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ABSTRACT 

CONTROL ALGORITHMS FOR FEEDBACK TRACKING IN 

THE SMALL POPULATION OF HODGIN-HUXLEY 

NEURONS 
 

Zeynep ŞENEL 

MSc. in Electrical and Computer Engineering Department 

Supervisor: Assoc. Prof. Dr. Sergey Borisenok            

August 2018 

 

         The purpose of the thesis is to design powerful mathematical control algorithms 

for the tracking and modeling spiking and bursting behaviors of real biological neurons 

in 4-dimensional dynamical systems. For this aim, 4-dimensional Hodgkin-Huxley’s 

(HH) nonlinear dynamical system including differential equations preferred. Because 

HH model represents a realistic mathematical model for the real neurons and it 

analytically accepted. Applied external current as a control signal initiate stimulating of 

the neuron cells in the neuronal networks serve while the membrane action potentials 

are outputs. We applied two different control methods; speed gradient (SG) of 

Fradkov’s and target attractor (TA) of Kolesnikov’s feedbacks for the modeling and 

controlling spiking and bursting regime that axon membrane potential created by the 

control signal in HH neuron clusters. These algorithms show high effectiveness and 

robustness in the managed HH dynamical neuron system.  

           This study provides generating arbitrary forms of single spikes, train of spikes 

and bursts for chosen cells in the various configurations of HH neuron clusters (linear 

chain and ring-type chain) with the control over a selected element of the network.  

           In this study, developed algorithms applied to epileptiform collective bursting in 

a small cluster of HH neurons for make suppression. 

           The scope of this thesis is to develop new control methods for mathematical 

modeling to control of real neurons and effectively can use in computational 

neuroscience and diagnosis or treatment of neural dysfunctions such as epileptiform or 

abnormal behavior in the HH neuron networks. 

Keywords: Hodgkin-Huxley neuron, speed gradient method, target attractor feedback. 
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ÖZET 

HODGIN-HUXLEY NÖRONLARININ KÜÇÜK 

POPULASYONUNDA GERİ BİLDİRİM İZLEME İÇİN 

KONTROL ALGORİTMALARI 

Zeynep ŞENEL 

Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı, Yüksek Lisans Programı 

Tez Yöneticisi: Doç. Dr. Sergey Borisenok            

Ağustos 2018 

 

         Tezin amacı, 4 boyutlu dinamik sistemlerde gerçek biyolojik nöronların ani 

yükseliş ve fırlama davranışlarının izlenmesi ve modellenmesi için güçlü matematiksel 

kontrol algoritmaları tasarlamaktır. Bu amaçla 4 boyutlu Hodgkin-Huxley (HH) lineer 

olmayan diferansiyel denklemleri içeren dinamik sistem tercih edilir. Çünkü HH modeli 

gerçek nöronlar için gerçekçi bir matematik modeli temsil eder ve analitik olarak kabul 

edilmiştir. Bir kontrol sinyali olarak uygulanan dış akım, nöronal ağlardaki nöron 

hücrelerinin uyarılmasını başlatırken, membran eylem potansiyelleri çıkışlardır. HH 

nöron kümelerindeki kontrol sinyalinin yarattığı akson membran potansiyelinde ani 

yükseliş ve patlama rejiminin modellenmesi ve kontrol edilmesi için Fradkov’un hız 

gradyanı (SG) ve Kolesnikov’un hedef çekicisi (TA) geribildirimleri olmak üzere iki 

tane alternatif kontrol yöntemi kullanılmaktadır. Her iki algoritma da kontrollü HH 

dinamik nöron sisteminde yüksek verimlilik ve sağlamlık gösterir.  

            Bu çalışma, ağın seçilmiş bir unsuru üzerindeki kontrol ile HH nöron 

kümelerinin çeşitli konfigürasyonlarında (doğrusal zincir ve halka tipi zincir)  rastgele 

tek ani yükseliş (spike), bir ani yükseliş dizisi (spike train) ve fırlama (burst) 

formlarının oluşturulmasını sağlamaktadır.  

             Bu çalışmada, geliştirilen algoritmalar küçük bir HH nöron kümesinde epileptik 

yapıdaki toplu fırlamalara baskılama yapmak için uygulanmıştır. 

           Bu tezin amacı, gerçek nöronların kontrolüne yönelik matematiksel modelleme 

için yeni kontrol yöntemlerinin geliştirilmesi ve hesaplamalı nörobilimde ve HH nöron 

ağlarında epileptik yapı veya anormal davranış gibi nöral fonksiyon bozukluklarının 

tanısı veya tedavisinde etkin bir şekilde kullanılabilmesidir. 

Anahtar Kelimeler: Hodgkin-Huxley nöronu, hız gradyan metodu, hedef çekicisi 

geribeslemesi 
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Chapter 1  

Introduction 

1.1 Human brain and importance of its studies 

         The brain is complicated organ as a part of the central nervous system in the 

human body. It is included in the skull as a soft tissue that has 1.4 kilograms weight. 

The brain responsible for processing all signals as consciously or unconsciously comes 

from the body, thought, feelings, memory and learning. Also, muscle activity, secretions 

of the glands, breathing, heart beating and regulation temperature are controlled by the 

brain. 

         The human brain builds from around 10
11

 neurons. The brains create a billion 

different connections continuously thorough our lives. The design and power of the 

connections are unstable so the brains don’t like each other. Memories are stored to 

these changing connections thus our habits learned and personalities shaped. 

 

 

Figure 1.1: Schematic of the brain’s parts [1].  

 

         The brain is constructed of many particular fields that work together: 

 The cortex is the outer layer of brain cells. Thought and volitional movements 

start in this part. 

 The brain stem connected with spinal cord. Its main functions such as sleeping 

and breathing are controlled there. 
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 The basal ganglia are a collection of structures in the middle of the brain. The 

basal ganglia organize information between multiple brain areas. 

 The cerebellum is at the ground and the posterior of the brain. The role of 

cerebellum is balance and coordination. 

 The skull (cranium) protects the brain from external strike. 

 

         The brain is also separated into a few lobes: 

 The frontal lobes are in charge of motor function and judgment and problem 

solving. 

 The parietal lobes organize body position, handwriting and sensation. 

 The temporal lobes responsible for hearing and memory. 

 The occipital lobes include the visual processing system of brain. 

 

         Thus, neuroscience is a flashing topic in the study for doctors, psychologists, and 

scientists. Their works continually progress but many questions are still unanswered. 

They attempt to achieve to learn exact structure of brain and how does it work. At the 

same time, they try to produce a solution to some brain disorders. 

 

1.2 Neurons and their basic properties          

         Neurons are greatly specialized as electrically-excitable cells that are competent to 

make process and transmit neuronal signal. A neuron composes of dendrites, a soma 

(cell body) and axon.  

         Dendrites collect electrical signal from environment and to convey soma. The 

soma is covered by a semi-permeable cell membrane. This membrane has controlled the 

ions input and output from the cell. Presence of these ions differentiation causes the 

electrical charge in the neurons called that resting membrane potential. Action potential 

as an electrical response is produced by the neuron against the coming electrical signal. 

The action potential has propagated through the axon. 
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Figure 1.2: Schematic of a Neuron. Signals are moved through the axon via the action potential [2].  

 

         Action potentials have happened in the excitable cells covered that neurons, 

muscle cells, and endocrine cells. This signal provides that is propagated to 

transmission information through the axon. The formation of action potential is showed 

on Figure 1.3 with stepwise.  

 

 

Figure 1.3: Schematic of Action Potential [3].  

 

         On the Figure 1.3 each step of process with numbered that expressed:  

1. Resting State: At a first time, voltage-gated sodium and potassium channels are 

closed. More negatively charged membrane inside than outside. 

2. Depolarization: When the stimulus reached to the threshold level, action 

potential begins to fire and sodium channels begin to open and sodium Na+ rush 

into the cell. 
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3. Rising phase: The inside of membrane is made more positive with respect to 

outside by more opened sodium channel and still closed potassium channel.  

4. Peak of the action potential: The sodium channels have reached refractory 

stage and more sodium Na
+
 isn’t allowed to enter.  

5. Repolarization: The most sodium channels become inactivated rapidly when 

most potassium channels open that permit to leave of potassium K+, thus inside 

of the membrane moves negative again.   

6. Hyperpolarization: At this point, the sodium channels closed and some 

potassium channels open still so potassium K+ continue to leave the cell that 

become more negative than threshold to membrane..   

1. Resting State: (repeated) When the potassium channels are closed, membrane 

returns resting again [4].  

         The signal is propagated through the axon. From there, signal transmits to the next 

neurons via synapses. Each neuron has hundreds or thousands connect with other 

neurons via small gaps called synapses. The neurotransmitters are released in the 

synapse to provide beginning of action potential for the next neuron. taken from a 

public source [4]. 

 

 

Figure 1.4: The gap called synapse that between two neuron [4]. 

 

         Secretions of neurotransmitter demonstrate this is a chemical transmission at 

synapses. Most synapses contact with target neuron chemically. Chemical transmission 

is slower than electrical. According to the kind of synapse, an coming stimulus leads an 

increase in electrical potential as excitatory synapse or a decrease as inhibitory synapse 

[5].  
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1.3 Modeling and control of neurons 

        Mathematical models of spiking neurons cover entire fields of modern mathematics. 

They are usually written in the form of ordinary differential equations with 

multidimensional formulations. The neuronal networks with spike behaviors have a 

substantial role in different applications of computational neuroscience [6] [7] and 

pattern identification [8]. Biological neurons exhibit a variety of complex dynamic 

behaviors involving differences between steady and spike states at different time scales 

[9] [10] [11]. Differences in the steady and spike systems in real neurons cause bursting 

features to occur and construct the basis for the flow of information by providing 

intercellular communication. 

         Such irregular behavioral mechanisms are also due to the networks between the 

neurons as well as the internal structure of them. In the event of a bursting, one or a 

series of spikes or spikes of train are produced on the axon which an external electric 

current (signal) coming from the neighboring cell to dendrite and stimulated by the data 

processing process of the cell of soma itself. The bursting has generally a chaotic 

dynamic character [12], [13] and is a semi-periodic process. 

          Transitions between bursting and spiking events have been studied experimentally 

for different neurons such as pyloric dilator [14], lateral pyloric [15], midbrain 

dopaminergic [16], striatal and pallidumal [17], pyramidal neurons [18] [19]. Methods 

also include optogenetic regulation [20] and carbon nanotube and single nerve cell 

interface [21] [22] as well as electrical micro stimulus [23]. But, such practical 

approaches require the development of an effective theoretical control algorithm that will 

design the targeted dynamic state of the spiking neuron. 

 

1.4 The goal and topic of the research  

         The topic of proposed study in this thesis is to improve the control algorithm that 

are produce the desired spiking and bursting states of neural networks. 

         The thesis is illustrated through the following outputs: 

• Mathematical Model: The 4-dimensional Hodgkin-Huxley derivative 

system, which shows all the basic features (the design of the spiking under 

the influence of the external current and to put the existence of the 

threshold value for this situation) and dynamic states (the interval between 
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the spiking and the steady state, to obtain of the spiking and the chaotic 

bursting) of the system, is chosen between different mathematical models 

on neurons obtained from experimental data on real cells. 

• Control algorithms for tracking: The proven "Speed Gradient" (SG) 

and "Target Attractor" (Synergetic) feedback methods that effectively 

demonstrate the dynamic modeling of many physical and biological 

phenomena, have been chosen as two different approaches for solving the 

problem. In the phase space, Speed Gradient (SG) is a system control 

algorithm that gently evolves the expected spiking and bursting situation 

to desired value and Target Attractor (TA) algorithm that forces the 

system to go to desired value exponentially. Implementation of two 

different algorithms will provide flexibility in reducing the risks that can 

affect the success of the thesis. 

The two algorithms (SG and TA) used in the study that are stable under 

poor stochastic perturbations [24] [25], it should be reminded that the 

noise under feedback control and the perturbed HH neurons are another 

research topic. 

• Purpose of control: As normally or chaotically production of artificial 

bursting and spiking signals that will not require the reproduction of the 

internal dynamics of the HH neuron model. 

• Establishment of the neural network architecture: The simplest 

networks (straight line, triangle and quadrilateral) that can be installed for 

one or several neuron clusters offer the opportunity to examine the effects 

of communication of the HH pairs over different network structures on 

spiking and bursting signals. 

         Thus, the purpose of the study is not only synchronous pulses created within the 

framework of its own dynamics of the HH neuron, also, it is aimed to direct the 

arbitrarily designed target dynamic state in the Hodgkin-Huxley system with the dynamic 

properties of one or several neurons in the cluster to provide the targeted spiking and 

bursting characteristics of the single neuron. Among the mentioned algorithms, SG and 

TA have been selected because they are the most suitable for this purpose and should be 

available for possible changes such as adding noise and time delay in the future. 
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Chapter 2 

Mathematical Modeling of Real Neurons 

2.1 Mathematical models for biological neurons  
         The countless coupling neurons provide transferring of data in the biological 

nervous network. Neurons have handled all this process by the action potentials. On the 

basis of the important electrical activities as action potentials, various mathematical 

models [26] [27] have been produced to contribute expressing of real neuron behavior 

theoretically. Here, we have chosen to mention most commonly used mathematical 

models for real neurons.  

         2-dimensional Planar Hybrid Spiking model (2-D HS model) which 2 parameters 

constructed to describes the action potential and all ion gates. It was created by reducing 

HH model in the phase space plane. The planar HS model has one voltage and one 

gating variable for make exampling the behavior of conductance based models with 

high-dimensional [28]. That is, the planar HS model is easy and useful model that needs 

to one variable for making the action potential. But there is a disadvantage 2-

dimensional model does not include intermittent regime [29] and damping state [30] in 

continuous time. 

         FitzHugh-Nagumo (FN) model [31] [32], as redefined by Izhikevich [33] [34] and 

others [35] [36] [37] are the most famous neuron models. 

         The dimensionless action potential v and the dimensionless constant w represent 

the ions tunneled through ion gates. The fastest output of the system is the start and end 

of the sudden rise. The electric current I, who stimulates this situation, plays the role of 

the control signal. The function f(v) is usually polynomial. In such a case, the equation 

must be at least a third-order equation to ensure the presence condition of the unique 

limit cycle described in the Poincaré-Bendixson theorem [38]. This cycle is responsible 

for switching between stagnant and sudden ascent conditions. A special case of the HS 

family is that according to the FitzHugh-Nagumo model [31] [32], a is a constant 

greater than zero; 

 

                                                ))(1()( avvvvf                                                      (2.1) 
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         The FitzHugh-Nagumo model is [31] [32] representing to reduce the HH model of 

such spike production at squid giant axons from a 4-dimensional to a 2-dimensional. 

FHN model mimic the rich dynamical behavior of many cell types. Here, v is the neuron 

membrane potential shows slow dynamics, w is a recovery variable correspond to fast 

dynamics close to hyperpolarizing action potential, I is the stimulus current applied 

externally. The model can be described in various forms but is often written in the 

theoretical form; 

 

          

( ) ;

( ) .

dv
f v w I

dt

dw
a bv cw

dt

  

 
                                                       

 

         where f(v) is a polynomial of third degree, a and ,b ,c and are constant parameters 

[39]. The equations represent the behavior of a neuron, the parameters a, b and c are set 

in a certain range [32] [40] [41], and the conventional values are a=0.7, b=0.8, c=3 [42]. 

When the a=b=0 FHN model return to the nonlinear Van der Pol oscillator [31] by 

reduced. 

         This system is also called as the "Bonhoeffer-van der Pol (BVP) oscillator", 

derived from van der Pol equation suggested by FitzHugh [40] and the equivalent 

electrical circuit with tunnel diode by Nagumo [32]. 

 

 

Figure 2.1: Circuit scheme of nerve model with the tunnel-diode from [32]. 

 

 (2.2) 
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         Many theoretical analyses revealed that FHN model is described dynamical nature 

of bursting, it including chaos, bifurcations, circuit design, filtering, noise effect and 

coupling, etc. [28] [43]. 

         Another reduced version of the HH model is a 3D Hindmarsh-Rose (HR) model 

has the dimensionless v(t) potential and two variables (wf(t) and ws(t)) corresponding to 

fast ion channels (sodium and potassium) and slow channel [44]: 

 

                                                  
 .)(

;

;

0

2

23

s
s

f

f

f

wvvsr
dt

dw

wvdc
dt

dw

Iwbvav
dt

dv







                                       

 

          The set of larger than zero constants a, b, c, d is used to identify fast ion channels 

and r is used to identify slow ion channels. The other two variables are empirical and 

are usually s = 4 and v0= - 1.6. 

         An important extension of the planar model is also in the complex domain. The 

modeling of natural objects in this way indicates that the "quantum neuron" has its non-

classical properties (first [45] mentioned) or synaptic quantum tunneling 

neurotransmitters [46] due to the tunneling of ion gates. 

         Models such as cubic-based quantum spiking modeling for neurons [47] are also 

available. The most famous notations in this class are the Josephson junction (JJ) [48] 

[49], which shows advanced dynamics for the connected neuron pair [50]. Quantum 

body control has its own characteristics [51]. Detailed research on the JJ neuron model 

is within the scope of future studies following the current study. In this case, it will be 

possible to make detailed comparisons of spiking and bursting algorithm for the neurons 

at the classical and quantum level. 

         In all of the models discussed above, the current I stimulates the membrane as an 

external control parameter. Typically this control current is of the fixed or simple step 

function type. 

 

 

 (2.3) 
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2.2 Hodgkin-Huxley model: Phenomenological 

background and electrical circuit representation  

         The modeling neural excitability and understanding behavior of neurons have 

been essentially affected by the cornerstone study of Hodgkin and Huxley. They have a 

series of five Journal of physiology articles [26] [52] [53] [54] [55] published in 1952  

these researcher (together with as co-author and their collaborator Bernard Katz,) 

revealed the important features of the ionic conductances of the nerve action potential 

and constructed the nonlinear ordinary differential equations that show the generation 

and propagation of action potentials along an axon. Hodgkin and Huxley have awarded 

to the 1963 Nobel Prize in Physiology and Medicine (they shared with John Eccles) by 

this successful clarification. Hodgkin and Huxley applied new experimental techniques 

for defining membrane features in their first four paper that proving experimental 

achievement while their last paper in the series brought theoretically our modern 

perspective of neural excitability [56]. Thereby, Hodgkin and Huxley model was an 

ideal neuron model system give chance to apply new techniques for tracking the 

problem comprehensively. 

         The neurons’ cytoplasm has a low-resistance covered by membrane has a high-

resistance. As seen in Fig. 2.2, inside and outside of cell membrane have different ionic 

concentrations of solutions. The inside has higher concentration of potassium than 

outside and the outside has higher concentration of sodium than inside. The membrane 

defined by an electrical capacitance. 

 

 

Fig. 2.2: The scheme of the cell membrane and distribution of ions and ionic channels by Hodgkin and 

Huxley [57]. 
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          Additionally, there was a difference of electrical potential caused to membrane 

potential between the outside and the inside of the cell. The membrane potential was not 

enable to measure directly until 1940. These indirect measurements were made only 

with extracellular electrodes get about limited information of membrane potential. But, 

Hodgkin and Curtis accomplished to direct measurement of membrane potential (Vm) 

thorough the squid giant axon via a glass micropipette (Fig. 2.4A). The squid giant axon 

ultimately has served to their works. It allows comfortable preparation for the 

experiments with an extraordinarily large axon has 1mm in diameter, 100 to 1000 times 

larger than mammalian axons, and minimal conductance[58] [59]. 

 

 

Figure 2.3: Diagram of a squid, showing the location of its giant nerve cells [60]. 

 

         Finally, both Hodgkin and Curtis other collaborators [61] [62] have been 

successful and they noticed both the membrane potential (Vm) goes temporarily toward 

zero [63], also there was a considerable overshoot (Fig. 2.4B). 
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Figure 2.4: Scheme of direct measurements of electrical potential in squid giant axon. (A) Capillary tube 

was filled with sea water has been carefully pushed down axon and serves as electrode to measure 

potential difference across membrane. (B) Membrane voltage Vm (in mV) during action potential. Time 

indicated by 500 Hz sine wave on oscilloscope screen [59]. 

 

         During the action potential, the proposed essential experimental techniques that 

are: the space clamp and the voltage clamp techniques to analyze of the membrane 

alteration.  

 Space Clamp Technique 

         Marmont and Cole worked on the space clamp technique to continue a uniform 

spatial distribution of membrane voltage (Vm) of the cell by inserting a long thin 

stimulation electrode into the axon and the other metal cylindrical electrode outside the 

axon [64] [65]. Thus the potential can only change with diameter of axis and radial 

currents. As a result, all membrane elements are in a harmony. [59] [66] [67].  

 

 

Figure 2.5: Marmont's space clamp with lateral guard electrodes: Diagram of squid axon and electrode 

arrangement for membrane controls. The axon passed along holes in the shaded insulating partitions. The 

central outside spiral electrode, for current and potential measurement, was between similar guard 

electrodes. The internal electrode, solid line, was inserted from the right to lie in the center of the axon 

[67]. 
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 Voltage Clamp Technique 

         Kenneth Cole and partners also developed the voltage clamp technique to set 

holding membrane potential at any desired level in the 1940s. They using two couples 

of electrodes that one provided to measurement of the voltage with a microelectrode 

placed inside the cell against the membrane and the other is provided to insert current to 

clamp the desired voltage. Thus, this technique can demonstrate how membrane 

potential effects ionic current flow across the membrane [59] [60] [68].  

 

 

 

Figure 2.6: Voltage clamp technique for studying membrane currents of a squid axon [60]. 

 

         Hodgkin and Huxley determined various individual ionic currents using the above 

techniques [66]. 

 

Electrical Equivalent Circuit  

         Basic idea of the HH model is to define nerve membrane with the electrical 

features as an equivalent circuit form seen from in Fig. 2.7. The equivalent circuit of 

HH model is including important three ionic currents as a sodium current INa, a 

potassium current IK, and remaining ionic currents accumulated in a small leakage 

current IL which is mainly moved by chloride ions. 
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Figure 2.7: Electrical equivalent circuit suggested by Hodgkin and Huxley for a squid giant axon. The 

voltage-dependent conductances represented by the variable resistances.[55]. 

 

         where Cm is a capacitor represent to the capacitive property of the cell membrane, 

Vm denotes the membrane potential, sum of INa, IK, and IL represents the net ionic 

current that flows against the membrane, and I is an applied current externally. 

         The behavior of the electrical circuit was defined by a set of differential equation 

[59] shown in next sub-chapter (2.3). 

 

2.3 Differential equations about HH model  

         Hodgkin and Huxley was produced a suitable model for a single neuron in 1952 

and received the 1963 Nobel Prize for Medicine. The model contains four independent 

variables: one of them represents the action potential and three parameters stand for the 

probabilities of the opening and closing membrane ion gates. In the 4-dimensional case, 

the HH model, including steady and damping of spiking, has been redefined to gate 

variables in the literature [69] and showed the variation of neuron dynamics in normal 

and chaotic states [70] [71] [72] [73] [74]. 
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         The set of differential equations given by the HH model [26]: 
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         Here the membrane potential represented by v(t) while m(t), n(t), h(t) are stand for 

the membrane gate variables, and I(t) serves as the control signal is demonstrated by the 

total amount of currents coming to the neuron that are externally and synaptically.                 

Here αm,n,h and βm,n,h are fenomenologically created convenient rate positive constant 

link to the gate probabilities, they are written as follow:  
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 (2.4a) 

 (2.4b) 

 (2.4c) 

 (2.5) 
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         The set of constants in Eq. (2.4) includes the potentials ENa (equilibrium potential 

at which the net flow of Na ions is zero), EK (equilibrium potential at which the net flow 

of K ions is zero), ECl (equilibrium potential at which leakage is zero) in mV, the 

membrane capacitance CM and the conductivities gNa (sodium channel conductivity), gK 

(potassium channel conductivity), gCl (leakage channel conductivity) in mS/cm
2
: 

 

                                                          
,36.10;3.0

;12;36

;115;120
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         Descriptions of variables and constants are given in Table 2.1. 

 

Table 2.1: Variables and coefficients according to Hodgkin-Huxley dynamic model. 

 

         Dynamics of Hodgkin-Huxley neurons have diversity of regular and chaotic 

regimes [70] [71] [72] [74]. It covers the resting-and-spiking intermittency because of it 

is 4-dimentional.   

         Some properties of the HH model Eqs. (2.4) ; (2.6) that reflects real behaviors of 

biological neurons in a realistic way are given below:   

a) Without any external current I as a stimulation, neurons can’t generation to 

spike;    

b) I should be at least a threshold level [75], for example HH neuron can produce 

spike when applied the stimulation even with a constant current, but the current 

have to be larger than a possible minimum threshold level. 

VARIABLES 

v(t) Membran potential; dynamic variable 

m(t), n(t), 

h(t) 

Membran gate variables; dynamic variables 

I(t) Total amount of currents coming to the neuron that are externally and 

synaptically; Control signal 

CONSTANTS 

ENa When the net current of sodium (Na) ions is zero, the equilibrium potential 

EK When the net current of  potassium (K) ions is zero, the equilibrium potential 

ECl When the leakage current is zero, the equilibrium potential 

CM Membrane resistance 

gNa Sodium channel conductance 

gK Potassium channel conductance 

gCl Leakage channel conductance 

α, βm, n, h Suitable coefficients found empirically  

 (2.6) 
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         When the control algorithms applied to the single control parameter I(t) gives 

opportunity to regeneration the different dynamical regimes in the model Eqs. (2.4) ; 

(2.6).          

         But in the HH neuron network, it is possible to produce spiking conditions in 

common with an external signal below the threshold [76] [77]. 

 

2.4 Basic nonlinear dynamical properties of HH 

neuron 

         The Hodgkin–Huxley equations [26] obtained from experiments of a squid giant 

axon. These simply dynamical equations come from the electric circuit demonstrated in 

Fig. 2.7 and are defined in Eqs. (2.4-2.6). V (mV) is the membrane potential. The 

equation Eq. (2.4a) clearly indicates the Kirchhoff’s law. INa and IK currents flow 

through Na
+
 and K

+
 channels, respectively. The current IL is the leak current that 

represents all residue currents, mostly comes from Cl
-
 ions, along a cell membrane 

except for Na
+
 and K

+
 currents. INa is expressed by gNam

3
h.(v-ENa) which comes from 

(Conductance × Voltage) that is Ohm’s law. The voltage ENa is denoted by the Nernst 

potential or the resting potential or equilibrium potential of Na
+
 ion. It shows the 

equilibrium potential when the net current of sodium (Na) ions is zero. Also EK and EL 

represent to the equilibrium potential when the net current of sodium (K) ions and 

leakage is zero respectively. When the membrane is permeable with different degrees to 

more than one ionic species, to calculate the steady state potential used the Nernst 

Equation that produced by D.Goldman. but it named the Goldman-Hodgkin-Katz 

equation has applied widely. Where the reference rest potential is given:  
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         For the K
+
 current IK, the description of n

4
 represent the temporal change of K

+
 

channel conductance. The gate variables that dimensionless term m, n and h take a value 

between zero and one. 

 

 

Fig. 2.8: Diagrams explaining the gate dynamics [57].  

 

         On the left side of Fig. 2.8, it is assumed that Na
+
 channel has three m-gates and 

single h-gate while K
+
 channel has four n-gates. In the HH model, it is also assumed 

that the probabilities of gates open state defined by variables m, n and h. The rate 

constants defined by Eq. (2.4b) adjust the dynamic of opening and closing process of 

gates. As seen from the right side of Fig. 2.8, as one of the rate constant is αm(v) 

provides close to switch open state, while another rate constant is βm(v) serve as a 

switch from open to close state. Actually these rate constants αm(v) and βm(v) are not 

constant, they are functions based on membrane potential (v) described by Eq. (2.5). 

Activation variables is m and inactivation variables is n for Na
+
 ionic channel while n 

the activation variable for K
+
 channel. Because of this reason m and n are the increasing 

functions of v whereas h the decreasing one. I (µA cm-2) is applied current as a constant 

externally to a neuron [57]. 

 

2.5 Conclusion: Controllability of HH model 

         There are crucial reasons in we chose the 4-dimensional Hodgkin-Huxley ordinary 

differential system among the diversity of mathematical models for biological neurons. 

Firstly, HH model reflects behavior of real cells because it has been 

phenomenologically derived from the experiments with real biological excitability cells 

also indicates all basic features (spiking under external electrical current stimulation, 

existence of a threshold for spiking regime) and dynamical regimes (intermittency of 

spiking and resting, generation of spike trains, chaotic bursting) of a biological neuron.  

βm,n,h(v) 

αm,n,h(v) 
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         The HH model has a free control parameter, the external signal I, and it is well-

designed for the application of different control algorithms, that will be discussed in 

Chapter 3.1, especially in speed gradient (SG) and target attractor (TA) feedback forms 

for 4-dimensional Hodgkin-Huxley neurons and their clusters. The study of basic 

cluster configurations for HH neuronal network with controlled elements provides an 

effective tool for driving collective neuron bursting and serves as the most natural 

computational neuroscience model for real neuronal networks. 
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Chapter 3 

Tracking Algorithms for Single HH 

Neuron 

3.1 Basic control algorithms for neuron models 

         Biological dynamical systems have mostly multidimensional, nonlinear, 

hierarchical, and noisy features that demand; fixed-point control (maintenance of 

posture, homeostatic control), control of rhythmic movements (locomotion, respiratory 

control), control of rhythmic processes (circadian activation, oscillatory neural activity). 

Commonly control theory in all areas have potential application to biological neural and 

motor systems, covering feedback control; prediction and control of nonlinear systems; 

geometric control; optimization-based control; stability analysis; model description and 

parameter prediction; estimation model control; detectability and controllability in the 

networks; and stochastic control. Simultaneously, control theory is stretched by the 

biological control problems with new directions. It often deals with negative feedback 

control (i.e. homeostasis) while neuromodulation may work the cooperation of different 

positive and negative feedbacks. Furthermore, neural and motor systems may consider 

robustness over optimality. Nonlinear control theory in limit cycle and alternative 

rhythmic dynamics need to develop according to linear systems and other shapes of 

dynamics [78].  

         In recent time some theoretical control about single neurons [79] [80] [81] [82] 

and neural clusters [83] [84] [85] have been increased. Additional theoretical studies 

including optimal control theory to make control inputs that stimulated target spike 

designs with small energy stimuli applying electrical current in single neurons [80] and 

neuron populations [81]. Mostly basic models of spiking neural networks [86] are used 

to similar way powerful computational systems for optimal control and multilinear 

feedback [87] is used by paired oscillator for individually controlling. Roughly 

gathering proof propose that in neurons synchronized oscillatory abnormalities can play 

a role in some brain disease [88] like epilepsy. Beside control of spiking neurons 

closed-loop optogenetic control [89] [90] for direct goal as oscillations may give 

considerable results [91]. 
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         In recent work [92], the problem of coupled Hodgkin-Huxley phase neurons are 

described with a single limited input. To find a minimum energy desynchronizing is 

important for the control. Another various works considered potential desynchronizing 

for the pathologically synchronized neurons in a population [93] [94]. A number of 

event-based optimal control theory is considered for single neuron level by [80] [95] 

[96] [97] [98] [99]. Also [100] have considered inter-spike-interval control problem for 

minimum and maximum possible time as a limited input on phase models of neurons 

[101]. 

         The majority of the feed-forward control algorithms have been applied to related 

spike trains (ST) have constant amplitudes related neuron models with variation over 

the between spike time and number of spike in series. For example, amplitude-

constrained, an ideal control scheme have control current consisting of triangle spike 

[81] and an alternative to this that one-dimensional, simplified, reduced model analysis 

[100], a reverse control with added delay on spike trains [86] and finally said that spike 

train model that predicts the spikes in the living body [102]. 

         The feedback (closed-loop) approach is used experimentally to stimulate non-

monotonic firing response in certain situations. A completely different approach was 

applied in [103], which is a nonlinear control signal designed with the fuzzy 

interpolation method for HH neurons. The steps are as follows: 

 Interpolation of linear stochastic systems, 

 To approach nonlinear stochastic HH dynamics using interpolation, 

 The method of restoring the control signal from the linear matrix inequality 

[103], (the MATLAB power control toolbox was used). 

         The most powerful aspect of such an approach is that it offers the opportunity to 

overcome the challenges comes from reference-tracking control designed with time-

delaying and external noise [104]. The other side, missing aspect of approach is 

relatively complicated and it is a very time consuming process in numerical analysis. 

         Thus, as expected, the feedback algorithm set proved to be a more efficient tool 

for designing arbitrary target outputs. On the other hand, most of the described closed-

loop algorithms often deal with two-dimensional differential models of biological 

neurons and have common handicaps those set points and have limited "attractor" sets 

such as limit loops [105]. Chaotic situations are not included in this planar set. 

         The vast majority of publications have concentrated on synchronization with 

control of spike train and bursts from single neurons. The methods used to achieve such 
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synchronization include both an open-loop controlled by an external time-periodic 

signal [106] and closed-loop control. Feedback is usually presented in two simple ways: 

 phase and frequency locking [107] [108]; 

 linear [93] [109] [110] [111] [112] or nonlinear, non-adaptive time-delayed 

feedback [113] [114]. 

         In particular, it is necessary to mention the synchronous algorithm set from the 

non-linear stability error signal, which acts as an observer [115]. Time delay correction 

is the most efficient [116]. The delayed speed gradient method was applied in 

synchrony with FitzHugh-Nagumo neuron pairs [117]. Although the method works very 

efficiently, the proposed approach to control the properties of the inter-neuron 

connections is far from realistic (in reality the connections between neurons are not 

symmetrical). 

         Other time-delayed planar models are also found in the literature: Wilson-Cowan 

neuron network [118], the effect of the stochastic resonance of time delay on planar 

neuron networks [119]. The control methods mentioned above have been applied to: 

 The Plank models [93] [106] [107] [109] [112] [113] [120] [121]; 

 The three dimensional Hindmarsh-Rose neurons [111] [114] [122] [123]; 

 The medium spiny neuron model [124]. 

         Simple time-delay synchronization has also been studied for alternative three-

dimensional Leech-Heart inter-neurons [125]. Arnold phase lock is given in the 

superposition of the control current inputs for the j-th HH neuron connected to N 

neighbors in the synchronization of HH neuron pairs [126]:  

 

                                 

,)()(
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                                           (3.1) 

 

         Match force ω, neighboring matrix element ajk, k-th neuron action potential is vk, 

j-th neuron ligand receptor fraction rk(t); because of r(t) is a tuned non-linear function, 

the control is not adaptive [126] and the required diversity of dynamic states cannot be 

produced efficiently.  

         The linear structures of the block-diagram feedback for the synchronization of the 

HH neuron are filtered by two-stage state control [127] and second linear estimator 

(Kaman filter), filters [128] or erosion filters [129] [130]. 
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         Although the effectiveness of the methods have been outlined above we must 

point out here that the goal of this thesis is not just to synchronize pulses designed in the 

frame of HH neuron’s own dynamics. We want to force the arbitrary constructed goal 

dynamical regime on the Hodgkin-Huxley system to provide the aimed spiking or 

bursting of a single HH neuron and, then, a collective spiking of their clusters by 

manipulating with dynamical features of one (or few) given neuron from the cluster. 

Among the proposed algorithms SG and TA seem to be the most convenient for this 

goal, they also simply facilitate the further development like covered noisy components 

and time delay. 

 

3.2 Speed Gradient algorithm 

         The speed-gradient (SG) algorithm is a competent method to solve a variety of 

nonlinear and adaptive estimation and control problems for physical and mechanical 

systems  [131] [132] [133] [134]. The speed gradient (SG) algorithm is based on the 

definition of the scalar target function [135] [136] that a single neuron with an action 

potential can be defined as: 
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         Here, v(t) is the actual action potential in the system while v*(t) is a target potential 

should have a shape of a properly differentiable function. 

 

         The purpose of feedback control is achieved when the target function G go to the 

zero. As a given time-dependent function, the specific target that track the target 

membrane potential v* is called tracking. Let's take the time derivative of Eq. (3.2): 
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         The derivative dv / dt  , includes the control signal I along the right side of the Eq. 

(2.4) corresponding to the dynamic system. The algorithm defines the feedback control 

in the form of a gradient in the control signal field.   In the case of a single neuron, the 
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driving current I is converted to a partial derivative due to the 1-dimensional character 

of I: 

 

                      I
I




 SG                                 (3.4) 

 

         Here γ is a positive constant, denoted by Eq. (2.4): 
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         Along with the system Eq. (2.4), the SG control algorithm Eq. (3.5) directs the 

evolution of the dynamic system to the attractor manifold defined by the target function 

Eq. (3.2). 

 

3.3 Target Attractor algorithm 

         The target attractor algorithm ("synergetic control" in the author's terminology) is 

based on "directed self-organization of the dynamic system". Synergetic control (SC) 

applied to equations of nonlinear, multidimensional, multiply linked dynamical systems 

for solving. Synergetic control theory have used successfully in many nonlinear 

technical objects like that flying apparatus, turbo generators, robots, electric drives, 

technological aggregates etc. and in the ecology, biotechnology etc. for control of the 

complex problems [137]. SC optimizes the behavior of systems such as bifurcations and 

phase transitions, unwanted and dangerous attractors in their state space, non-

uniqueness of the solution of control task, etc. SC provides to construct objective 

control rules, for the advanced mathematical models without using the linearization 

processes or other simplifications. m-parametric attracting invariant manifold (subset 

specifying control target): 

 

                  msxx ns ...1;0),...,( 1                             (3.6) 

 

         x1,…,xn are defined as a function of the state variables. Eq. (3.6) provide 

asymptotic stability of the system dynamics according to the control objective. To do 

this, we would like to perform the following optimizer functions: 
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         Here Ts, is a positive constant (time scales). To obtain a minimum Eq. (3.7) in 

exponential asymptotics, we define "synergetic" feedback as a series of equations for s 

for the observers[138]: 
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                                                      (3.8) 

 

         Observers tend to zero Eq. (3.6), directs the dynamic development of the system to 

the attractive targets Eq. (3.8). 

 

         We applied a target attractive feedback algorithm for the membrane potential v(t). 

We define the target function for its following: 

 

                            )()()( * tvtvt                                              (3.9) 

 

         with a given target potential v*(t). The "synergetic" feedback in the exponential 

form Eq. (3.8) is given by: 

 

                                              





dt

d
T

                                                                 (3.10) 

 

         with a positive control constant T. This cause to: 
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         After the control signal I has been put in place Eq. (3.11), it is brought from the 

right side of the dynamic system to its previous state Eq. (2.4): 
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        (3.12) 

 

         Equation (3.12), along with system Eq. (2.4), refers to the target action potential 

v* in the followed by the driven neuron. 
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3.4 Numerical simulations  

         The tracking difference for the two algorithms is presented for the target signal v* 

in Figure 3.1: 

 

       
*

13
( ) cos 3cos( 5 2) 3cos( 7 0.5) cos( 1) 0.3cos 5 .

21
v t t t t t t Vrest
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        (3.13) 

 

         The typical scale of the target function Eq. (3.13) reflects the properties of real 

neurons. The control constants for SG and TA algorithms were chosen respectively as 

gamma γ=30 and 1/T=1/30. 

 

  

 

Figure 3.1: Tracking for the linear superposition of harmonics Eq. (3.13).The target potential v*(t) is 

denoted by red color, the actual action potential v(t) – by blue color. Left: speed gradient algorithm; 

Right: target attractor algorithm. 

 

        At the points with the highest absolute value of the target potential derivative TA 

algorithm follows the target potential better than SG method. 
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         Here is the control parameter as current I(t); 

 

  

 

Figure 3.2: Control parameter current as I(t)  for the tracking goal Eq. (3.13). Left: speed gradient 

algorithm; Right: target attractor algorithm. 

     

         On Figure 3.3 the tracking is performed for the combination of a burst-type 

function and the train of three Gaussian-shaped spikes:  
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         They correspond to a combination of bursting and spiking behavior in the real 

neuron. The control constants for SG and TA algorithms were chosen respectively as 

gamma γ=30 and 1/T=1/30. 

 

  

 

Figure 3.3: Tracking for the burst-type pulse and the spike train Eq. (3.14).The target potential v*(t) is 

denoted by red color, the actual action potential v(t) – by blue color. Left: speed gradient algorithm; 

Right: target attractor algorithm. 

 

         It is easy to see that the speed gradient algorithm can model the random shape of 

the target potential, but there may be a systematic error between the actual action 

potential (blue color in Figures 3.1 and 3.3) and the target (red color in Figures 3.1 and 

3.3). The target attractor algorithm does not indicate these features. Almost it tracked 

one to one desired potential in Figures (3.1 and 3.3). 
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3.5 Tracking error of control 

      The goal achievement of the tracking is evaluated by the error function: 

 

                                                   
.)()()( * tvtvte 
                                           (3.15) 

 

         The errors are plotted for the target functions Eq. (3.13) and Eq. (3.14) on Figure 

3.4. 

 

  

 

Figure 3.4: Error of tracking e(t) for speed gradient (green) and target attractor (black) algorithms. Left: 

the linear superposition of harmonics Eq. (3.13); Right: the bursting-and-spiking train Eq. (3.14) [139]. 

 

         On Figure 3.4 one can easily defined that the success of the goal may have the 

systematic error for the state of SG, especially for the spiking train example. It changes 

strongly according to the control constant gamma in Figure 3.3. This effect is observed 

for the speed gradient algorithm only, see Figure 3.5 below. On the other hand the target 

attractor algorithm leads to the minor error because of the tracking goal exponentially 

fast. 
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Figure 3.5: The achievability of the control goal Eq. (3.2) in speed gradient algorithm for different 

control constants as gammas (γ). Horizontal axis: gamma constant in Eq. (3.4); Vertical axis: the 

stabilization level v*. The color marks the quality of the stabilization (see the explanations above) [139].  

 

         We investigated the presence of the systematic error for SG algorithm taking the 

target signal v* as a constant, i.e. considering the case where the tracking goal is just a 

stabilization of the action potential at the certain level. The horizontal axis on Figure 3.5 

represents different gammas (normalized by the capacitance Cm), while the vertical axis 

stands for the target level of the action potentials at which we desire to stabilize the 

system. The color marks the approximate number of oscillations for the dynamics of the 

actual action potential v(t) around the stabilization level v*. The deep blue asymptotic 

color is numbered 3 spiking regime reflects to a perfect stabilization, while the deep red 

asymptotic color is numbered 1 spiking regime represents non-decaying oscillations of 

the action potential around the target level that never leads to the stabilization. Rest, 

between number 1 and number 3, transition region is numbered 2 spiking regime shows 

a number of spiking after that it reaches to stabilization with decreasing spiking regime. 

         Thereby, on Figure 3.5 shows that the choice of the control parameter as the 

gamma γ must be in a good harmony with the target level of the action potential v*, or 

else there is no the target achievement (the red domain on the plot). The similar impact 

defined on the right plot of Figure 3.4 for SG case. 

 

 

Target Action Potential 
Stabilization/ Spiking regime 

gamma (γ) 

1 

2 
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3.6 Energy power of control 

       Another important principle of successful control is the minimum power of the 

energy P(t) that is pumped by the control field into the system per unit of time. For the 

HH electrical circuit model providing the dynamical system Eq. (2.4) it can be 

calculated as: 

 

                                                       
).()()( tvtItP 

                                                 (3.16) 

 

         For the particular target potential cases Eq. (3.13) and Eq. (3.14), these powers are 

plotted on Figure 3.6. 

 

  
 

Figure 3.6: Power of tracking P(t) for speed gradient (pink) and target attractor (black) algorithms. Left: 

the linear superposition of harmonics Eq. (3.13); Right: the bursting-and-spiking train Eq. (3.14) [139]. 

 

         The power of SG doesn’t differ from the power of TA signals adequately for the 

harmonic target (the left plots). Nevertheless, for another target potential as spiking and 

bursting trains (the right plots) the target attractor algorithm seems to be more energy 

consuming: the corresponding black curve of the energy pumping by control 

systematically stays above the SG pink curve. 
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3.7 Comparison of two methods and conclusions 

         To point out the fundamental difference between two control algorithms, SG and 

TA, we express those terms in mechanic.  

         Speed gradient algorithm generates an extra force that serves as a ‘viscous 

friction’ in the dynamical system. It is off at the constant or dynamically altering goal 

parameter level (action potential in our model). Far away from this level the ‘friction’ is 

growing.  

         Target attractor algorithm describes the attractor manifold, gets the dynamics of 

the system into its neighborhood exponentially and urges the system to keep always at 

the target attractor. Absolutely, such a’ hard’ approach should be more efficient from 

the view of accuracy to compare with the ‘soft’ SG, but in the same time more energy 

consuming. 

         Both algorithms give the robustness [135] they do not depend adequately on the 

initial conditions and are stable under the relatively small external perturbations in the 

dynamics of the driven system Eq. (2.4). Both algorithms are sub-optimal: they are 

closed to the Pontryagin’s optimal control locally. 

         We do not know exactly the set of the initial conditions for the dynamical 

variables Eq. (2.4) for real neurons. Actually initial conditions change for each real 

neuron according to type of the living. In the frame of SG and TA algorithms it is not 

enough, because the behavior of the dynamical system depends on the initial conditions 

of system [24]. As an example, we demonstrate on Figure 3.7 the dynamics of the 

system Eq. (2.4) with few sets of its initial conditions under SG tracking (the target 

potential is colored by red). 

 

 

Figure 3.7: SG tracking of the target signal (red line) for different initial conditions; Vertical axes: the 

potantials in mV; Horizontal axes: time in ms [139].  
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         The Figure 3.7 demonstrates that all initial conditions in the system dynamics 

converged to the target behavior. 

         The simulation results exhibit the effectiveness of such theoretic analysis and 

control methods. This new combine study that HH neuron model and control algorithms 

as SG and TA give great result. If we want to minimum error for track to target 

potential we should choose TA but if desire to less energy and time consuming control 

we could choose SG. 
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Chapter 4 

Tracking in HH Neuron Populations  

4.1 Tracking in linear chains 

         To build up a neural chain we need two main elements: 

1. HH mathematical neuron controlled by the external input I via SG or TA 

algorithm; 

2. The ‘synaptic’ transfer element that defines the input Ik of the next k-th from the 

output action potential V(k-1) of the previous (k –1)-th neuron in the chain. 

          

         For the HH element we use the same model as Eqs. (2.4a-2.4b):  
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         Here Vk(t) stands for the action potential of the k-th neuron, mk(t), nk(t), hk(t) are its 

gate variables, and the control signal is represented by the sum of I(t) external currents 

entering the k-th cell. 

 

         The second element, transferring the electrical stimulation from the axon of (k –1)-

th neuron to the input of k-th neuron via synapses, dendrites and soma of the k-th cell, 

maybe chosen in different manner, including a time delay reaction or existing of a 

threshold accumulating the inputs coming from the dendrites to soma. Here we use the 

gain model: 

 

                                    1 rest( ) [ ( ) ]; const 0.k kI t v t v                              (4.2) 

 

       

          

 (4.1) 
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         The model Eq. (4.2) has a modification with time delay τ: 

 

                              
,0const;])([)( rest1    vtvtI kk                           (4.3) 

 

         It includes internal processes related to signal coming from dendrites to soma. 

 

         Apart from Eq. (4.2), the first control current I1 must be restored as the general 

control signal I(t), while the general output is given by VN = v*(t), where k = 1, 2, …, N; 

and N is the number of HH neurons in the chain. Thus, the first element of the chain 

must track the dynamical behavior for its last element. Algorithmically, the control in 

the chain has a back spread: first we restore the target IN for tracking VN, i.e. v*, by Eq. 

(4.2) it defines the new target V(k-1), again in the frame of SG and TA algorithms we 

restore the target control I(k-1), and so on up to the first cell, for which we finally get the 

external control I(t). 
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Figure 4.1: Basic model of pair of HH neurons 

 

         For the pair of HH neurons we can show the elements Eq. (4.1) and Eq. (4.2) in 

the form: 
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         Alpha α is the transition coefficient that provides transition of electrical potential 

from (k-1)-th neuron to k-th neuron.  

         Where the currents are given by Eq. (3.5) for speed gradient method: 
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         or by Eq. (3.12) for target attractor method: 

1 2 
I(t) I1, V1 I2, V2 

 (4.4) 

 (4.5) 
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         The tracking behaviors in the linear chain for both algorithms are presented for the 

target signal v* in Figure 3.1. 

          The typical scale of the target function Eq. (3.13) (see Chapter 3) reflects the 

properties of real neurons. The control constants for two algorithms SG and TA were 

chosen respectively as, gamma γ=30 and 1/T=1/30. Additionally, transition coefficient 

alpha was chosen α=1. 

 

  

 

Figure 4.2: Tracking for the linear superposition of harmonics Eq. (3.13).The target potential v*(t) is 

denoted by red color, the actual action potential for first neuron v1– by blue color. The actual action 

potential for second neuron v2– by green color Left: speed gradient algorithm; Right: target attractor 

algorithm. 

 

         In these drawing, the action potential V2 follow the target potential v * with an error 

not exceeding 4%. Thus, simulations are showing that TA algorithm follow the goal 

potential better than SG used in the linear chain 
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         Here is the control parameter as current I(t) for both algorithm in the linear chain; 

 

 

 

 

Figure 4.3: Control parameter current as I(t)  for the tracking goal in linear chain Eq. (3.13). Left: speed 

gradient algorithm; Right: target attractor algorithm. 

 

         But the existence of the supporting goal function v1* in the TA algorithm Eq. (4.6) 

enlarges drastically the simulation duration for the pair of neurons. This problem will 

increase with the extension of the number of neurons in the linear chain and, later, in the 

ring configurations. 

         Also we have experimented linear chain with three and four neuron for both 

algorithms we obtain similar results tracking the pair of neuron.  

 

4.2 Tracking in linear chains with loops 

         Here we construct the elements in form for the simplified configuration of the HH 

neuron pair coupled into the closed loop that is feedback. 

 

 

Figure 4.4: Basic model of pair of HH neurons with loop 

1 2 
Isg, Ita 

Isg, Ita 

Iapp1=I1 

Iapp2=I2 
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         where the currents are given by Eq. (3.5) for speed gradient method: 
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         or by Eq. (3.12) for target attractor method: 
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         The numerical results of the tracking for the pair of loop-coupled HH neurons are 

represented on Figures 4.5-4.6 for speed gradient algorithm and target attractor 

algorithm. As a target voltage function we use here the signal Eq. (3.13). 

 

 
 

 

Figure 4.5: Tracking for the linear superposition of harmonics Eq. (3.13).The target potential v*(t) is 

denoted by red color, the actual action potential for first neuron v1– by blue color. The actual action 

potential for second neuron v2– by green color Left: speed gradient algorithm; Right: target attractor 

algorithm. 
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Figure 4.6: Control parameter current as I(t)  for the tracking goal in close loop Eq. (3.13). Left: speed 

gradient algorithm; Right: target attractor algorithm. 

 

         For the loop of two neurons we did not observe any additional features in the 

applications of SG or TA algorithms. Simulations show that TA algorithm better 

tracking of target potential and SG algorithm faster than TA algorithm. 

         We checked loops of three and four neurons for both algorithms we did similar 

results loop of two neurons.  

         One of the main issues in the loop architecture is: nonlinear links between HH 

neurons in 3- and 4-neuron cycles can produce the effect of stable common fluctuations 

similar to those observed in the famous numerical Fermi-Paste-Ulam experiment. The 

open question is whether there is a fundamental difference between the monitoring of 

HH neuronal cycles in open linear HH chains. Numerical stimuli show that there is no 

such effect for our using control algorithms. 

 

4.3 Suppressing epileptiform behavior in HH neurons 

via SG algorithms 

      Epilepsy is a seizure disorder in the brain. It usually starts unannounced, 

disrupting normal brain functions and can be fatal, threatening the patient's life, 

personal life, memory, and mental functions. Actual mechanism underlying the epilepsy 

is not known exactly. But it can has a number of reasons such that genetic factor, head 
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injury, stroke, birth trauma, infection, brain tumor, some drugs, alcohol, stress and lack 

of sleep etc. [140]. 

 

 
Figure 4.7: This color-enhanced brain scan of a person with epilepsy reveals that the focus of seizure 

activity is in the right frontal lobe, as shown by the large orange cluster at the top right of the image [140]. 

 

         Commonly, epileptic seizures divide into two main categories: generalized 

seizures and partial seizures (see Figure 4.8). Initially, seizures often are beginning in a 

part of the brain, which might include scar tissue or some structural abnormality, and 

then spread throughout the rest of the brain. 

 

 

  

Figure 4.8: Partial and Generalized Seizure [140]. 

 

         Partial Epileptic Seizures: the seizure starts in and affects only part of the brain 

(above left). Sometimes, a seizure may begin as a partial seizure and then turn into 

generalized and spread to whole brain (above right).  

         Generalized Epileptic Seizures: the seizure affects most or all of the brain with 

abnormal neuron activity [140]. 

         According to the world health organization (WHO) in the world 65 million while 

700 thousand people have epilepsy in Turkey also. Modern neuroscience shows big 
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development in the study of the collective chaotic states of biological neurons, but the 

mathematical modeling has not yet succeeded sufficient progress [141]. Many HH 

neurons chain in epileptiform case shows great concurrence in the invivo animal 

recordings [142] [143]. The Hodgkin-Huxley dynamic system includes some possible 

cases of collective bursting ion channel mutations and fluctuations in ion concentration 

in and out of the axon [144]. 

         Fradkov’s speed gradient feedback [24] was applied to check the collective 

bursting in the Hodgkin-Huxley neuron cluster using the potential action at the moment. 

The algorithm makes it possible to suppress the traces of chaotic situations, to switch 

between normal and chaotic situations, and to be suppressed by stimulation of collective 

bursting.  

         The proposed algorithm can be used efficiently for studying, identifying and 

suppressing sudden spiking and bursting epileptic behavior in biological neuronal 

networks [144]. 

         Here we present a basic model for epileptiform suppression. Consider a sub-

cluster of three HH neurons [145], the configuration presented in Figure 4.9. 

 

 

 

Figure 4.9: Basic model for an epileptiform suppression in the cluster of three Hodgin-Huxley neurons 

 

         In this figure, the neurons 1 and 2 are involved into the collective bursting 

stimulated by the currents Iinput1 and Iinput2 coming from other companion cells in the 

neural population. The neuron 3 is a monitoring element providing the switch on and off 

for the algorithm of suppression. It plays two roles. First, it detects the over-

synchronization of the signals coming from the neurons 1 and 2 through the input 

currents I13 and I23 (sure, the neurons 1 and 2 may also stimulate other neurons in the 
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bigger neuron cluster, they are not shown on Figure 4.9). Second, if the neuron 3 

observes the over-synchronization in a certain interval of time, it triggers the control 

algorithm of the suppression through the feedback loop to the neuron 2 by the current 

I31. The control current Icontrol reflects the inner degree of freedom for the neuron 3. 

Thus, this element works as an automat driving the neuron 2 from the bursting regime 

to the resting if and only if it detects its over-synchronization with the neuron 1. 

         Here we made coupled differential equations that has shown Figure 4.9 basic 

model;  
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3 42
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          with the synaptic links; 
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         Here we use our method of ‘back spread’ algorithmic goal: the real control signal 

is passing from the neuron 3 to the neuron 2, while the algorithmic definition of the goal 

follows the opposite direction, from 2 to 3, see Eqs.(4.14)-(4.15) below.   

          

 (4.10) 

 (4.11) 
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         First, we apply SG algorithm Eq. (3.5) to the neuron 3; 

 

.)]()([)( *33control tvtvtI  
                                                                           (4.12) 

 

         The goal v3* of the tracking potential in the neuron 3 is defined as the inverse 

function to Eq. (4.2); 

 

.
)(

)( rest
*31

*3 v
tI

tv 
                                                                                        (4.13) 

 

         The control current Icontrol entering the neuron 3 is given also in the SG form Eq. 

(3.5); 

 

  ,])([)()()( 22313*31 restvtvtItItI  
                                              (4.14) 

 

         where ∆ stands for the smooth model of delta-function; 
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         The factor ∆ in Eq. (4.14) switches on the control algorithm only for the 

synchronized currents I13 and I23, and in the case of their time over-synchronization, i.e. 

only in the period of their epileptiform dynamics, leads the neuron 2 to the stabilization 

at the rest membrane potential.  

         This algorithm can be easily extended for a larger number of collective bursting 

neurons and their feedback links in the population. 
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         For the numerical simulations that have shown below we have chosen these 

parameters Iinput1=40, Iinput2=42, α=10, γ=30, d=0.1. 

 

 
 

Figure 4.10: Neurons membrane potentials vs. time (membrane potential for first neuron v1– by blue 

color, for second neuron v2– by green color, for third neuron v3– by pink color) 

 

         On the Figure 4.10 one can see that after the beginning instability at the scale t=5 

the potential v1 is suppressed around three times to compare with the bursting potential 

v2. This result seems to be great for such a basic control mechanism. Again collectively 

synchronized bursting was starting to increase (close to t=13 and t=23), the control 

model is switching on to drive the potential of the neuron 2 far away from the 

synchronization. The same is happen when t = 15 and t=24.  

 

 
 

Figure 4.11: Currents vs. time (I13– by blue color, I23– by green color, I31– by pink color) 
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         Figure 4.11 demonstrate that Icontrol was suppressed three times the currents. This 

control can give us good for a simple control system.  

         The supposed algorithm demonstrates only the primitive features of the bursting 

suppression. The simple control model Eqs. (4.14)-(4.15) needs to be sufficiently 

advanced for the better detecting the chaotic hyper-synchronization in the clusters and 

fasting more flexible details of the neuron dynamics.   

 

4.4 Conclusions 

       The developed control algorithm [139] for tracking the membrane action 

potential of a single Hodgkin-Huxley neuron can be applied to a small structure of HH 

neuron showing epileptiform dynamics have basic features. In this population one of the 

neurons catch the over-synchronized neurons among its network neighbors and 

activates the feedback signal to some selected neurons in the population by removing 

epileptiform regime as a control element. 
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Chapter 5 

Conclusions and Discussions 
 

5.1 Basic statements of the thesis 

1. Both algorithms, SG and TA, are successful for tracking goal potential in the 

HH neuron, 

2. The choice of the plausible control depends on two basic criteria: 

 If the main factor is the minimization of the error e(t), the target attractor 

is preferable.  

 If we consider performing the control by the minimum certain energy 

than the speed gradient has the priority. 

3. For prolonged number of HH neurons in the networks, the error of tracking for 

the desired potential increase.  

4. Two fundamental criteria for the evaluation of  SG and TA algorithms are: 

 the error of tracking for the target potential, 

 the energy efficiency.  

 

5.2 The set of main results 

1. We modeled analytically and numerically (in MATLAB) the dynamical 

behavior of single and various chain structures of controlled Hodgkin-Huxley 

neurons.  

2. Two alternative control algorithms have been successfully adopted for designing 

control external signal.  

3. For the expanded number of HH neurons in the population MATLAB’s 

calculation time is extremely increased for TA algorithm to compare with SG.  

4. The transfer of control in the neural chain configuration needs more energy and 

larger control signal (current) as the chain is longer.  

5. One control neuron in the population is able to suppress the over-synchronized 

epileptiform behavior in the small network with cumulative bursting and 

undesired oscillations in the HH neurons. 
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5.3 Perspectives of the research 

         In the small HH clusters one of the neurons performs a control tool for detecting 

and suppressing the hyper synchronization in the networks also it constructs and sends 

feedback signal driving to the resting membrane potential from collective bursting like 

epileptiform behavior. Thus, the approach developed in the thesis can provide crucial 

opportunities for the modeling such neuronal disorders as epilepsy, Alzheimer, 

Parkinson, paralysis, dementia and arrhythmia in large-scale neural networks. A number 

of neurons to be controlled in such networks is restricted by the amplitude of the control 

current and the energy consume required. In the perspective, our control algorithm 

could serve as a new model that designing a real-time electrical control system 

including a computer simulation tool and a neural prosthesis for the patients suffering 

from various nerve diseases. Therefore, this algorithm can be designed to work 

autonomously and detect a disorder in the real human brain. 

5.4 Participation in the projects, conferences, 

publications 

         My study has been supported by TÜBİTAK (the Scientific and Technological 

Research Council of Turkey), Project no: 116F049, “Controlling Spiking and Bursting 

Dynamics in Hodgkin-Huxley Neurons” as master student scholarship for the period 

since November 2016 till January 2018. 

         The basic results of the thesis have been presented at the following conferences; 

1. “Hızlı Gradyan Algoritması ile Hodgkin-Huxley Nöron Dinamikleri Kontrolü”, 

“II. Yaşam Bilimleri Kongresi”, in 23-25 February 2017, Abdullah Gül 

University, Kayseri / Turkey (the poster presentation). 

2. “15th International Conference on Researches in Science and Technology 

(ICRST)”, in 23-24 June 2017, University of Malaya, Kuala Lumpur / Malaysia 

(oral presentation, the best presentation award). 

3.  “International conference on Theoretical and Applied Computer Science and 

Engineering-ICTACSE 2017” in 10-11 November 2017, Ankara University, 

Ankara / Turkey  (oral presentation).  
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         The basic results of the thesis research have been published in the following 

articles: 

1. Borisenok, S., Ünal, Z. 2017. “Tracking of Arbitrary Regimes for Spiking and 

Bursting in the Hodgkin-Huxley Neuron”, MATTER: International Journal of 

Science and Technology, 3, 560-576, DOI: 10.20319/mijst.2017.32.560576. 

2. Borisenok, S., Çatmabacak, Ö., Ünal, Z. 2018. “Control of Collective Bursting 

in Small Hodgkin-Huxley Neuron Clusters”, Commun.Fac.Sci.Univ.Ank.Series 

A2-A3, 60 (1), 21-30, DOI: 10.1501/commua1-2_0000000108. 
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