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ABSTRACT 

ACCELERATING COMPUTER ALGORITHMS 

BY USING GPU 

 

Salih Yalçın 

MSc. in Electrical and Computer Engineering 

Advisor: Asst. Prof. Gülay Yalçın Alkan 

  

June 2023 

 

 

Travelling Salesman Problem (TSP) is one of the significant problems in computer 

science which tries to find the shortest path for a salesman who needs to visit a set of 

cities and it involves in many computing problems such as networks, genome analysis, 

logistic etc. Using parallel executing paradigms, especially GPUs, is appealing in order 

to reduce the problem-solving time of TSP. One of the main issues in GPUs is to have 

limited GPU memory which would not be enough for the entire data. Therefore, 

transferring data from host device would reduce the performance in execution time.  

 

In this study, we present a methodology for compressing data to represent cities in the 

TSP so that we include more cities in GPU memory. We implement our methodology in 

Iterated Local Search (ILS) algorithm with 2-opt and show that our implementation 

presents 29% performance improvement compared to the state-of-the-art GPU 

implementation. 

 

Keywords: Travelling Salesman Problem, GPU Programming, 2-opt, CUDA 
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ÖZET 

BİLGİSAYAR ALGORİTMALARININ GPU 

YARDIMI İLE HIZLANDIRILMASI 

Salih Yalçın 

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi: Dr. Öğr. Üyesi Gülay Yalçın Alkan 

 

Haziran 2023 

 

 

Gezgin Satıcı Problemi (TSP), bir dizi şehri ziyaret etmesi gereken bir satıcı için en kısa 

yolu bulmaya çalışan bilgisayar bilimlerinin önemli problemlerinden biridir ve ağlar, 

genom analizi, lojistik vb. gibi birçok hesaplama probleminde yer almaktadır. TSP'nin 

problem çözme süresini azaltmak için paralel yürütme paradigmalarını, özellikle 

GPU'ları kullanmak caziptir. GPU'lardaki ana sorunlardan biri, tüm veriler için yeterli 

olmayacak sınırlı GPU belleğine sahip olmaktır. Bu nedenle, verilerin ana cihazdan 

aktarılması, yürütme süresindeki performansı düşürecektir.  

 

Bu çalışmada, TSP'deki şehirleri temsil etmek için verileri sıkıştırmak için bir metodoloji 

sunuyoruz, böylece GPU belleğine daha fazla şehir dahil ediyoruz. Metodolojimizi 2-opt 

ile Yinelemeli Yerel Arama (ILS) algoritmasında uyguluyoruz ve uygulamamızın son 

teknoloji GPU uygulamasına kıyasla %29 performans artışı sunduğunu gösteriyoruz. 

 

Anahtar kelimeler: Gezgin Satıcı Problemi, GPU Programlama, 2-opt, CUDA 
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Chapter 1 

Introduction 

Travelling Salesman Problem (TSP) is one of the significant problems in computer 

science which tries to find the shortest path for a salesman who needs to start from an 

initial city, visit a set of cities by stopping by at each of them exactly once and return back 

to the initial city at the end [1]. This problem is involved in many real-life issues like 

drilling of printed circuit boards, computer wiring, design of global navigation satellite 

system surveying networks, genome analysis, logistics and many more [2]. Thus, finding 

an optimal solution for a TSP in a feasible amount of time is an essential and also 

challenging concern. 

 

         Travelling Salesman Problem can be represented as finding the Hamiltonian cycle 

in an N-vertices weighted graph (for N cities) in which cities are represented by vertices 

and edges are showing the distances between cities. In addition, if the distances between 

two cities in both directions are identical, the number of solutions is halved and it is called 

as a symmetric TSP which can be expressed by an undirected graph. 

 

         It is trivial that finding the exact solution for TSP with a pure brute force algorithm, 

in which the length of each possible tour is calculated, requires factorial time. Such that, 

for a selected initial city among n cities, there will be n-1 options for the second city and 

n-2 options for the third city and so on. Therefore, TSP is classified as an NP-hard 

problem in which finding the exact solution is not possible in polynomial time [3]. Due 

to the difficulty of finding the exact solution, other problem solving approaches utilizing 

heuristics are implemented to find an acceptable solution in an acceptable time such as 

genetic algorithm, ant algorithm, tabu search, neural network, etc. which are discussed in 

Section 2.1.  

 

         Although several algorithmic methods are implemented to find an optimum solution 

for TSP, it is still time-consuming for an average microprocessor especially when the 

problem size is relatively large like in many real-life applications. In order to reduce the 
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execution time of those algorithms, it is possible to use parallel execution paradigms 

provided in the hardware level such as multiple threads in CPUs, Field Programmable 

Gate Arrays (FPGAs) or Graphical Processing Units (GPUs). Those hardware 

improvements can provide great amount of performance efficiency in the execution time 

which is discussed in Section 2.2 and Section 2.3. 

 

         Graphical Processing Units are used to increase the performance of applications by 

using Data Level Parallelism in which different small execution units operate on different 

portion of the data with the same instruction. GPUs are first developed for graphical 

operations specifically in the game industry in which performance is important, to make 

graphical operations faster. For instance, computation of each pixel in an image is done 

in a different execution unit, a.k.a a processing element in a streaming multi-processor. 

However, due to their data-parallel feature, GPUs have also been used in many different 

areas besides the game industry such as machine learning applications, bioinformatics, 

blockchain applications. Applications can be programmed by using CUDA (Compute 

Unified Device Architecture) [4] to be able to distribute the data parallel sections to the 

processing elements. It is shown that the speedup provided by GPUs can be tremendously 

high since many processing elements operates in parallel while they are more power 

efficient due to the simplicity of processing elements compared to CPUs. For instance, it 

is claimed that Hopper, NVIDIA’s newest GPU architecture, can provide 7x Dynamic 

Programming Performance1 with its new instruction set named DPX. Thus, Hopper DPX 

instructions will speed up optimization algorithms up to 40 times [5]. GPUs are used to 

reduce the execution time of TSP in several studies which is discussed in Section 2.4. 

 

         The memory wall is one of the major limitations of high performance computing, 

especially for highly parallel architectures due to the fact that many computing units are 

requesting data simultaneously. Because GPUs have high execution power and memory 

requirements, their shared memory is also limited, which prevents them from achieving 

a high speed up. In this study, our goal is to provide a methodology for compressing data 

to represent cities in the Traveling Salesman Problem in order to reduce the memory usage 

of GPUs and fit more cities in the shared memory area. To this end, we represent each 

 
1 Dynamic Programming breaks complex problems down to simpler subproblems that are solved 

recursively, therefore, it reduces complexity and time to polynomial scale. 
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city with smaller numbers (i.e. 16-bit numbers) instead of 32-bit integer numbers after 

applying three main steps. First, we shift cities to (0,0) center in the coordinate system to 

avoid big numbers and negative numbers. Second, we find Greatest Common Divisor 

(GCD) for both X and Y coordinates of all cities and divide coordinates of each city to 

those GCD values. Third, we split the entire area into grids and represent each city with 

respect to the base coordinate of the grid. We present the details of our design in Section 

3. Our implementation presents 29% performance improvement compared to [6] the state-

of-the-art GPU implementation of the Travelling Salesman Problem.  

 

         We use Iterated Local Search (ILS) algorithm [7] with 2-opt [8] for solving 

Travelling Salesman Problem in our implementation as in [6]. ILS is an algorithmic 

solution which presents a heuristic to find an acceptable solution for TSP in a shorter 

amount of time. After generating an initial solution, ILS makes a local search on close 

combinations and finds the local minimum value. Then, it perturbates the current local 

minimum value by hoping there is a better configuration with a shorter path in another 

local minimum value. After the perturbation, ILS searches again for the next local 

minimum value in the modified solution. In summary, ILS finds a sequence of locally 

optimal solutions after the initial by iterating on 1) perturbation 2) finding current local 

optimum and it takes the best as the solution for the given TSP. Using k-opt algorithm is 

proposed for the perturbation step. For instance, the 2-opt algorithm basically removes 

two edges from the tour, and reconnects the two new sub tours created. This is often 

referred to as a 2-opt move. There is only one way to reconnect the two sub-tours so that 

the tour remains valid. The 2-opt method returns local minimal in polynomial time [3]. 

We explain the details of ILS and 2-opt algorithm in Section 2.1.1. 

 

The contribution of this study is as following: 

• We present a comprehensive review on hardware methods (i.e. FPGAs, Multi-threads 

and GPUs) used to speed up the TSP solving algorithms. 

• We present a data compression methodology for representing cities to reduce memory 

usage of GPUs 

• We implement our methodology in ILS algorithm with 2-opt and show that our GPU 

implementation, on average, presents 29% performance improvement compared to the 

state-of-art GPU implementation. 
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Chapter 2 

Review on Studies Accelerating TSP 

Solving 

2.1 Algorithm-Based Methods 

TSP (Traveling Salesman Problem) is a widely studied problem in the field of 

optimization. Over the years, many algorithm-based methods have been developed to 

solve this problem. Some of the popular algorithm-based methods are; Ant Colony [9 - 

14], Artificial Bee Colony [15 – 18], Cuckoo Search [12, 19, 20], Differential Evolution 

Algorithm [21], Firefly Algorithm [22], Genetic Algorithm [23 - 29], Particle Swarm 

Optimization [30, 31], Simulated Annealing [32], Tabu Search [33, 34], Water Cycle 

Algorithm [35], and Deep Reinforcement Learning [36]. 

 

         Each of these approaches has benefits and drawbacks. For instance, the Ant Colony 

algorithm is inspired by the behavior of ants and can find a good solution to the TSP 

problem in a relatively short amount of time. 

 

The Genetic Algorithm, on the other hand, mimics the process of natural selection 

and can find an optimal solution to the problem. The Deep Reinforcement Learning 

approach is relatively new and has shown promising results in solving TSP with large-

scale inputs. 

 

Overall, the selection of an algorithm-based method for solving TSP depends on 

various factors such as the size of the problem, the required level of accuracy, the 

available computational resources, and the time constraints. 
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2.1.1 Ant Colony Optimization 

 Ant Colony Optimization (ACO) is a metaheuristic algorithm that has been widely 

used for solving the Traveling Salesman Problem (TSP). ACO is inspired by the behavior 

of real ant colonies, where ants communicate with each other by depositing pheromones 

to mark the shortest path to food sources. In ACO, a similar pheromone-based mechanism 

is used to construct candidate solutions to the TSP. The algorithm iteratively builds a set 

of solutions by simulating the behavior of ants that follow paths with higher pheromone 

levels, while also exploring new paths with a certain probability. 

One of the main advantages of ACO is its ability to produce near-optimal solutions 

within a reasonable time frame, even for large-scale TSP problems. ACO is also able to 

handle asymmetric TSP instances, where distances between cities may be different in 

each direction, whereas other heuristic algorithms such as the 2-opt and 3-opt algorithms 

may not perform as well in such situations. Moreover, ACO can easily incorporate 

domain-specific knowledge such as tour length constraints and precedence relationships 

between cities, making it a flexible and customizable approach to solving the TSP. 

However, ACO also has some drawbacks. The algorithm requires tuning of several 

parameters, such as the pheromone evaporation rate and the probability of choosing a new 

path, which can greatly affect the performance of the algorithm. Moreover, the algorithm 

is sensitive to the initial pheromone values and can easily get trapped in local optima. 

Additionally, ACO is a stochastic algorithm, which means that the quality of the solution 

can vary for each run. 

2.1.2 Artificial Bee Colony 

 

Artificial Bee Colony (ABC) is a nature-inspired algorithm that has gained 

considerable popularity in solving optimization problems, particularly the Traveling 

Salesman Problem (TSP). The algorithm emulates the foraging behavior of honeybees, 

and its effectiveness has been demonstrated in solving TSP instances of varying 

magnitudes. ABC is distinguished by its capacity to effectively balance search space 

exploration and exploitation, rendering it suitable for solving complex optimization 

problems. 
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One of the main benefits of using ABC for TSP is its ability to handle large problem 

instances with high accuracy and fast convergence. Moreover, ABC is a population-based 

algorithm, which allows it to explore multiple solutions simultaneously, improving the 

chances of finding the optimal solution. Additionally, ABC is a parallelizable algorithm, 

making it suitable for implementation on high-performance computing platforms such as 

GPUs. 

 

However, like any optimization algorithm, ABC has some drawbacks that should 

be considered when using it for TSP. One of the main drawbacks is the dependence on 

the initialization of the algorithm's parameters, which can impact the convergence rate 

and quality of the solution. Moreover, the algorithm may get trapped in local optima, 

which can lead to suboptimal solutions. Finally, the implementation of ABC for TSP 

requires careful tuning of the algorithm's parameters, which can be time-consuming. 

 

In summary, ABC is a promising method for solving TSP, offering benefits such as 

the ability to handle large problem instances, parallelization, and exploration of multiple 

solutions. However, it also has some drawbacks related to parameter initialization, local 

optima, and tuning. Overall, ABC can be a useful addition to the toolbox of methods for 

solving TSP, complementing other approaches such as the use of GPUs with CUDA. 

2.1.3 Cuckoo Search 

 

Cuckoo Search (CS) is a metaheuristic algorithm that is inspired by the reproductive 

behavior of cuckoo birds. It has been applied to various optimization problems, including 

the Traveling Salesman Problem (TSP). CS is a population-based algorithm that uses 

Levy flights to explore the search space and has been shown to be effective in finding 

near-optimal solutions for TSP instances of varying sizes. The benefits of CS for TSP 

include its simplicity, ability to handle multiple objectives, and ability to escape local 

optima.  

 

However, the algorithm's main drawbacks include its slow convergence rate and 

sensitivity to its parameters. By considering Cuckoo Search alongside other algorithms 

such as CUDA, one can find the most effective optimization method for TSP. 
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2.1.4 Differential Evolution Algorithm 

 

Differential Evolution (DE) is a population-based optimization algorithm that has 

been applied to various optimization problems, including the Traveling Salesman 

Problem (TSP). DE works by evolving a population of candidate solutions through the 

use of mutation, crossover, and selection operations. DE has shown promising results in 

solving TSP instances of different sizes and complexities, and its performance can be 

further improved by using advanced strategies such as self-adaptation and hybridization 

with other optimization algorithms.  

 

One of the main advantages of DE is its simplicity, which allows for easy 

implementation and parameter tuning.  

 

However, the algorithm may suffer from premature convergence and lack of 

diversity, which can be addressed by adjusting the mutation and crossover rates and using 

suitable selection mechanisms.  

 

Overall, DE is a promising method for solving TSP and can complement other 

optimization techniques such as CUDA-based algorithms. 

2.1.5 Firefly Algorithm 

 

Firefly Algorithm (FA) is a nature-inspired optimization algorithm that has been 

successfully applied to solve complex problems such as the Traveling Salesman Problem 

(TSP). FA simulates the flashing behavior of fireflies and their attraction to brighter ones 

to find optimal solutions. The algorithm's effectiveness in solving TSP is due to its ability 

to handle large search spaces and the presence of multiple local optima. FA has shown 

promising results in minimizing the total distance traveled by the salesman on a given 

TSP instance.  

 

However, FA also has some drawbacks, such as the tendency to converge to 

suboptimal solutions and sensitivity to parameter settings. Despite these limitations, FA 

remains a useful tool for solving TSP and other optimization problems. 
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2.1.6 Genetic Algorithm 

 

Genetic Algorithm (GA) is a heuristic optimization algorithm that simulates the 

natural selection process in genetics. It has been widely used to solve the Traveling 

Salesman Problem (TSP). GA starts by encoding the solutions to the TSP problem as 

chromosomes in a population, where each chromosome represents a potential tour. The 

algorithm then uses various genetic operators, such as mutation, crossover, and selection, 

to evolve the population over successive generations. Through this process, GA aims to 

find the optimal tour with the shortest distance. GA is known for its versatility and ability 

to handle various types of optimization problems, including TSP.  

 

However, the performance of GA is highly dependent on the choice of parameters 

and the initial population. Additionally, it may suffer from the issue of premature 

convergence, which can lead to suboptimal solutions. 

2.1.7 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a well-known metaheuristic optimization 

algorithm inspired by the social behavior of bird flocks and fish schools. PSO has been 

applied to solve various optimization problems including the Traveling Salesman 

Problem (TSP). In PSO, candidate solutions are represented as particles that move in the 

search space based on their personal and global best positions. PSO has demonstrated its 

effectiveness and efficiency in solving TSP instances of different sizes. The main 

advantage of PSO is its ability to quickly converge to a good solution, particularly in high-

dimensional search spaces. 

 

 However, PSO can suffer from premature convergence and can be sensitive to its 

parameters, which can affect its performance. 

2.1.8 Simulated Annealing 

Simulated Annealing (SA) is a popular metaheuristic algorithm that has been 

applied to solve various optimization problems, including the Traveling Salesman 

Problem (TSP). SA mimics the physical annealing process of metals by iteratively 

adjusting the temperature and searching for lower energy states. SA has the advantage of 
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being able to escape local optima and search the global optima, making it a useful method 

for TSP instances of different sizes.  

 

However, SA requires extensive computational resources, as it involves a large 

number of iterations and function evaluations. Additionally, the performance of SA is 

heavily dependent on the initial temperature and cooling rate, which require careful tuning 

to achieve optimal results. Overall, SA is a powerful algorithm for TSP, but it requires 

careful parameter tuning and significant computational resources. 

2.1.9 Tabu Search 

Tabu Search is a well-known metaheuristic algorithm that has been used to solve 

combinatorial optimization problems, including the popular Traveling Salesman Problem 

(TSP). The algorithm works by iteratively exploring a neighborhood of candidate 

solutions, while preventing the search from revisiting recently explored solutions by 

keeping a tabu list. The tabu list is a crucial mechanism that helps Tabu Search avoid 

getting trapped in local optima and guides the search towards better solutions. By 

effectively balancing exploration and exploitation of the search space, Tabu Search has 

proven to be a powerful optimization algorithm for TSP and other challenging problems. 

 

One of the benefits of Tabu Search is its ability to efficiently search through large 

search spaces and to find high-quality solutions. However, Tabu Search has some 

drawbacks, such as the sensitivity of its performance to the choice of tabu tenure and the 

difficulty in determining the stopping criterion. Overall, Tabu Search is a promising 

optimization algorithm that can complement CUDA-based solutions to the TSP, 

particularly when dealing with large-scale instances. 

2.1.10 Water Cycle Algorithm 

Water Cycle Algorithm (WCA) is a novel metaheuristic algorithm inspired by the 

natural process of water cycle. WCA has been applied to solve different optimization 

problems including the Traveling Salesman Problem (TSP). The WCA algorithm is based 

on the movement of water droplets from higher to lower potential energy, which simulates 

the flow of water in the water cycle process. The algorithm is characterized by its ability 

to balance exploration and exploitation, making it suitable for solving complex 

optimization problems like TSP. WCA can handle the constraints of TSP such as visiting 
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all cities only once and returning to the starting point. The benefits of WCA include its 

simplicity, flexibility, and fast convergence rate, while its drawbacks include its 

sensitivity to parameter tuning and premature convergence to sub-optimal solutions. 

2.1.11 Deep Reinforcement Learning 

Deep Reinforcement Learning (DRL) is a relatively new approach to solving 

optimization problems, including the Traveling Salesman Problem (TSP). DRL models 

use neural networks to learn from experience and make decisions that lead to the best 

solution. The advantage of DRL is that it can find optimal solutions without relying on 

heuristics or hand-designed features. Furthermore, DRL can handle complex and large-

scale TSP instances that other methods may struggle with. However, DRL requires a large 

amount of computational resources and a considerable amount of training data to achieve 

high performance. Additionally, DRL is known to suffer from the problem of exploration-

exploitation trade-off, where it may get stuck in sub-optimal solutions or converge to local 

optima. 

 

2.2 Multi-threaded Methods 

In Multi-threaded execution algorithms can be divided into threads using 

programming methods such as OpenMP [37] and PThread [38], and these threads are 

executed in parallel in the hardware. This mechanism is called as Thread Level 

Parallelism in which different threads may have different instruction sequences. During 

the execution, multiple threads can be scheduled to the same core as in Simultaneous 

Multi Threading (SMT) [39] or the threads can be executed in different cores as in Chip 

Multiprocessing (CMP) [40]. While SMT provides benefit of using the same cache area 

for different threads potentially increasing the cache hit performance, it is generally not 

scalable when thread number increases more than 8 threads. According to Amdahl’s Law 

[41], in which it is presented that the minimum execution time can be as low as Sequential 

Execution Time/n when n threads are used, only up to linear speedup can be provided to 

the applications by using multi-threaded execution as long as the same algorithm is 

parallelized and executed with equal amount of resources other than the thread numbers. 

Multi-threaded execution is used to reduce the execution time of TSP in several studies 

as well PThread [42] and OpenMP [43-45]. 
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2.3 FPGA Methods 

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are 

based around a matrix of configurable logic blocks (CLBs) connected via programmable 

interconnects. FPGAs can be reprogrammed to desired application or functionality 

requirements after manufacturing. The FPGA configuration is generally specified using 

a hardware description language (HDL) FPGA is used to increase the performance of TSP 

in FPGA [46, 47]. 

                                                          

2.4 GPU Methods 

Tiling is a technique used in parallel computing to optimize memory usage and 

reduce data movement between shared and global memory in GPUs. The basic idea 

behind tiling is to partition the input data into smaller, more manageable chunks called 

tiles, and process each tile independently in parallel. This reduces the amount of data that 

needs to be stored in shared memory and allows multiple threads to access the same data 

simultaneously, thereby reducing data movement and increasing computation efficiency. 

 

 

 

Figure 2.1 Memory Spaces in GPU 
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Chapter 3 

Our Method: CompreCity 

Graphical Processing Units (GPUs) may provide a substantial speedup due to high 

number of parallel execution units included in GPUs. one of the main limitation hindering 

to achieve highest speedup is the memory requirement of the parallel executions for many 

algorithm. In order reduce the memory access time in GPU, CUDA supports several low-

capacity, high-performance memories to keep the data closer to the execution cores rather 

that accessing DRAM slowly. 

 

         In Figure 2.1, we present memory spaces in GPUs. Global memory is relatively 

slower memory in GPU (it is still faster than DRAM) which can be accessed by all 

running threads as well as the host CPU. Global memory is allocated and deallocated by 

the host by using cudaMalloc, cudaFree, cudaMemcpy and cudaMemset commands. 

Shared Memory is very fast (it can be in the speed of a register) compared to global 

memory and it can be accessed by all the threads in the same block. 

 

         In this study, our goal is; while solving Travelling Salesman Problem in GPU, to be 

able to fit as much data as possible in the GPU memory, possibly in shared memory, so 

that the DRAM access is reduced and the overall performance is improved. To this end, 

we apply three-step comparison to the input file to represent cities with less number of 

bits. In this section, we present these compression steps. 

 

3.1 Using Greatest Common Divisor 

 

In many data analysis and visualization tasks, it is common to encounter datasets 

with varying scales. When dealing with datasets that have coordinates, such as those in 

the Cartesian plane, it can be useful to scale the values to a common scale. One way to 
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achieve this is by using the greatest common divisor (GCD) of the x-coordinates and y 

coordinates. 

 

         The GCD can be calculated using a simple algorithm, and once obtained, it can be 

used to scale the x and y coordinates to a common factor. This ensures that the dataset is 

scaled proportionally, and that the relationships between the points in the dataset are 

preserved. By using the GCD for scaling, it becomes easier to analyze and visualize 

datasets with varying scales, and to compare datasets with one another. 

 

         In our analysis, we followed this approach and computed the GCD of the x-

coordinates and y-coordinates separately for our dataset. We then divided each x-

coordinate and y- coordinate by their respective GCD values. This scaling process 

ensured that our dataset was proportionally scaled, and the relationships between the 

points were preserved. 

 

In Table 3.1, we demonstrate how GCD is applied for a map with five cities. In the 

example, the first table represents the raw data which has the (x,y) coordinates of cities. 

In our compression algorithm, we first find the GCD of all x coordinates and GCD of all 

y coordinates. In the given example both GCDx and GCDy is calculated as 25. Then, each 

x coordinate is divided to GCDx and each y coordinate is divided to GCDy. The values 

after applying gcd is presented in the second table. In the example, in the row data, the 

maximum value for x coordinates was 52000 which can be represented by 19 digits in 

binary while after applying GCD, the new maximum value becomes 20800 which can be 

represented by 15 digits. 

 

In GPU, after applying GCD method to all coordinates, the host needs to pass GCDx 

and GCDy values to GPU together with city coordinates. Note that the overhead GCD 

values is negligable compared to the entire city coordinates. 

 

3.2 Shifting City  
 

Another useful technique for data scaling is shifting. Shifting involves finding the 

minimum x-coordinate and y-coordinate values in a dataset and subtracting them from all 
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the x-coordinates and y-coordinates in the dataset. This process translates the entire 

dataset so that the minimum x-coordinate and y-coordinate values are at the origin of the 

coordinate system. By shifting the dataset in this way, we can create a more standardized 

and consistent dataset that is easier to analyze and compare. 

 

         Instead only the values becomes smaller the entire map shifts in the coordinate 

system to the origin. Also note that the minimum values in the row data can be a negative 

value and shifting helps eliminating negative values in the coordinates and we can use 

unsigned integer to represent cities. 

 

         In our analysis, we applied the shifting technique by computing the minimum x- 

coordinate and y-coordinate values in our dataset and subtracting them from all the x- 

coordinates and y-coordinates. This approach ensured that our dataset was centered at 

the origin of the coordinate system, making it easier to interpret and analyze. By using 

both GCD scaling and shifting techniques, we were able to create a more standardized 

and comparable dataset for our analysis. 

 

         In Table 3.1, in the third table, we showed the data values after applying shift 

operation. In the example, the minimum value for x in the second table was 8155 while 

the minimum value for y was 20277 that subtract those values from the x coordinates and 

y coordinates of all the cities respectively. After the shifting operation, the minimum 

values for x and y coordinates becomes zero. In the example, the maximum x value 

becomes 12645 which can be represented by 14 bits in binary (it was 15 bits in the second 

table) while the maximum value for y becomes 29 which needs only 5 bits which is a 

substantial drop in the data size compared to 15 bits in the second table. 

 

3.3 Splitting Surface to the Grids 
 

In addition to scaling and shifting techniques, another important aspect of data 

preprocessing is the splitting of surfaces into grids. This technique involves dividing a 

surface into a set of smaller regions, or grids, to enable more granular analysis and 

modeling. In our analysis, we split our surface into a set of 16x16 grids, with each grid 

assigned a unique number ranging from 0 to 255, from left to right. To determine the 
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range for each grid, we used a simple formula that divided the difference between the 

maximum and minimum x-coordinate values by 16. 

 

In Figure 3.1, we present an example for representing a city after splitting the 

surface into grids. In the example, we assume that the maximum x value is 4000 and the 

maximum y value is 16000 after the shift operation and we divide the surface into 4x4 

grid for simplicity. The city A, which is located in cell 10, has the coordinates of 2100 

and 10500 in the example. After the splitting operation, we now represent cities with three 

components such as (Xrelative, Yrelative, cell_number). In the example, the base coordinates 

of cell 10 is (2000,8000) which can be calculated as; 

 

(xmax/4 x (int) (10/4), ymax/4 x (10mod4)                               (3.1)  

 

 
Figure 3.1 Example of Splitting to the Grids 

 

 

This approach ensured that each grid covered an equal range of x-coordinate values. 

We applied a similar formula to determine the range for each grid in the y-coordinate 

values. By splitting our surface into grids, we were able to have more scalable and 

compressed data. 

 



16 

 

Overall, we summarized the all the compression steps on Table 3.1 and showed the 

compression results on Figure 3.2. 

Figure 3.2 Maps of Benchmark Cities 

 

Table 3.1 Example Result of Compression Steps 

 

 

 

index x y 

→
𝐺𝐶𝐷

 
 

index x y 

→
𝑆ℎ𝑖𝑓𝑡𝑖𝑛𝑔

 
 

index x y 

1 515725 507650 1 20629 20306 1 12474 29 

2 520000 507650 2 20800 20306 2 12645 29 

3 507725 507650 3 20309 20306 3 12154 29 

4 512000 507650 4 20480 20306 4 12325 29 

5 203875 506925 5 8155 20277 5 0 0 

 GCDx 25  XMIN 8155  XMIN 0 

 GCDy 25  YMIN 20277  YMIN 0 
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3.4 ILS and 2-opt  

ILS is an algorithmic solution which presents a heuristic to find an acceptable 

solution for TSP in a shorter amount of time. After generating an initial solution, ILS 

makes a local search on close combinations and finds the local minimum value. Then, it 

perturbates the current local minimum value by hoping there is a better configuration with 

a shorter path in another local minimum value. After the perturbation, ILS searches again 

for the next local minimum value in the modified solution. 

 

         The key advantage of ILS is that it can quickly find high-quality solutions even for 

large problem instances. Additionally, ILS can easily incorporate various problem 

specific heuristics and constraints to further improve the solution quality. 

 

1. Generate an initial solution s0 

2. Set s = s0 

3. Repeat for a fixed number of iterations or until a stopping criterion is met: 

      - Apply a local search procedure to s to obtain a new solution s′ 

      - Perturb s′ to obtain a new solution s′′ 

      - If the objective function value of s′′ is better than that of s, set s = s′′ 

 

         2-opt, on the other hand, is a local search algorithm that iteratively swaps two edges 

in a TSP tour to obtain a better solution. The basic idea behind 2-opt is that if two edges 

in a tour cross over each other, then swapping the endpoints of one of the edges will result 

in a shorter tour. This process is repeated until no further improvements can be made. 2-

opt is computationally efficient and can often improve the quality of a solution 

significantly. 

 

1. Generate an initial tour T 

2. Set improved = true 

3. Repeat until improved is false: 

      - Set improved = false 

       - For each pair of edges (i, j) and (k, l) such that i, j, k, l are distinct and i ̸ = k and   j  ̸= l: 

           - If d(i, k) + d(j, l) < d(i, j) + d(k, l), reverse the portion of the tour between j and k 

          - Set improved = true 
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         Here, d(i, j) denotes the distance between nodes i and j, and the algorithm 

terminates when no more improvements can be made. We showed 2-opt algorithm in 

Figure 3.3. 

 

         However, it can sometimes get stuck in local optima and fail to find the global 

optimum. To overcome this issue, 2-opt can be combined with ILS or other metaheuristics 

to obtain better results. 

 

Overall, both ILS and 2-opt are effective methods for solving combinatorial 

optimization problems, and their combination can often lead to even better results. 

Figure 3.3 2-opt Algorithm 
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Chapter 4 

Evaluations 

 
In this section, we present our experimental results and demonstrate the results of 

our proposed method in terms of execution time. By applying our compression method, 

we were able to reduce the execution time significantly, as shown in Figure 4.1 and Figure 

4.2. And we compared our results with Reiji Suda and Kamil Rocki [3] at Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Execution Time of TSP with different inputs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Speedup of TSP Instances  
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Table 4.1 Comparing the Host to Device Copy Time 
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Chapter 5 

Conclusions and Future Prospects  
 

5.1 Conclusions 

In this thesis, we focused on the Traveling Salesman Problem (TSP) and proposed 

a solution method that combines the Iterated Local Search (ILS) algorithm with the 2-opt 

heuristic, and utilizes the power of CUDA for parallel computation.  

 

Our objective is to reduce the execution time of the TSP problem using data 

compression techniques. We have observed that the results of the compression method 

vary depending on the size and type of TSP instances. We believe that better results can 

be achieved by using different k-opt algorithms and incorporating deep learning methods 

into our approach. 

 

5.2 Societal Impact and Contribution to Global 

Sustainability  

The Traveling Salesman Problem (TSP) has numerous practical applications in a 

variety of fields. Some examples of practical applications of TSP include: 

 

1. Logistics and Transportation Planning: TSP can be used to optimize delivery 

routes for couriers, packages, and goods. It can also help optimize the scheduling 

of buses, trucks, and other vehicles in public transportation systems. 

2. Manufacturing and Production Planning: TSP can be used to optimize production 

schedules, ensuring that manufacturing processes are streamlined and efficient. 
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3. Circuit Design: TSP can be used to optimize the design of computer chips, 

ensuring that circuits are connected in the most efficient way possible. 

4. DNA Sequencing: TSP can be used to optimize the sequencing of DNA, helping 

to identify genes and genetic mutations. 

5. Computer Network Optimization: TSP can be used to optimize the routing of data 

packets in computer networks, improving network performance and efficiency. 

 

By utilizing CUDA to accelerate TSP solutions, the computational time required to 

solve TSP instances can be reduced by orders of magnitude. This is achieved by 

exploiting the parallel processing power of modern GPUs, which enables a vast number 

of computations to be performed simultaneously. This reduction in computational time 

has significant implications for sustainability efforts. 

 

By optimizing resource allocation and reducing waste, the accelerated TSP solving 

times enabled by CUDA can lead to more efficient routing and scheduling of 

transportation and logistics networks. This can help reduce fuel consumption, lower 

transportation costs, and ultimately contribute to a more sustainable future. Additionally, 

the use of CUDA to accelerate TSP solutions can enable real-time decision-making in 

logistics and transportation planning, which can help reduce congestion and improve the 

overall efficiency of these systems. Therefore, the potential benefits of using CUDA to 

accelerate TSP solutions are numerous, ranging from reducing carbon emissions and 

transportation costs to enhancing the efficiency and sustainability of complex systems in 

various industries. 

 

Overall, the use of CUDA to accelerate TSP solutions is a promising research area 

that has the potential to contribute to the advancement of sustainable resource 

management practices in various fields. 

 

 

5.3 Future Prospects 

The use of CUDA to accelerate TSP solutions has the potential to revolutionize the 

field of combinatorial optimization, with numerous possibilities for further research and 
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development. While the use of 2-opt and ILS algorithms with CUDA has already 

demonstrated significant improvements in computational efficiency, there are many other 

algorithms that could be explored, such as k-opt algorithms.  

 

K-opt algorithms could enable the development of even more sophisticated TSP 

solving techniques that are better suited to complex real-world scenarios. Additionally, 

the integration of machine learning algorithms such as deep learning, graph convnet, and 

reinforcement learning could further enhance the efficiency and effectiveness of TSP 

solving techniques. For example, reinforcement learning could be used to develop 

intelligent algorithms that learn from experience and adapt to changing conditions, while 

graph convnet could enable the analysis of large and complex TSP instances. These 

advanced techniques have the potential to revolutionize the field of TSP solving, with 

applications in logistics and transportation planning, manufacturing and production 

planning, and other areas.  

 

Overall, the future prospects for accelerating TSP with CUDA are vast, and 

continued research in this area is expected to yield significant advances in computational 

efficiency and sustainability. 
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