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PAPERS

A generalized PID controller for high-order dynamical systems

Günyaz Ablay1

This paper introduces a generalized PID type controller for controlling high-order dynamical systems. An optimal
generalized PID control design method is developed to provide a simplified high-order output feedback control design
procedure and tunable response characteristics. The controller design procedure is reduced to the specification of the desired
natural frequency and the solution of a polynomial equation. The control method is capable of providing a desired control
performance under set-point and disturbance variations. The performance of the proposed control method is implemented
on some unstable and nonlinear mechatronic systems to illustrate the robustness, effectiveness and feasibility of the method.
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1 Introduction

The PID controllers are an active research field and
the most commonly adopted controller in industry be-
cause of their good performance and simplicity [1–3]. PID
controller has a simple structure, tuning and implemen-
tation features, but it is only sufficient for the first and
second order dynamical systems. For some higher-order
systems, the application of PID controllers are limited to
reduced-order models wherever possible [4]. But still, var-
ious advanced PID-based control schemes have also been
designed to get good control performance for some higher-
order dynamics while keeping the simplicity of the PID
controllers. In this context, PID controller cascaded with
filters [5, 6], dead time compensation schemes [7], cas-
cade control systems [8], ratio control systems [9], 2DOF
PID controllers [10], the neural network algorithm [11]
and fuzzy algorithm [12] based controllers, feedforward
controllers [13], fractional-order PID [14, 15], event-based
[16], nonlinear [17, 18] and predictive control [19] have
been studied over the years. However, for controlling
higher-order dynamical systems, the PID-type controllers
are usually not applicable; if applicable, then the chal-
lenging issue in PID-based control approaches is to ac-
complish a proper combination of the controller block
designs and the controller parameter tunings.

There are few generalized PID controllers for higher-
order dynamical systems. An efficient generalized PID
controller is known as coefficient diagram method (CDM)
[20–22]. It is based on the characteristic ratio assign-
ment [23], [24] and provides a good control performance
under systems having parametric uncertainties [25–27].
The characteristic ratio assignment directly addresses the
transient response control problem, eg, overshoot and ris-
ing time. However, it is not possible to shape the set-
point or disturbance rejection response with an adjustable
setpoint-weight parameter as in the PID controllers. In

addition, the establishment of the controller structure is
not straightforward. The orders of the numerator and de-
nominator of the controller must be designed with some
trial-and-error approach, but this causes some practical
design problems.

In this work, a 2-DOF generalized PID controller is
proposed for controlling high-order dynamical systems.
The proposed controller offers the advantages of PID con-
trollers and the 2DOF control structures to control the
nth-order dynamical systems. That is, the 2DOF struc-
ture of the controller enables optimal set-point and dis-
turbance rejection responses, and the PID-like structure
of the controller provides design simplicity and tunable
response characteristics. Compared with the other gener-
alized PID-type controllers, the proposed controller has
three distinguishable features: (i) it has a unique con-
trol structure including full features of the PID controller,
(ii) it is designed systematically with only one parameter
(ie, desired natural frequency ω ), and (iii) the controller
has adjustable set-point weights for a desirable reference
tracking and disturbance rejection performance. The pro-
posed generalized PID controller can directly be designed
for systems in any order with highly satisfactory and ro-
bust performances. The effectiveness and feasibility of the
proposed controller is illustrated on some challenging lin-
ear and nonlinear mechatronic systems.

The paper is organized as follows. The proposed gen-
eralized PID controller is given in Section 2. Section 3
provides applications of the proposed controller to some
challenging mechatronic systems, and Section 4 presents
the conclusion of the study.

2 A generalized PID controller

In some control systems, a lower order controller may
meet the given specifications, but in many control sys-
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tems, the existence of solution cannot be guaranteed. For
these reason, a higher-order controller is usually required
to provide a desired response. For instance, the PID con-
troller is suitable for the first and second-order systems.
For the third or higher order systems, state feedback
based controllers are commonly designed with the cost of
more measurement systems. An enhanced version of the
PID controller, having performance features of the PID
and state feedback controllers, can be designed for con-
trolling the higher-order dynamical systems as presented
below. Consider a dynamical system defined by

G(s)=
Y (s)

U(s)
=

amsm + · · ·+ a1s+ a0
bnsn + bn−1 + sn−1 + · · ·+ b1s+ b0

, (1)

where the system is strictly proper (m < n) and bn =
1. For the system (1), an enhanced PID-like controller
similar to the state-feedback control approach can be
defined as

u = k0ε1r − k0y − k1ẏ − · · · − k(n− 1)y(n−1)+

+ kd(ε2ṙ − ẏ) +

∫

(r − y)dt , (2)

where r(t) is the reference signal, ε1 and ε2 are the
set-point weights k0, . . . , kn−1 , kd and ki are the con-
stant control gains. Suppose that the derivatives of y(t)

can be obtained through derivative filters, eg y(n−1) =
(s/(τs + 1)n−1y where τ is the filter time constant and
s is the Laplace operator. Then, if we take the Laplace
transform of the controller (2) and rearrange the terms,
a generalized PID controller for n-th order system (1) is
defined as

U(s) = Gr(s)R(s)−Gy(s)Y (s) ,

Gr(s) = (p2br2s
2 + p1br1s+ p0)/(q2s

2 + q1s) , (3)

Gy(s) = (pns
n + · · ·+ p1s+ p0)/(qns

n + · · ·+ q1s) ,

where R is the set-point, Gr is the fee dforward con-
troller and Gy is the stable feedback controller. The
terms q1, . . . , qn , p0, . . . , pn, are the control coefficients
to be designed; and br1, br2 are the set-point weights to
be adjusted manually or numerically (0 < br1, br2 ≤ 1).
If n ≤ 2, the generalized PID controller (3) reduces to
the classical PID controller. The block diagram of the
proposed 2-DOF generalized PID controller (3) is seen
in Fig. 1. With the 2-DOF structure, along with stabi-
lization, the set-point tracking and disturbance rejection
performances of the controller can be designed indepen-
dently.

Gr(s)

Gy(s)

G(s)
R U Y+

+

Controller

Fig. 1. Schematic diagram of the proposed controller

Then substituting the controller (3) into the sys-

tem (1), the closed-loop system is written as

Y (s) =
Gr(s)G(s) · R(s) + Φ(s)

(1 +Gy(s)G(s))
, (4)

where Φ is the disturbance. The controller Gy(s) with

proper coefficients must first stabilize the system to have

a desired closed-loop transfer function. Thus, if we define

G = A/B and Gy = Ac/Bc , then the characteristic

equation of the closed-loop, 1+GyG = 0 , can be written

as BBc + AAc = 0. If a desired polynomial is given as

C(s) for given a set of desired poles, then the controller

coefficients can be solved with pole placement approach

by constructing the following polynomial equation

B(s)Bc(s) +A(s)Ac(s) = C(s) . (5)

This polynomial is known as Diophantine equation [28].

Matching the coefficients with respect to power of s in (5)

yields the following matrix equation
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(6)

where the matrix has a dimension of (2n+1) by (2n+1).

The equation (6) can be written as FK = C , where the

system matrix, controller vector and desired polynomial

vector are defined as F , K and C , respectively. Hence,
a solution is obtained through K = F−1C . For the equa-

tion (6), a solution always exists if G = A/B is proper. A

suitable solution for the Diophantine equation may not be

found when F is not a square matrix, which is the main

problem of the reduced-order controllers such as classical

PID and lower-order CDM. On the other hand, the pro-

posed controller (3) has the order of the system so that

a square matrix is always constructed to obtain suitable

solutions for nth-order systems.

The closed-loop system stability can be achieved with

suitable control parameter values. The pole placement

approach can directly be used to calculate control co-

efficients. Namely, let us define a desired characteristic

polynomial by

C(s) = c2ns
2n + · · ·+ c1s+ c0. (7)
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The desired characteristic polynomial (7) can be con-
structed from various standard filter design polynomi-
als [29], including Binomial, ITAE, and Butterworth-type
polynomials and characteristic ratio assignments [24],
[30, 31]. If we consider the binomial polynomials, the co-
efficients in terms of natural frequency ω can be given by
the formula

(s+ ω)2n =

2n
∑

k=0

C(2n, k)ω2n−ksk, (8)

where C(2n, k) = (2n!)/(k!(2n−k)!) for k = 0, 1, . . . , 2n ,

and the desired coefficients of (7) are ck = C(2n, k)ω2n−k.
The binomial transfer function poles provide fast re-
sponse with some overshoot, so the set-point weights,
0 < br1, br2 ≤ 1, can be adjusted to eliminate the un-
desired overshoot.

The denominator of controller Gy must have stable
dynamics, which is desirable in terms of the integrity of
feedback control system. For stable systems, a stable con-
troller can always be found. However, for non-minimum
phase unstable systems, the parity interlacing property
(PIP) must be satisfied to obtain a stable controller. The
PIP condition states that a necessary and sufficient con-
dition for the existence of a stable stabilizing controller
is that between each zero of the system on the RHP
real axis (including infinity as a zero), there be an even
number of poles [32]. For a stable controller, the natural
frequency ω in (8) must be selected appropriately such
that all the roots of controller denominator, found from
qns

n + · · · + q1s = 0, have negative real parts (one root
is zero due to the integrator).

2.1 Performance analysis

The stability of closed-loop system can be evaluated
through the roots of C(s). The polynomial C(s) is a Hur-
witz polynomial if and only if all of its roots have negative
real parts. The Lipatov and Sokolov conditions [33] are
also very useful for quick checking the stability, which is
given by

c(i− 1)c(i+2) ≤ 0.4655cic(i+1), i = 1, . . . , 2n− 2 . (9)

These stability conditions (9) also provides an effective
way of producing robust polynomials. By considering the
robust Hurwitz polynomials [34], the robustness of the
controller under small parameter changes can be assessed.
First, let us define the following parameter interval for all
coefficients of the desired characteristic polynomial

ci ∈ [αi, δi], δi ≥ αi > 0, (10)

then, the interval polynomial C(s) given by (7) and (10)
is Hurwitz for all ci ∈ [αi, δi] , if

δ(i− 1)δ(i+ 2) ≤ 0.4655αiα(i+ 1), i = 1, . . . , 2n− 2 .

(11)
Hence the proposed controller has robustness against
small parameter variations according to above stability

condition. The controller has the same robustness fea-
tures of the characteristic ratio assignment and the CDM.

The disturbance rejection performance of the con-
troller can easily be evaluated for step reference and step
disturbance inputs, ie, R(s) = r/s , Φ(s) = 981/s , such
that the steady-state response is obtained as

lims→0s
Gr(s)G(s)r/s + φ/s

1 +Gy(s)G(s)
= r . (12)

Since both Gr and Gy include an integrator as seen in
controller (3), the steady-state response of the closed-loop
system will have zero error under the step disturbance
input.

2.2 Tuning the control parameters

The control parameters can easily be tuned with nat-
ural frequency of the binomial polynomial (8). The set-
point weights, br1 and br2 , can be adjusted to eliminate
the undesired overshoot under step set-point and dis-
turbance variations. These parameters can be adjusted
manually or numerically. A numerical search algorithm
can be performed to get optimal results. For this goal,
the Nelder-Mead simplex algorithm [35] can be imple-
mented for finding the optimal set-point weight values.
The MATLAB’s “fminsearch” function uses this algo-
rithm to solve nonlinear optimization problems. To obtain
suitable results, the ITAE performance index, ITAE =
∫

∞

0
t|e(t)|dt , can be used to get conservative controller

settings. For example, a MATLAB/Simulink based algo-
rithm provided in [36] can directly be utilized to find op-
timal set-point weight settings.

3 Applications

The various designs and control performance of the
proposed controller are illustrated on some high-order
and challenging practical systems including a three-cart
system, the single-link flexible joint robot and the planar
quadrotor system.

3.1 Three-cart system

The multi-DOF spring-mass-damper system is com-
monly used to model various systems, eg, robotic motion
control. These systems can be unstable and vibrate at
a certain natural frequency with a certain natural dis-
placement, and thus they are difficult to control and op-
erate [37]. The model of three-cart system as illustrated
in Fig. 2 is given by

ẋ1 = x2,

ẋ2 = (−f1x2 − kx1 + kx3 + αV )/m1,

ẋ3 = x4,

ẋ4 = (−f2x4 − 2kx3 + kx1 + kx5)/m2,

ẋ5 = x6,

ẋ6 = (−f3x6 − kx5 + kx3)/m3,

y = x5,

(13)
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f1 f2 f3

M

Fig. 2. The schematic diagram of three-cart system

Fig. 3. The output and control signal responses of the three-cart
system under cart mass variations

where y(m) is the position of the third cart, V (V) is the
motor control voltage, m1 = 1.6 (kg), 0.75 ≤ m2 , m3 ≤
1.25 (kg), k = 400 (N/m), f1 = 0.09 (Ns/m), f2 = f3 =
3.68 (Ns/m) and α = 3.156. The control goal is to design
a controller so that the third cart can track a given step
inputs as fast and accurately as possible without having
any oscillations. The controller must be robust enough
to deal with mass variations in the second and third
carts. The motor voltage is limited by |V | ≤ 12 volts.
The system is unstable with a RHP pole. The classical
PID controller cannot solve the mechanical oscillations
of the system, so a higher-order controller is needed for
providing a desirable performance.

Since the system order is n = 6, the controller is
written from (3)

Gr =
p2br2s

2 + p1br1s+ p0
q2s2 + q1s

,

Gy =
p6s

6 + · · ·+ p1s+ p0
q6s6 + · · ·+ q2s2 + q1s

.

(14)

Using the twelfth-order binomial polynomial for ω = 25
to have a stable feedback controller Gy , the control gains

are found as p0 = 1.88 × 1011 , p1 = 9.06 × 1010 , p2 =
1.39 × 1010 , p3 = −5.43 × 108 , p4 = 4.84 × 107 , p5 =
−2.02 × 106 , p6 = 1.89 × 104 , q1 = 2.54 × 109 , q2 =
1.15×108 , q3 = 2.72×106 , q4 = 3.76×104 , q5 = 292.58,
q6 = 1, and the set-point weights are selected as br1 =
0.1, and br2 = 0.1, when the cart masses are m2 = m3 =
1 (kg). Figure 3 shows the control performance under
mass variations. The controller is designed for nominal
masses m2 = m3 = 1 (kg), but these masses are variable

due to the loads. It is seen from Fig. 3 that the controller
provides a robust and highly satisfactory non-overshoot
performance under ±25% mass variations. The control
voltage has very smooth variations without reaching the
supply limits.

3.2 A single-link flexible-joint robot

Robot control is a quite challenging problem especially
if the robot includes a flexible joint or link. Such flexibility
produces nonlinearities and increases the system order,
which results in vibration and low control performance.
The equations of motion of the flexible-joint robot arm
driven by a dc motor as shown in Fig. 4 is given by

Iq̈1 = Mgl sin q1 + k(q1 − q2),

J q̈2 = −k(q1 − q2) = u,

y = q1,

(15)

where the experimental parameter values are taken from
[12] as Mgl = 0.8 (Nm), I = 0.03 (kgm2), J =

0.004 (kgm2) and k = 31 (Nm/rad). The angular position
of arm, q1 , is the measurable output. With linearization
at origin, ie, sin(q1) ≈ q1 , a transfer function is obtained
as

G(s) =
Y (s)

U(s)
=

2.583× 105

s4 + 8810s2 + 2.053× 105
. (16)

The system has four imaginary poles, which is not possi-
ble to control with classical PID controllers. Since n = 4,
the controller is written from (3) as

Gr(s) =
p2br2s

2 + p1br1s+ p0
q2s2 + q1s

,

Gy(s) =
pns

n + · · ·+ p1s+ p0
qnsn + · · ·+ q1s

,

(17)

where for a stable Gy , the control gains are calculated
from binomial polynomial (8) for ω = 60 as p0 = 16.5×

108 , p1 = 8.04 × 107 , p2 = 4.98 × 106 , p3 = −9.936 ×
104 , p4 = 390.86, q1 = 7.89 × 106 , q2 = 92043, q3 =
480, q4 = 1, and the set-point weights are found from
numerical optimization as br1 = 0.125, and br2 = 0.12.
Figure 5 illustrates the reference tracking response of the
controller. It is clear that the controller provides a fast,
non-overshoot response and highly effective disturbance
rejection performance.

J

I

k

Mgl 

l 

Fig. 4. A single-link flexible joint robot
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Fig. 5. Time response of the controlled system, (a) system output,
(b) control signal

3.3 Planar quadrotor

Quadrotors have become very popular in recent years
for various mobile applications [38]. They have nonlinear
under-actuated dynamics, which causes some challenges
in suitable controller designs. The equations of motion of
a planar quadrotor flying in y − z plane as illustrated in
Fig. 6 is given by

mz̈ = −mg + u1 cosϕ ,

mÿ = −u1 sinϕ ,

lxxϕ̈ = u2 ,

(18)

where m is the mass (m = 0.2 kg), Ixx is the iner-

tia (Ixx = 0.1kgm2 ), g = 9.81m/s2 , u1 is the thrust
force, u2 is the moment about the x-axis, and the planar
quadrotor pose is represented by (y, z, ϕ). Linearization
of the system around hover point, z = ze , y = ye , ϕ = 0,
u1 = mg , u2 = 0, the transfer function of system can be
obtained as

Z(s)/U1(s) = 5/s2 ,

Y (s)/U2(s) = −98.1/s4 ,

ϕ(s)/U2(s) = 10/s2 .

(19)

The controller can be designed independently for z and
y positions while the system dynamics are highly nonlin-
ear and coupled. Since we have Y/U2 = Y/ϕ · ϕ/U2 and

Y (s)/ϕ(s) = −9.81/s2 , a cascade controller can be de-
signed to control the position y . Then, for time-varying
smooth references, the controllers from (3) are designed
to be

U1 =
p21s

2 + p11s+ p01
q21s2 + q11s

(Zr − Z) ,

ϕr =
p22s

2 + p12s+ p02
q23s2 + q13s

(Yr − Y ) ,

U2 =
p23s

2 + p13s+ p03
q23s2 + q13s

(ϕϕ) ,

(20)

where Zr, Yr are the references, U1 is the position con-
troller, ϕr is the outer loop position controller, and U2

is the inner loop attitude controller. Since the references
are time-varying and smooth, all set-point weights are

taken as one. The fourth-order binomial polynomial is
used to calculate control gains u1 , ϕr and u2 when
ω1 = 8, ω2 = 4, ω3 = 40, respectively. The control gains

are calculated as p01 = 819, p11 = 409.6, p21 = 76.8,
q11 = 32, q21 = 1 for u1 , p02 = −26, p12 = −26,

p22 = −9.78, q12 = 16, q22 = 1, for outer loop po-
sition controller ϕr , and p03 = 256000, p13 = 25600,
p23 = 960, q13 = 160, q23 = 1 for inner loop attitude

controller u2 . Figure 7 illustrates the tracking perfor-
mance and control inputs of the designed controller for

Zr = 4 sin(t) and Yr = 0.4 sin(0.5t). Even though the
system is highly nonlinear, it is clear that fast and very
good tracking results are obtained.

y

z

m, Ixx

Fig. 6. Schematic diagram of a planar quadrotor flying about the
hover state

Fig. 7. Time response of the controlled quadrotor system flying
about the hover state (ye, ze, 0)

4 Conclusion

The simplicity and output feedback features of the PID
controllers provide significant benefits for designing effi-
cient, low cost and flexible controllers, and the goal of this

paper is to expand all these benefits to higher-order sys-
tem control. A two degrees of freedom PID type controller

is designed for controlling high-order dynamical systems.
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The proposed controller is constructed with optimal poly-
nomial coefficients and solution of the Diophantine equa-
tion. The set point weights are directly incorporated into
the controller design to eliminate the undesirable over-
shoot resulted from disturbing effects. It is shown with
the numerical studies that while the controller design pro-
cedure is built upon the linearized system dynamics, the
controller has a robust performance against nonlineari-
ties, disturbances and small parameter variations. The
feasibility of the proposed controller is illustrated with
numerical studies on some challenging linear and non-
linear dynamical systems. The control approach can be
designed for single input dynamical systems in any or-
der to obtain superior performance. The method can be
expanded to multi-input dynamical systems.
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