (i.e., each pool contained 133.33 tokens for every 1 AVAX). The initial unit price 

of tokens was $0.15, and for the purpose of this study, we have assumed that the unit price 

of AVAX remains fixed at $20. 

4.3.1 Mixed integer linear programming formulation 

The objective function (Cost) in this study is based on (4.6), where the variables are 

defined as follows: 𝑖	 ∈ 	 {0,1,2,3} is the number of prosumers in the system, 𝑃$#,! is the 

energy to be transferred from prosumer j to prosumer i at time t, and	𝛾#is the unit energy 

price of the prosumer selling the energy.  The purpose of this equation is to minimize the 

total energy cost of the proposed system by optimizing both the energy consumed from 
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the grid and the energy costs associated with transfers between prosumers, while 

accounting for the energy prices of each prosumer and the grid. 

Since a prosumer can either be a seller of energy (i.e., they have excess energy that 

they can sell) or a buyer of energy (i.e., they need more energy than they can produce), 

the variable 𝑢$ in constraint (4.7) is the binary variables that is used to indicate the seller-

buyer status of prosumer: 𝑢$ = 0 indicates that prosumer i is a seller, and  𝑢$ = 1 indicates 

that prosumer i is a buyer. 

 Constraints (4.8) and (4.9) provide the limits on the amount of energy that can be 

transferred between prosumers, 𝑃$#,!, based on their seller-buyer status and the intended 

amount of the selling or purchasing energy,	𝑃$,!0 . Specifically, if prosumer i is a buyer (𝑢$ 

= 1), then the amount of energy they can purchase from prosumer j (where j ≠ i) at time t 

is limited by constraint (4.8). On the other hand, if prosumer i is a seller (𝑢$ = 0), then the 

amount of energy they can sell to prosumer j (where j ≠ i) at time t is limited by constraint 

(4.9).  

The power balance equations are also considered as in constraints (4.10) and (4.11). 

Thus, it can be ensured that the total energy supplied to the system (i.e., the energy 

produced by the prosumers and purchased from the grid) matches the total energy 

consumed by the system (i.e., the energy used by the prosumers). 

 

Minimize																							 𝐶𝑜𝑠𝑡 = 	YY2𝑃$#,! ∙ 𝛾#,!4
#1$$

																														 (4.6)                                                                                                                                                                                                          

          Subject to                     𝑢$ ∈ {0,1}						∀𝑖 (4.7) 

𝑃$#,! ≤	21 − 𝑢$,!4 ∙ 	𝑃$,!0 										∀𝑖, ∀𝑡 (4.8) 

𝑃$#,! 	≥ 	 𝑢$,! ∙ 	𝑃$,!0 											∀𝑖, ∀𝑡 (4.9) 

Y^Y𝑃$#,!
#1$

=	𝑃$,!0 _
$

							∀𝑖, ∀𝑡 (4.10) 

YY2𝑃$#,! +	𝑃#$,!4 = 0							∀𝑖, ∀𝑡
#1$$

 (4.11) 
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4.3.2 Dataset 

The dataset used in this study contains 69,120 rows and was divided into training 

and test sets with an 80:20 ratio. Within the training set, 20% was used for validation. It 

includes historical energy deficiency and surplus data from multiple Virtual Power Plants 

(VPPs) participating in the inter-VPP P2P trading scheme, with eight independent input 

features, including VPP power states, purchase price from the grid, sale price to the grid, 

and price of each token. Regression models were fitted to predict six dependent variables 

corresponding to the amount of energy traded between VPPs and the grid. 

4.3.3 Proposed approach 

As can be seen in the flowchart of the proposed approach in Figure 4.1, for the ML 

regression models, we first need to generate data including input data and corresponding 

targets. To do this, the problem is formulated as a MILP as mentioned above and solved 

with the Coin-or-Branch and Cut (CBC) solver using the PuLP library, an open-source 

linear programming modeler package in Python [147], [148]. The MILP optimization is 

performed based on the input data, then the corresponding targets are obtained as a result 

of the optimization. According to the outputs, it is calculated which peer will send how 

many tokens to which peer in return for the energy cost. After the computation, these 

swaps take place by means of the DEX, which is mathematically modeled and coded in 

Python. The changes in the pools are observed after the transactions and the parities are 

calculated. The changing unit prices of the tokens are then sent to the MILP to form the 

next inputs, and the data is saved to a dataset file. This process continues until the data in 

the file is finished. After the data preparation process, we preprocess the generated dataset 

and create appropriate input and output variables for training and evaluating the ML and 

DL models.  

 

Figure 4.1 Flowchart of the proposed approach. 
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Then, ML regression models used in this study, linear regression (LR), k-nearest 

neighbors (KNN), support vector machine (SVM), and DL methods, are trained by 

providing training data. After the training process is done, test data is given to the fitted 

model and performance metrics often used in regression, R2 score, adjusted R2 score, 

mean absolute error, mean squared error, root mean squared error and explained variance 

score, are calculated to observe how well it predicts. 

4.4 Results and Discussion 

Table 4.1 shows the performance metrics of the used methods. The R2 score, 

adjusted R2 score, and explained variance score are measures of how well the model fits 

the data, with a higher score indicating a better fit. The CNN and LSTM models both 

have the highest scores across all three metrics, suggesting that they fit the data better 

than the other models. The R2 score for the CNN model is 0.99562, which is significantly 

higher than the next highest score of 0.98276 for the DNN model. In comparison, the 

other models had R2 scores ranging from 0.62867 to 0.98276. The adjusted R2 score and 

explained variance score show a similar pattern of results. 

Table 4.1 Performance metrics of the methods used. 
                       Methods 
Metrics Lin. Reg. SVM KNN DNN CNN LSTM 

R2 score 0.62867 0.90923 0.97991 0.98276 0.99562 0.99287 
Adjusted R2 score 0.62848 0.90918 0.97990 0.98275 0.99561 0.99290 
Expl. Variance Score 0.62871 0.90931 0.97992 0.98282 0.99573 0.99290 
Mean Abs. Err. 3.12618 1.07505 0.50927 0.22479 0.22428 0.14487 
Mean Sq. Err. 23.24082 5.59771 1.81509 0.91118 0.23388 0.30271 
Root Mean Sq. Err. 4.73486 2.32120 1.23660 0.93909 0.47436 0.54177 
 

The mean absolute error, mean squared error, and root mean squared error measures 

assess the difference between the predicted values and the actual values, with lower scores 

indicating better performance. Similarly, the CNN and LSTM models have the lowest 

scores across all three metrics, indicating that they have the lowest error rates. While the 

mean squared error for the CNN model is only 0.23388, the biggest score is 23.24082 for 

the linear regression model. The CNN and LSTM models have only mean absolute errors 

of 0.22428 and 0.14487, respectively, while the other models have mean absolute errors 

ranging from 0.50927 to 3.12618. 

To visualize the how the models fit the test data, heat map is used to understand 

better as shown in Figure 4.2. In this map, while Power10 indicates the predicted data by 
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models, Power10* gives the targets of the data. Power10 indicates the amount of power 

transferred from VPP1 to the grid if the value is positive. If the value is negative, it's the 

amount of power transferred from the grid to VPP1. 

 

Table 4.2 shows the training and testing durations for each of the models used in 

the study. The training duration refers to the amount of time it took to train the model on 

the training dataset, while the test duration refers to the amount of time it took to evaluate 

the model on the test dataset. The MILP optimization has no training process and has the 

longest average test time at 377.1281 seconds. The linear regression model has a training 

duration of 0.1403 seconds and a test duration of 0.0312 seconds, while the KNN model 

had a training duration of 1.0277 seconds and a test duration of 1.9820 seconds, making 

them the models with the shortest training and test durations, whereas the SVM, DNN, 

CNN, and LSTM models all have much longer durations. The SVM model has the second 

longest average test duration at 315.5816 seconds, with a training duration of 845.6562 

seconds. The DNN, CNN, and LSTM models all have training durations of over 1000 

seconds, with the LSTM model taking the longest at 3971.2439 seconds. Based on the 

average daily cost, the MILP method has the lowest average daily cost of $223.314 and 

is considered the benchmark for comparing the other methods. The relative change in the 

average daily cost is calculated for each method compared to MILP. The results show 

  Figure 4.2 Performance metrics of the methods used. 
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that the linear regression method has the highest average daily cost of $263.966, which is 

18.20% higher than the MILP method. LSTM has the lowest relative change with a 0.78% 

variation in average daily cost, followed by CNN with a 2.51% variation in cost. KNN 

and DNN show a relative change of 10.10% and 4.95% respectively, while SVM has a 

7.08% relative change in average daily cost compared to MILP. Table 4.3 shows the 

hyperparameters for each of the models used in the study. 

Table 4.2 Training and test duration of the methods used. 
                          Duration 
Methods Training (s) Test (s) Average daily cost ($) Relative 

change (%) 
MILP - 377.1281 223.314 -  
Lin. Reg. 0.1403 0.0312 263.966 18.20 
SVM 845.6562 315.5816 207.501 7.08 
KNN 1.0277 1.9820 245.873 10.10 
DNN 1198.2421 1.3752 234.372 4.95 
CNN 1207.3818 1.2114 228.926 2.51 
LSTM 3971.2439 3.1841 221.669 0.73 

Table 4.3 Hyperparameters of the methods. 
                          Methods 
Hyperparameters DNN CNN LSTM 

Learning rate 0.001 0.001 0.001 
Activation function RELU RELU RELU 
Nu. of hidden layers 2 3 3 
Nu. of units in each layer 32/64 64/128/32 64/128/32 
Optimizer ADAM ADAM ADAM 
Epoch Number 250 250 250 

All study has been simulated and tested using Python 3.9.16 on 64-bit Windows 

based computer with 16 GB of RAM and 2.70 GHz Intel® Core® i7-6820HQ CPU in 

order to resemble a smart agent’s small scale computing power. 

4.5 Conclusion 

In conclusion, this study presents a novel approach to optimizing energy 

transactions between Virtual Power Plants (VPPs) and the grid by leveraging blockchain 

technology, DeFi, and machine learning methods. The results indicate that the proposed 

framework, which combines mixed-integer linear programming (MILP) optimization and 

ML/DL models, can effectively facilitate decentralized energy trading, and minimize 

energy costs for the participating VPPs. 

The study finds that the CNN and LSTM models outperform other methods in terms 

of prediction accuracy and error rates, showcasing their potential for improving the 

efficiency of the decentralized energy trading system. While these models require more 
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time to train, their outperformance in the tests demonstrates their potential for instant live 

usage in the real-world energy market settings. Furthermore, the MILP method is utilized 

as a baseline to compare the average daily cost of energy transactions. It is clear that the 

LSTM model has the least relative change in average daily cost compared to MILP. 

This work also highlights the merits of deploying decentralized platforms like 

Avalanche C-chain and Pangolin DEX to promote fast, secure, and transparent energy 

transactions between VPPs. By tokenizing energy, VPPs can optimize their operations 

and reduce energy costs by trading with each other in a decentralized manner. 

Overall, this work demonstrates a potential technique to optimizing energy 

transactions in a decentralized system and gives useful insights into the use of ML/DL 

models in the energy industry. Future research could concentrate on improving the 

proposed models, addressing scalability concerns, and investigating the integration of this 

approach into existing energy market infrastructure to improve the efficiency, 

transparency, and sustainability of energy transactions. Furthermore, investigating the 

feasibility of using reinforcement learning or other advanced learning techniques to 

adaptively optimize energy trading schemes in response to changing market conditions 

and evolving VPP and prosumer behavior could be beneficial. 
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Chapter 5 

Conclusions and Future Prospects  
 

5.1 Conclusions 

The dissertation provides a thorough examination of the utilization of blockchain-

based platforms in facilitating P2P energy trading within the framework of VPPs. The 

topic under consideration was explored in four distinct chapters, each providing distinct 

perspectives on the obstacles and possibilities inherent in this nascent field of inquiry. 

Chapter 1 presented a comprehensive overview of the research problem and 

contextualized it with relevant background information, highlighting the significance of 

the research in the respective field. It also outlined the research questions and objectives 

of the study, as well as the methodology used to address these questions. 

In chapter 2, a blockchain-based bidding platform and cryptographic testing 

environment for P2P energy trading within the VPP framework were developed. The 

feasibility of using Smart Contracts to facilitate P2P energy trading via auction-based 

bidding mechanisms was demonstrated, and showed how this platform could be used to 

address both cost and security concerns.  

In chapter 3, an inter-VPP trading platform scheme and flow that enables efficient, 

transparent, and economic P2P energy trading between different blockchain-based VPP 

frameworks without intermediaries' supervision were proposed. A DEX (Pangolin) 

running on a public blockchain platform (Avalanche) was utilized to demonstrate the 

feasibility of P2P trading with professional Defi instruments currently in use.  

In chapter 4, blockchain technology, DeFi, and machine learning methods were 

leveraged to optimize energy transactions between VPPs and the grid. The proposed 

framework, which combines mixed-integer linear programming (MILP) optimization and 

ML/DL models, can effectively facilitate decentralized energy trading, and minimize 

energy costs for the participating VPPs. The results indicated that the CNN and LSTM 

models outperformed other methods in terms of prediction accuracy and error rates, 
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showcasing their potential for improving the efficiency of the decentralized energy 

trading system.  

Overall, this thesis provides valuable insights into the potential of blockchain-based 

platforms for P2P energy trading in VPPs. The feasibility of using Smart Contracts, 

DEXs, and ML/DL methods to achieve efficient, transparent, and economic energy 

trading while minimizing energy costs was demonstrated. The work highlights the 

significant role that blockchain technology can play in the transition to a more 

decentralized, sustainable, and efficient energy system. As the field continues to evolve, 

it is expected that the work will inspire new ideas and innovative solutions to further 

enhance the efficiency, transparency, and sustainability of energy transactions in VPPs. 

5.2 Societal Impact and Contribution to Global 

Sustainability 
Reducing greenhouse gas emissions in power generation is central to the positive 

environmental impact of VPPs and P2P energy trading. Even though RESs have 

expanded rapidly in recent years, fossil fuels like coal, oil, and natural gas still accounted 

for about 80% of global energy use in 2021. Increased energy-related greenhouse gas 

emissions have exacerbated the peril of climate change, and our heavy reliance on fossil 

fuels is a significant contributor. VPPs and P2P energy trading provide a promising 

opportunity to more efficiently integrate DERs, specifically RESs, into the power grid, 

thereby reducing reliance on fossil fuels. Blockchain-based P2P energy trading 

applications facilitate transparent energy trading and incentivize greater consumer 

participation in power generation. This transition is essential to mitigate the effects of 

global warming, making VPPs and P2P energy trading instrumental in reducing 

greenhouse gas emissions, particularly CO2, NOx, and SO2. 

P2P energy trading inside and among VPPs can benefit society by bringing clean, 

inexpensive power to populations in underprivileged areas with poor or non-existent 

electricity infrastructure. These regions stand to benefit economically and in terms of 

quality of life if they take use of RESs and encourage local energy generation. Hence, this 

dissertation is strongly aligned with the United Nations (UN) Sustainable Development 

Goal (SDG) 7 and SDG 13, which aim to “ensure access to affordable, reliable, 

sustainable, and modern energy for all” and “take urgent action to combat climate change 

and its impacts,” respectively.  More specifically, this research contributes to targets 7.1 
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and 7.2 of SDG 7. Promoting the integration of RESs and DERs through VPPs and P2P 

energy trading, it supports the expansion of electricity access to underserved populations 

(indicator 7.1.1) and the increased adoption of clean fuels and technologies (indicator 

7.1.2). In addition, it contributes to target 7.2, which seeks to "increase substantially the 

share of renewable energy in the global energy mix" by 2030. Furthermore, it aims to 

promote the integration of renewable energy sources into the global energy landscape by 

developing and showcasing the advantages of P2P energy trading with blockchain 

technologies in supporting the electricity grid. The ultimate objective is to increase the 

proportion of renewable energy in the total final global energy consumption rate. 

In summation, the studies presented in this thesis contribute to global sustainability 

by promoting the efficient integration of renewable energy sources and DERs through 

VPPs and blockchain-based P2P energy trading, reducing greenhouse gas emissions, and 

supporting the UN SDGs. They help shape the future of sustainable, decentralized energy 

systems by investigating innovative methods for energy management and optimization. 

5.3 Future Prospects 

Possible future research directions in this emerging area can be summarized as 

follows:   

• Addressing scalability issues and exploring the integration of these proposed 

approaches into existing energy market infrastructure to further enhance the 

efficiency, transparency, and sustainability of energy transactions. 

• Exploring more technical drawbacks and impacts of DEXs on energy trading and 

investigating intra-VPP optimization through Heuristic Algorithms. 

• Investigating the potential of using reinforcement learning or other more 

sophisticated learning techniques to adaptively optimize energy trading strategies 

in response to changing market conditions and the evolving behavior of VPPs and 

prosumers. 

• Investigating the potential benefits of incorporating off-chain solutions or 

developing novel consensus mechanisms that can improve the scalability and 

security of P2P energy trading systems. 
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