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ABSTRACT 

NON-SMALL CELL LUNG CANCER TUMOR 

CHARACTERISATION USING DEEP LEARNING 

 
Mustafa BIÇAKCI 

Ph.D. in Electrical and Computer Engineering 

Advisor:  Prof. Bülent YILMAZ 

March 2021 

 

Non-small cell lung cancer (NSCLC) constitutes the vast majority of lung cancers and 

has two major subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). 

Generally, these two subtypes are distinguished from each other by considering 

microscopic morphological criteria. However, poor morphology makes this quite 

difficult. Such studies are important for subspecialty treatment methods. In this thesis, 

deep learning (DL) methods on the subtype classification of NSCLC were investigated.  

In the first study, 73% success rate was achieved by using artificial neural networks 

(ANN), which form the basis of DL methods. In the second study, several DL models 

were investigated on subtype classification using segmented tumor slices from PET 

images. As a result, VGG16 and VGG19 emerged as the most successful models with a 

95% F-score. Later, slice based studies were abandoned and patient based studies were 

initiated. In the third study, the use of three-dimensional (3D) data created by combining 

slices from each patient was not successful. In the fourth study, three different 

experiments were conducted in which PET images were directly used, cropped to include 

peritumoral areas, and segmented only tumor parts. This study demonstrated the positive 

effect of peritumoral areas and VGG19 reached an F-score of 74%. In the fifth study, 

transfer learning and fine tuning works did not yield successful results. The latest study 

involving CNN-based and ResNet-based shallow networks was promising with an F-

score of 71%. 

 

Keywords: Lung cancer, subtype classification, PET imaging, deep learning, 

convolutional neural network 
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ÖZET 

DERİN ÖĞRENME YAKLAŞIMLARIYLA KÜÇÜK HÜCRELİ 

DIŞI AKCİĞER KANSERİNDE TÜMÖR 

KARAKTERİZASYONU 

 
Mustafa BIÇAKCI 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi: Prof. Dr. Bülent YILMAZ 

Mart-2021 

 

Küçük Hücreli Dışı Akciğer Kanseri (KHDAK) akciğer kanserlerinin büyük 

çoğunluğunu oluşturur ve adenokarsinom (ADC) ve skuamöz hücreli karsinom (SqCC) 

olmak üzere iki önemli alt tipi vardır. Genel olarak, bu iki alt tip mikroskobik olarak 

belirlenen morfolojik kriterler dikkate alınarak birbirinden ayrılır. Ancak, kötü morfoloji 

bunu oldukça zorlaştırır. Alt tipe özel tedavi yöntemleri için bu tür çalışmalar önemlidir. 

Bu tezde, pozitron emisyon tomografi (PET) görüntüleri kullanılarak KHDAK'nin alt 

tiplerinin sınıflandırılması üzerinde derin öğrenme (DÖ) yöntemleri incelenmiştir. İlk 

çalışmada, DÖ yöntemlerinin temelini oluşturan yapay sinir ağları (YSA) kullanılarak 

%73 doğru sınıflandırma başarısı elde edilmiştir. İkinci çalışmada, PET görüntülerinden 

alınan bölütlenmiş tümör kesitleri kullanılarak birkaç DÖ modeli incelenmiştir. Sonuçta, 

%95 F skoru ile VGG16 ve VGG19 en başarılı modeller olmuştur. Bu çalışmanın sonunda 

kesit bazlı çalışmalar bırakılarak hasta bazlı çalışmalara geçilmiştir. Üçüncü çalışmada, 

hasta bazlı dilimlerin birleştirilmesiyle oluşturulan üç boyutlu (3B) verilerin kullanımı 

yeterli başarıyı sağlamamıştır. Dördüncü çalışmada, PET görüntülerinin doğrudan 

kullanıldığı, tümör kısımlarının kırpılarak kullanıldığı ve bölütlenmiş tümör parçalarının 

kullanıldığı üç farklı deney yapılmıştır. Bu çalışma, peritümoral alanların sınıflandırmada 

olumlu etkisini ortaya koymuş ve VGG19 %74 F skoru değerine ulaşmıştır. Beşinci 

çalışmada, transfer öğrenme ve hassas ayar çalışmaları başarısızdı. CNN ve ResNet 

tabanlı sığ ağları içeren son çalışma %71 F skoru ile umut verici olmuştur. 

 

Anahtar kelimeler: Akciğer kanseri, alt tip sınıflandırma, PET görüntüleme, derin 

öğrenme, evrişimli sinir ağı, 
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Chapter 1  

Introduction 

1.1 General 

The lungs are the main organ of the respiratory system. The human body needs 

oxygen to stay alive and healthy. In addition, the body needs to get rid of carbon dioxide, 

which is a cellular waste product. The lungs are specially designed to change these gases 

by breathing in and out. Therefore, the health of the whole body is dependent on the health 

of the lungs. There are many lung diseases such as asthma, chronic obstructive pulmonary 

disease (COPD), bronchitis, pneumonia, but the most dangerous is lung cancer. Smoking 

and air pollution are among the main causes of lung cancer, but lung cancer can also 

develop in those who are not exposed to these factors. According to global cancer 

research and statistics, lung cancer, the most common cause of cancer-related deaths 

worldwide, is a public health problem that is increasing in severity day by day. Worldwide 

in 2020, the estimated number of new cases of lung cancer was 2,206,771 and it is 

estimated that 1,796,144 deaths were due to lung cancer. According to the global 

estimates for the year 2020, among all types of cancer, the incidence of lung cancer is 

11.4%, while the mortality rate comes first with 18% [1].  

Histological type and tissue of origin are decisive in classifying lung cancer. This 

classification is important in defining the optimal treatment and determining the 

prognosis. There are two main types of lung cancer, non-small cell lung cancer (NSCLC) 

and small cell lung cancer (SCLC). NSCLC are classified into squamous cell carcinoma 

(SqCC), adenocarcinoma (ADC), and large cell carcinoma [2]. Common imaging 

modalities used in patients with NSCLC include chest radiography, computed 

tomography (CT), magnetic resonance imaging (MRI), positron emission tomography 

(PET), and fused PET / CT [3]. [18F] 2-Fluoro-2-Deoxy-D-Glucose (18F-FDG) PET / CT 

is a non-invasive imaging modality which combines metabolic and anatomic information 

in the evaluation of cancer. PET / CT imaging method is useful in staging, treatment 



 

 

2 

response evaluation and radiotherapy planning of lung cancer. PET scanners have 

multiple detectors arranged in a ring around the patient, allowing simultaneous gamma 

ray detection. Patient motion, which is one of many factors that can affect image quality, 

can cause potential spatial incompatibility between CT and PET. Respiratory movement 

that can occur, especially when viewing the chest or abdomen, can cause errors. PET data 

is acquired in minutes, covering many respiratory cycles, and may cause blurring of the 

resulting images [2]. In this thesis, subtype classification of NSCLC was made using PET 

images from PET / CT scans. While doing this, deep learning methods were investigated 

on the differentiation of ADC and SqCC, which are the main subtypes of NSCLC. 

1.2 Objectives and Scope 

PET / CT is a combination of positron emission tomography and computed 

tomography. PET gives a picture of the physiological processes in the body. By 

combining PET device with CT, anatomical and physiological information can be 

obtained in a single session. In this thesis, only the PET images obtained as a result of 

PET / CT scanning were considered. Although there are many studies on PET images in 

the literature, it is striking that there are no deep learning studies on automatic 

classification of NSCLC subtypes using this image type. In this thesis, on the automatic 

classification of NSCLC subtypes, various deep learning approaches, which are modern 

machine learning methods, were investigated. In addition, this study includes some 

preprocessing studies on PET slices obtained from PET / CT images provided by Nuclear 

Medicine Department of Acıbadem Kayseri Hospital. These PET slices were images 

containing the whole lung taken from different angles of each patient, and there were 

different numbers of slices for each patient. During the classification studies, it was aimed 

to compare the success of deep learning methods as well as to investigate the effect of 

peritumoral areas on classification. In addition, the effects of various regularization and 

optimization techniques used with these models were also revealed. 

This thesis covers 6 different approaches on subtype classification. The first 

examines the classification of 39 features by artificial neural networks (ANN). These 

features were obtained from PET images in a previous study [4] conducted to investigate 

some classical machine learning methods. Secondly, a slice-based study was conducted 

using tumor images segmented from PET slices by random walk method. Although quite 

successful results were obtained, at the end of this study, the data set was split on a patient 
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basis and the study was continued. The purpose in doing this was to provide more 

appropriate progress to clinical studies. In the third study, patient-based stacked slices 

were used as the dataset. Here, three-dimensional (3D) data were obtained by combining 

all slices belonging to each patient. After that, the 3D versions of the models were created 

and classification studies were carried out. The fourth study is a comprehensive study [5] 

that includes three different experiments and contributes to the literature by revealing the 

positive effect of peritumoral areas. As the fifth study, transfer learning and fine-tuning 

studies were carried out. In this study, pre-trained models for different tasks such as object 

detection were examined on the medical dataset we have. In the last study, two shallow 

networks were created and successful results were tried to be obtained with the little data 

we have. All these studies include also many additional studies including various 

regularization, optimization and augmentation techniques. 
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Chapter 2 

Background 
 

2.1 Anatomy of The Respiratory System 

The lungs are a pair of respiratory organs located in the chest. While the lungs carry 

oxygen to the body during breathing in, they release carbon dioxide from the body during 

breathing out. The right and left lungs each have lobes. While the left lung has two lobes, 

the slightly larger right lung has three lobes. The bronchi diverge from the trachea 

(windpipe) into the right and left lungs. The bronchi are sometimes involved in lung 

cancer. Inside the lungs are air sacs called alveoli and tubes called bronchioles. Figure 

2.1 shows the anatomy of the respiratory system. This figure shows the lungs, trachea, 

airways, lymph nodes, and diaphragm. Oxygen taken into the lungs while breathing 

passes through the thin membranes of the alveoli into the bloodstream. The pleura, a thin 

membrane, covers the outside of the lungs and the inner wall of the chest cavity, forming 

a sac. This sac, called the pleural space, contains a small amount of fluid. This fluid helps 

the lungs move smoothly while breathing [6]. 

2.2 Lung Cancers 

There are many lung diseases such as asthma, chronic obstructive pulmonary disease 

(COPD), bronchitis, pneumonia, but the most dangerous is lung cancer. Cancer is a 

disease known as the spread of some cells in the body to surrounding tissues by dividing 

uncontrollably and without stopping. As a result of this uncontrolled spread, tissue masses 

called tumors may occur. Cancer can start anywhere in the human body, and if that 

location is the lung, it is called lung cancer. 
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Figure 2.17 Anatomy of the respiratory system [6] 
 

There are two main types of lung cancer, non-small cell lung cancer (NSCLC) and 

small cell lung cancer (SCLC). NSCLC is more common than SCLC. NSCLC are 

classified into squamous cell carcinoma (SqCC), adenocarcinoma (ADC), and large cell 

carcinoma [2]. Within the scope of this thesis, ADC and SqCC, which are the main two 

subtypes, have been dealt with and the automatic classification of these two subtypes has 

been studied. The most important risk factor for lung cancer is smoking, pipe or cigar 

smoking. Apart from this, many factors can be counted, such as radiation therapy, air 

pollution, and exposure to substances such as asbestos and arsenic. When smoking and 

these factors combine, the risk increases even more [6]. After some tests and procedures 

performed for the detection and diagnosis of NSCLC, a biopsy is performed if lung cancer 

is suspected. The process used to find out if the cancer has spread is called staging. It is 

important to determine the stage so that the treatment can be planned correctly. The main 

imaging modalities used for diagnosing and staging NSCLC are MRI, CT and PET. 
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2.3 Imaging Techniques in Lung Cancer 

Conventional chest radiography, computed tomography (CT), magnetic resonance 

(MR) and positron emission tomography (PET) are the main imaging techniques used in 

the detection, characterization, staging and follow-up of lung cancer. CT is successful in 

matters such as tumor size, localization, detection of lymph nodes and metastatic disease. 

PET / CT, which means combining anatomical information from CT and metabolic 

information from PET, is one of the best imaging techniques for staging lung cancer. MR 

imaging is considered promising in the evaluation of lung cancer patients [7]. This thesis 

covers studies using only PET images obtained from PET / CT scans. 

2.3.1 Chest Radiography 

The first imaging technique in lung cancer screening is chest radiography. Chest 

radiography, known as the most commonly used diagnostic imaging test, has the 

advantages of being simple, low cost and low radiation [8]. This method can also be used 

in defining lung lesions as benign or malignant. In addition, this method can be used to 

see some features about staging, but it cannot detect invasion and nodal involvement of 

the chest wall, diaphragm, and mediastinum [9]. The purpose of staging is to determine 

the degree of the disease and to select patients who will benefit from the surgery. Figure 

2.2 shows the procedure for chest radiography. 

 

Figure 2.18 Chest radiography procedure [10] 
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2.3.2 Computed Tomography 

Computed tomography (CT) is an imaging technique that creates cross-sectional 

images of the body with more detailed information than conventional X-rays by rotating 

X-rays rapidly around the body. These tomographic cross-sectional images, called slices, 

can be collected and stacked consecutively to obtain a three-dimensional (3D) image of 

the patient. This is to make it easier to identify and locate abnormalities or tumor tissues. 

In CT scanners, the X-ray tube is not fixed, they use a rotating X-ray source with a motor. 

During the CT scan, the patient lies in a slowly moving bed. Meanwhile, the X-ray tube 

rotating around the patient shoots X-rays through the body. X-rays are taken by special 

digital detectors and transmitted to the computer while leaving the patient. As the X-ray 

source completes a full rotation, a 2D image slice of the patient is created. Then, the bed 

is gradually shifted to get a new slice with a new scan. This process continues until the 

desired number of slices is obtained. The image slices can be kept separately or combined 

to obtain 3D images. In this way, in addition to certain structures in the body, clear 

visualization and localization of abnormalities can be achieved. CT scans can be used to 

view disease, tumors, bleeding, clots, and abnormalities in different parts of the body. CT 

scans, which are more detailed than conventional x-rays in imaging bone, joint, cartilage 

or tendons, are frequently used to reveal the size, shape and location of the lung tumor 

and to find disseminated cancer tissues [11] [12]. Figure 2.3 shows the CT scan 

procedure. 

 

 

Figure 2.19 CT scan procedure [13] 
 



 

 

8 

2.3.3 Positron Emission Tomography 

Although conventional imaging methods such as chest radiography and computed 

tomography (CT) are useful in the diagnosis and staging of lung cancer, they are not 

accurate enough. Positron emission tomography (PET) is an imaging modality that 

involves the procedure of injecting a small amount of radioactive glucose into a vein. The 

purpose of using this radioactive glucose, called [18F] 2-Fluoro-2-Deoxy-D-Glucose 

(18F-FDG), is to reveal the differences between glucose metabolism of tissues. Because 

malignant cancer cells are more active, they take up more glucose than normal cells. 

Making a picture of the glucose utilization of the tissues, by rotating around the body, the 

PET scanner more brightly displays the parts that consume glucose more, namely 

malignant tissues. PET scanning, which enables successful detection of metabolic and 

physiological abnormalities in tumor imaging, gives more accurate results than CT and 

magnetic resonance imaging (MRI) in staging lung cancer and evaluating therapeutic 

response [6][14-17]. Figure 2.4 shows the procedure for PET scanning. Figure 2.5 shows 

CT and PET images of a cancerous lung [18]. 

 

 

Figure 2.20 PET scanning [6] 
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Figure 2.21 CT and PET images of a cancerous lung [18] 
 

2.3.4 PET / CT Imaging 

PET / CT imaging, which refers to the combination of CT and PET techniques in 

order to see anatomical and metabolic details clearly, provides sharper and better 

definition and localization of the lesions. CT scanning provides anatomical details with 

2D or 3D images. However, despite its improved image quality, it may not provide 

enough accurate information. PET / CT has a higher sensitivity than PET alone. In 

addition, tumor evaluation can be difficult because PET images are limited in terms of 

anatomical information. Combining CT and PET, provides easier and faster diagnosis 

and detection since it includes metabolic information. It is also a very successful imaging 

technique for lung cancer staging [7]. Figure 2.6 shows CT (left), FDG-PET (middle) and 

FDG-PET / CT images of an individual diagnosed with NSCLC. As indicated by the 

arrow in the figure, FDG-PET / CT aids in the diagnosis of a vital infracarinal metastasis. 

Figure 2.7 shows FDG-PET / CT of a patient with NSCLC. FDG-PET / CT provides the 

most accurate differentiation of tumor tissue. Figure 2.8 shows FDG-PET / CT of another 

patient with NSCLC. Here, a 0.5 cm diameter supraclavicular lymph node metastasis is 

seen on PET / CT, which is not visible on CT alone and is uncertain on FDG-PET [19]. 

 

 

Figure 2.22 CT (left), FDG-PET (middle) and FDG-PET / CT (right) images of a 
patient diagnosed with NSCLC [19] 
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Figure 2.23 FDG-PET / CT of a patient with NSCLC [19] 

 

 

Figure 2.24 FDG-PET / CT of a patient with NSCLC (supraclavicular lymph node 
metastasis) [19] 

2.4 Subtype Classification of Non-Small Cell Lung 

Cancer in Positron Emission Tomography Imaging 

84% of lung cancers are non-small cell lung cancer (NSCLC) [20]. 

Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two major 

subtypes of NSCLC. While 40% of lung cancers are ADC, 25-30% are of SqCC [21]. 

Understanding the effects of cytotoxic and biological agents suggests that subtype-

specific treatment methods may be developed in the future. From this point of view, it 

shows the importance of the differentiation of ADC and SqCC [22]. Small lung biopsies 

(bronchoscopic, needle or core biopsies) and cytology specimens are used for lung cancer 

diagnosis. In general, standard morphological criteria by routine microscopy are essential 

to differentiate these two subtypes. However, bad morphology, especially in small 
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specimens, can sometimes lead to difficult differentiation of tumors. On the other hand, 

sampling error that may occur during the biopsy procedure would be problematic in 

representing intratumoral heterogeneity. 

Positron emission tomography (PET) is a functional imaging approach that has 

been widely used in medicine, and provides significant diagnostic benefits. It is also a 

very effective and efficient method for staging and therapy of tumors. According to 

radiomics, medical images carry more information than obtained by visual examination 

[23]. With high-resolution PET images, it has become possible to obtain inferences with 

image processing methods. In this regard, it has become possible to recognize tumor 

characteristics using PET images. 

Machine learning examines the algorithms that recognize complex patterns, and 

make predictions from the available data (such as the medical images in our case) to come 

up with intelligent decisions. In oncology, machine learning methods are used in different 

applications such as cancer prognosis and prediction [24], survival analysis [25], drug 

response [26], gene expression [27] and subtype differentiation [4]. As a machine learning 

methodology, artificial neural networks (ANN) based approaches involve learning and 

prediction algorithms that mimic the human brain in terms of recognition and decision-

making. ANN methods are used in oncology in different applications such as tumor 

detection [28] and diagnosis [29]. Deep learning (DL) is an advanced neural network type 

with more layers to allow higher levels of abstraction. Deep convolutional neural 

networks (CNN) have brought breakthroughs in image-based studies [30]. They are 

highly successful in solving difficult problems such as recognizing objects in real world 

images [31], [32]. In recent years, there have been increasing number of cancer related 

studies using deep learning such as cancer detection and gene identification [33], skin 

cancer classification [34], histopathological diagnosis [35]. In addition, there are several 

studies [36], [37] showing that deep learning approaches are more effective and 

successful when compared to other machine learning methods in cancer-related 

classification problems. Diagnosis and classification studies using CT images [38], [39] 

are also available for lung cancer. However, CT images do not reflect the metabolic and 

heterogeneity information about the tumor which is highly critical in tumor subtype 

determination and is accessible when PET imaging is used. We should note that there are 

limited number of DL-based studies using PET images aiming lung cancer diagnosis [40]. 

Especially, subtype classification in NSCLC has not been explored using PET images 

and DL. 
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2.4.1 Feature Extraction 

A computer diagnostic analyzer is used to provide information that will help 

radiologists make decisions. However, such information is difficult to interpret due to 

difficulties such as poor morphology. For this reason, various techniques are used in order 

for the radiologist to interpret and classify the images correctly. The features obtained 

from the image are used to classify them correctly. Here, it is necessary to mention feature 

extraction methods. But before this, segmentation methods are used to segment tumor-

like structures in medical images and to serve feature extraction methods afterwards. 

Since manual segmentation is difficult and takes long time, computer-aided segmentation 

techniques are generally investigated. Various segmentation methods developed over the 

years have emerged. Figure 2.9 shows the diagram in which these methods are grouped 

under some headings [41]. 

 

 

Figure 2.25 Various segmentation techniques [41] 
 



 

 

13 

The purpose of segmentation is basically to segment the image into regions based 

on attributes. By applying segmentation, the region of interest is defined in order to 

explain the anatomical structures on the medical image. Obsolete segmentation 

techniques, developed in the late 1990s, are mostly no longer used. Ancient techniques 

are also old, but still used in many areas. Recent segmentation techniques, which are 

relatively new in medical imaging, include some artificial intelligence-based methods to 

address some of the uncertainties of medical images. 

The definition of radiomics was made by Kumar et al. as: “The extraction and 

analysis of large amounts of advanced high throughput of imaging features with high 

throughput from medical images obtained with computed tomography, positron emission 

tomography or magnetic resonance imaging. Importantly, these data are designed to be 

extracted from standard-of-care images, leading to a considerable potential subject pool” 

[42]. It is possible to classify radiomic features according to feature extraction techniques. 

Tissue and shape features are widely used. For example, intensity levels obtained from 

an area of tumor tissue in an image can contain valuable information. The gray intensity 

level relationships among the volumetric elements (voxels) are explained by the textural 

feature of the radiological image. On the other hand, it is necessary to focus on the shape-

based features for morphological analysis [43]. Feature extraction methods commonly 

used in the analysis of PET images are briefly explained below. 

• Statistical distributions of density combinations of certain positions in an image 

are used to statistically calculate texture features. The number of pixels identified 

as intensity points defines the statistical level. These are first-order, second-order, 

or higher-order statistics. A technique for extracting second-order statistical tissue 

features is the gray-level co-occurrence matrix (GLCM) [44]. Defining the 

relationship between neighboring pixels, the GLCM indicates the repetition 

frequency of the image brightness at a given distance and direction. Generally, 

the distance between pixels is considered to be one pixel when constructing the 

co-formation matrix. Homogeneity, autocorrelation, contrast correlation, and 

energy are some of the features extracted by GLCM [45]. 

• Gray-level run-length matrix (GLRLM) is used to extract the regional features in 

order to reveal the coarseness of image textures in specific directions for a certain 

segmented area. The length of consecutive voxels that share the same gray level 

intensity in a specific linear direction is defined as a run. Fine textures have shorter 
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runs with similar gray level intensities, while coarse textures have longer runs 

with different gray level intensities [46]. With the application of this technique, 

which is the essence of the GLRLM method, the features of these fine and coarse 

image tissues are extracted. 

• Gray-level size zone matrix (GLSZM) deals with the size of each area formed by 

pixels with the same intensity level in an image. Because a homogeneous texture 

means large areas of the same density rather than small groups of pixels in a 

certain direction. The homogeneity of the texture and the width and flatness of the 

matrix are directly proportional. Also, this matrix does not require calculations in 

various directions with respect to different areas and is advantageous in this sense. 

However, the number of gray levels should be specified, which makes robust the 

calculations against noise [47]. 

• The textural features calculated by the neighborhood gray tone difference matrix 

(NGTDM) are related to the differences between a centre voxel and its 

neighboring voxels within a given window size. It has some parameters such as 

coarseness, busyness and contrast. Coarseness, one of the most basic texture 

features, is related to the granularity information of the image. Busyness is related 

to the rate of change in intensity in an image. Contrast is related to the dynamic 

range of the intensity levels in the image [48]. 

The convolutional neural network (CNN) model, which is a deep learning method 

specialized on images, has a feature extraction part in itself. Figure 2.10 shows a 

representation of a convolutional network. Designed with the aim of classification, this 

network has 5 different layers as input, convolution, pooling, fully-connected and output 

layers. The input layer determines the size for images that are input to the network. 

Images may need to be resized depending on the situation. Here, three layers representing 

RGB channels are seen. The image coming into the convolution layer is convolved with 

multiple kernels using weights. Then, the pooling layer reduces the size of the image 

while trying to prevent possible information loss. These two layers (convolution and 

pooling) form the feature extraction part. Just before the output layer there is a fully-

connected layer. The weighted features are combined in this layer. The fully-connected 

layer forms the classification part of the network. Finally, in the output layer there is one 

output neuron for each class [49]. In this way, the features of an image given as input are 

extracted and the classification process is performed. 
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Figure 2.26 Schematic diagram of a convolutional neural network [49] 
 

As a mathematical summary, convolution operation refers to how one of two 

functions changes the other. The mathematical formula of convolution operation is as 

follows. 

 

(𝒇 ∗ 𝒈)(𝒕) ≝ ∫ 𝒇(𝛕)𝒈(𝒕 − 𝝉)𝒅𝝉/0
10     (2.1) 

 

Figure 2.11 shows the input image and feature detector matrix [50]. Generally, 3x3 matrix 

is used as feature detector, but sometimes 5x5 or 7x7 matrices are also used. Feature 

detector is often referred to as kernel or filter. 

 

 

Figure 2.27 Representation of input image and feature detector in the convolutional 
operation [50] 
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The 3x3 feature detector is placed in the upper left corner as the starting point over the 

input image, and the number of cells that feature detector matches the input image is 

counted. The matching cell number is then put to the upper left cell of the feature map. 

Figure 2.12 shows this process [50]. 

 

 

Figure 2.28 First step of the convolution operation to generate a feature map [50] 

 

As a second step, the same operation is done by shifting feature detector one cell to the 

right. These steps are performed for all rows. The feature map created as a result of all 

operations is seen in Figure 2.13 [50]. 

 

 

Figure 2.29 Generated feature map as a result of the convolution operations [50] 
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Operations are not that simple in CNN models. More than one feature maps are generated 

using multiple feature detectors. Then, these feature maps form the convolutional layers 

as shown in Figure 2.14 [50]. 

 

 

Figure 2.30 Obtaining the convolutional layer [50] 

 

The rectified linear unit (ReLU) is a supplementary step (Figure 2.15) to the convolution 

operation. This process is applied to increase the non-linearity in the image. Because 

images are not actually linear anyway. The image can evolve towards linearity with the 

convolution operation and for this reason this is tried to compensate by using ReLU [51]. 

 

 

Figure 2.31 The rectified linear unit (ReLU) [51] 
 

In max pooling, a 2x2 box is placed in the upper left corner. The largest of the values in 

the 4 cells on which this box stands is taken and placed in the pooled feature map. Figure 
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2.16 shows a representative example of this process. Here, as common, 2-pixel steps are 

used when shifting the box. The resulting 3x3 pooled feature map is seen. Even if a part 

of the box is empty while shifting the box, the operations are continued in the same way. 

The purpose of this process is to get rid of unnecessary information and some possible 

distortions. In addition, this process also serves to prevent overfitting that may occur in 

complex networks as it will minimize the image size and number of parameters [52]. 

 

 

Figure 2.32 Max pooling operation [52] 
 
The pooled feature map obtained after max pooling is subjected to flattening operation. 

With the application of this operation, the pooled feature map will turn into a column as 

shown in Figure 2.17. The purpose of the flattening operation is to prepare the features 

for the fully-connected layer that will come in the next step, namely the artificial neural 

network [53]. The feature vector obtained after flattening is passed through the artificial 

neural network. As a result, an estimate is obtained. If the network's task is to classify 

cats and dogs, for example, then a cat or dog prediction will come as output. If an incorrect 

estimation is made, the error is calculated using the loss function. As a result, information 

about how well the network works is obtained. Then, in line with this information, 

weights are updated again to increase prediction success, and in this way, the network 

continues to be optimized until the loss value is minimized. Figure 2.18 shows a fully-

connected layer between input and output layers. However, it is not uncommon to use 

more than one fully-connected layer at the end of CNN models [54]. 
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Figure 2.33 Flattening operation [53] 

 

 

Figure 2.34 A representation of the fully-connected layer [54] 

 



 

 

20 

Figure 2.19 represents a summary of all essential operations (input, convolution, ReLU, 

pooling, flattening, fully connection and prediction) in a CNN model as a whole picture 

[55]. 

 

 

Figure 2.35 Summary of operations in a CNN model [55] 
 

2.4.2 Image Classification 

Image classification is the process of predicting which class the relevant image 

belongs to by passing the features taken from the images through certain processes and 

this is a supervised learning problem. Based on this, it can be said that the obtained feature 

values have a direct effect on the classification success. And, if there is a segmentation 

stage before feature extraction, the success of segmentation is directly proportional to the 

success of feature extraction and hence classification. Especially when it comes to 

medical images, this becomes more important. Because medical images are generally 

scarce and also contain more valuable information. The classification process includes a 

number of processes such as data splitting, training, testing and optimization. First of all, 

the data is split into two parts, for example 80% training and 20% test sets. Here, while 

the network is trained with the training set, it is tested how well the network is trained 

with the test set. Also, k-fold cross-validation method can be applied. For example, in a 

10-fold cross-validation application, all data is split into 10 equal parts and one of these 

parts is used as a validation set for each training stage, while the remaining data is used 

as a training set. In addition, the stratify method, which ensures balanced splitting of the 

data, is important and widely used. After data splitting, training process is started. The 
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classification error (loss) is calculated by testing after the network trained in the training 

process. The loss value reveals how well the network is performing. Weights on the 

network are then updated and the training process is repeated in order to optimize the 

network for more successful results. One forward pass and one backward pass of all the 

training samples through the network during the training process is called one epoch. 

Generally, these samples are given in batches (partially). Therefore, dividing the total 

number of samples by the number of samples in each batch (batch size) gives the total 

number of iterations in an epoch. Epoch number is indicated before training begins. As 

the number of epochs increases, success may not always increase, and too much training 

may cause overfitting. In other words, after a certain number of epochs, the success rate 

may remain stable or decay. One of the ideal ways to solve this problem is to apply early 

stopping. The early stopping method stops the training process if the success does not 

increase or the loss value does not decrease after a certain epoch and guarantees the best 

success or loss values achieved in the training process. 

2.4.3 Deep Learning Models 

Deep learning is a popular machine learning approach. Deep learning networks 

have successive layers that use the output from the previous layer as input. While the 

early layers carry more basic features, later layers carry more complex features. For 

example, information, such as edges and corners, is carried in the early layers, while the 

later layers carry structures such as parts and organs formed by these edges and corners. 

The difference and advantage of deep learning from classical machine learning methods 

is that it does not require handcrafted feature extractions from the image. In classification 

problems, images are given to the deep learning model and the classification process is 

started by transferring the required features to the fully-connected layers at the end of the 

network by applying a series of processes. Fully-connected layers, which are in essence 

an artificial neural network, perform the classification process. In other words, if we take 

a CNN model, fully-connected layers are responsible for the classification process, while 

the previous parts that have operations such as convolution and pooling are responsible 

for feature extraction and transfer. Since deep learning models are generally many layered 

and complex networks, they require powerful GPUs for image-based studies. 

Multi-layer perceptron (MLP) models, which are made deeper by adding many 

hidden layers, have a structure consisting of fully-connected layers without operations 
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such as convolution and pooling. Figure 2.20 shows a schematic representation of the 

MLP network [56]. In this figure, there is one input, one output and 2 hidden layers. 

However, it is possible to form deeper MLP models by using more hidden layers. 

 

 

Figure 2.36 A representation of the MLP architecture [56] 
 

Almost all modern deep learning methods include convolutional and pooling layers. 

In addition, models are being introduced day by day, which are more complex, contain 

more parameters and therefore require more calculations. LeNet, the first network has 

convolution-based operations was used by Yann LeCunn in 1998 to recognize 

handwritten numbers (MNIST dataset). Figure 2.21 shows LeNet architecture [57]. This 

model has 2 convolutional and 2 fully connected layers. 

 

 

Figure 2.37 LeNet architecture [57] 
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With the increase in the number of images and the development of powerful GPUs, 

networks that require more complex and high computing power have become 

experimentable (e.g., AlexNet  [58]). Competitions on ImageNet data helped to reveal 

deeper CNN models. There are different versions of the VGG model, which performed 

very well in the field of classification and localization in the ImageNet competition held 

in 2014. The VGG16 model, which has 13 convolutional and 3 fully-connected layers in 

its architecture, has 138 million parameters, while VGG19 has 144 million parameters 

with 16 convolutional layers and 3 fully-connected layers [59]. The architectures of the 

VGG16 and VGG19 models are shown in Figure 2.23. 

 

 

Figure 2.38 Schematic diagram of (a) VGG16 and (b) VGG19 models 

 

While deeper networks continued to be developed, the search for success with 

simpler networks also continued. One of these studies, SqueezeNet, achieved the success 

of AlexNet with 50 times less parameters. Some structural improvements underlie its 

success. SqueezeNet is used to reduce the model size, and the number of parameters while 

maintaining competitive accuracy. To achieve this, there are three main strategies used in 

SqueezeNet architecture [60]. 

• Strategy-1: Smaller network by replacing 3×3 filters with 1 × 1 filters. 

• Strategy-2: Limited number of input channels (3 × 3 filters). 

• Strategy-3: Delayed downsampling for higher classification accuracy of large 

activation maps. 

The squeeze and expand structures inside the fire modules developed to realize these 

strategies are shown in the figure. These structures contain 1x1 and 3x3 convolutional 

filters. Figures 2.24 and 2.25 show SqueezeNet architecture. This model, which contains 

eight fire layers between two convolutional layers, ends with a classifier, softmax. 
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Figure 2.23 Organization of convolution filters in the fire module of SqueezeNet [60] 
 

 

Figure 2.24 View of SqueezeNet architecture [60] 
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2.4.4 Hyperparameter Optimization 

Hyperparameter is a parameter used by the designer of the model to control the 

learning process and can be optimized with different values. Although very successful 

results obtained especially in image-based studies, there are still many difficulties in 

achieving success. Computational costs are also increasing as more and more deep 

models are developed to achieve more successful results, and the image quality increases. 

For this reason, faster GPU requirements are constantly emerging. It is not enough to use 

only standard models to achieve successful results. It is possible to increase the standard 

performance of the model to higher levels if the correct hyperparameters and the correct 

values corresponding to them are used. In addition, overfitting is very likely in very deep 

and complex networks. With some hyperparameters such as optimizers and regularizers, 

it is possible to increase the success of the model by avoiding overfitting problems. 

Updating of parameters in deep learning is done by backpropagation process. In the 

backpropagation process, firstly, the difference is found by taking a backward derivative 

called “chain rule”. Then, the difference value found is multiplied with the learning rate 

parameter. Then the result is subtracted from the weight values and the new weight value 

is calculated. The learning rate parameter used during the training process can be 

determined in four ways: 

1. It can be determined as a fixed value. 

2. It can be determined as a step incrementing value. 

3. It can be determined depending on the momentum value. 

4. It can be learned during learning by adaptive algorithms. 

 

In deep learning applications, training by processing all the data in the data set at 

the same time is a costly task in terms of time and memory. Because, in every iteration 

of learning, gradient descent calculation is performed backward on the network with the 

backpropagation process and the weight values are updated in this way. To solve this 

problem; the data set is divided into small groups and the learning process is carried out 

on these small groups. Processing more than one input in parts in this way is called mini-

batch. The value determined as mini-batch parameter while designing the model; it means 

how many data the model will process at the same time. The specified batch value must 

fit into the GPU memory. For this reason, batch size should be determined in multiples 
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of 2. For example, 2, 4, 8, 16, 32,…512 etc. If it is not specified in this way, there may 

be sudden drops in performance. 

The most important feature that distinguishes the deep learning method from other 

artificial neural networks, especially in complex problems, is the number of layers. The 

concept of depth comes from here. There is no common method for deciding the number 

of layers. However, one can start with a single-layer or two-layer network and concentrate 

on finding suitable hyperparameters. The number of layers can then be increased 

gradually. Increasing the number of layers does not have much effect after a certain point. 

After this point, the performance of the model should be tried to be increased with other 

hyperparameters. However, layer limit should be investigated in order to observe the 

limits of the model. The number of neurons indicates the number of information kept in 

memory. The high number of neurons increases the memory need and calculation time. 

In the case of a non-GPU environment, these criteria should be considered. However, low 

number of neurons can causes underfitting. Another feature is the different distribution 

of the number of neurons between layers. In other words, while using more neurons in 

the first layers, continuing it by decreasing it in the advancing layers produces a 

regularization effect. This is the reason why the dropout method works [61]. 

It is known that the learning process in deep learning applications is basically an 

optimization problem. Optimization methods are used to find the optimum value in the 

solution of nonlinear problems. Deep learning applications commonly use optimization 

algorithms such as stochastic gradient descent (SGD), RMSprop, Adadelta and Adam. 

These algorithms differ in performance and speed. 

• Gradient Descent with Momentum: It is aimed to reach the best result in the fastest 

way in gradient descent. It is inconvenient that the steps taken to reach the global 

minima are too small or too large. Because if very small steps are taken, it may be 

possible to get stuck in local minima. Very big steps, on the other hand, become 

harder to reach the target due to excessive deviating attempts. In both cases, the 

global minima is reached too late or not at all. Gradient descent with momentum 

has been proposed to eliminate this problem [62]. With this method, dynamic 

averages of past learning steps guide future steps. This way, the target is 

approached faster with fewer deviations. 

• RMSprop (Root Mean Square Propagation): The RMSprop method was proposed 

by Geoffrey Hinton [63]. This method implements learning steps using a different 

learning rate for each parameter. These learning rates can be updated according 
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to the results obtained. Since this method does not consider distant points, it can 

accelerate the convergence. In the Adadelta optimization method [64], the 

parameters have a gradually decreasing learning speed and the learning process 

cannot take place after a certain point. RMSprop has been proposed to solve this 

problem. 

• Adam (Adaptive Moment Estimation): Adam, an adaptive optimization 

algorithm, works more efficiently than stochastic gradient descent method [65]. It 

keeps the momentum changes as well as dynamically updating the learning rate 

for each parameter. That is, Adam combines the momentum and RMSprop 

methods. 

The most commonly used regularization methods to prevent overfitting in deep learning 

methods are lasso [66] and ridge regression [67]. Lasso and ridge are also known as L1 

and L2, respectively. To avoid overfitting, L1 deals with the estimation of the median of 

the data while L2 deals with the estimation of the mean of the data. The sum of the 

absolute values of the weights in the L1 method and the sum of the squares of the weights 

in the L2 method are calculated and added to the total error function after multiplying the 

values obtained by a regularization coefficient. If the regularization coefficient is 

determined too small here, it may cause overfitting. If this coefficient is chosen too large, 

it will cause underfitting. The aim of dropout method, which is one of the most frequently 

used techniques, is to drop some neurons randomly from the hidden layer according to a 

determined ratio [68]. These neurons, which are dropped to prevent overfitting, are not 

included in the process during backpropagation also. 
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Chapter 3 

Study-1 

3.1 Classification of Non-Small Cell Lung Cancer 

Subtypes with Artificial Neural Networks 

Artificial Neural Networks (ANN) based approaches are artificial intelligence 

methods inspired by the ability of the human brain to process data with the neurons. 

Neurons in the system process the incoming inputs with some techniques and convert 

them into decision outputs. In the literature, ANN have been used to solve different 

problems in the field of medicine as in many other fields. Used in computer aided 

diagnosis, ANN have an important place in terms of detecting and recognizing certain 

structures (region of interest) in medical images [69-78]. The variety of problems and 

imaging methods used in these studies show that the ANN method can be applied to a 

wide range of areas. Edge detection and segmentation studies are common in analyzing 

medical images, especially in region-based investigations. Within the scope of these 

studies, the ANN method is frequently used [79-85]. In addition, cancer research is among 

the medical studies using ANN. Studies such as classification of brain cancer [86], early 

detection of prostate cancer [87], lung cancer detection [88], [89], survival analysis on 

breast cancer [90], prediction of breast cancer malignancy [91] can be cited as examples. 

Lung cancer is one of the most dangerous diseases. This cancer type has two main 

varieties. First one is non-small cell lung cancer (NSCLC). And the other one is small 

cell lung cancer. Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are two 

subtypes of NSCLC. Ayyildiz et al. conducted a study using classical machine learning 

methods to differentiate these two subtypes [4]. First, they performed tumor segmentation 

from PET images using the random walk method. Later, they extracted 39 features from 

the segmented images to be used in classical machine learning methods. In our study, 

these 39 features were used to produce a solution to the subtype classification problem 
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with the ANN approach. For this reason, brief information about the feature extraction 

methods used is given in the coming section. 

3.2 Materials and Methods 

This study was performed using 18F-FDG PET / CT images of 93 patients with 

NSCLC. Images were obtained from patients with the help of PET / CT device (Siemens 

Biograph 6, HiRez). in Nuclear Medicine Department of Acıbadem Kayseri Hospital in 

Kayseri between March 2010 and April 2014. The study was approved by the Research 

Ethics Committee of the Kayseri Research and Training Hospital (KRTH) for 93 patients, 

5 of whom were female and 88 were male and whose mean age was around 63 (Age 

interval: 39-84). As tumor subtype, 39 patients from 93 patients were diagnosed with 

ADC and the rest were diagnosed with SqCC. The specimens obtained with fine needle 

or excisional biopsy was evaluated in the pathology section of Kayseri Research and 

Training Hospital in terms of tumor subtype. 

Ayyildiz et al. performed the study shown in Figure 3.1 using classical machine 

learning methods to differentiate two subtypes of NSCLC (ADC and SqCC) [4]. The 39 

features obtained within the scope of this study were used as inputs to ANN in our study.  

 

 

Figure 3.4 Summary of the work from which the features were obtained [4] 
 

From 39 features, 8 using gray level cooccurrence matrix (GLCM) [44], 13 using gray 

level run length matrix (GLRLM) [46], 13 using gray level size zone matrix (GSZM) 

[47], and 5 using neighborhood gray tone difference matrix (NGTDM) [48] were 
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obtained. The details of these approaches can be found elsewhere [92]. In addition, these 

methods, which are widely used in the literature, have been investigated in recent studies 

[93] [94]. The features we used in our classification study as the inputs to the ANN to be 

trained are shown in Table 3.1. 

 

Table 3.2 Feature extraction methods and features extracted using these methods 
Feature Extraction Methods Features 

GLCM 

Energy 

Contrast 

Entropy 

Homogeneity 

Correlation 

Sum Average 

Variance 

Dissimilarity 

GLRLM 

Short Run Emphasis (SRE) 

Long Run Emphasis (LRE) 

Gray Level Non-Uniformity (GLN) 

Run Length Non-Uniformity (RLN) 

Run Percentage (RP) 

Low Gray Level Run Emphasis (LGLRE) 

High Gray Level Run Emphasis (HGLRE) 

Short Run Low Gray Level Emphasis (SRLGLE) 

Short Run High Gray Level Emphasis (SRHGLE) 

Long Run Low Gray Level Emphasis (LRLGLE) 

Long Run High Gray Level Emphasis (LRHGLE) 

Gray Level Variance (GLV) 

Run-Length Variance (RLV) 

GLSZM 

Small Zone Emphasis (SZE) 

Large Zone Emphasis (LZE) 

Gray Level Non-Uniformity (GLN) 

Zone Size Non-Uniformity (ZSN) 

Zone Percentage (ZP) 

Low Gray Level Zone Emphasis (LGZE) 

High Gray Level Zone Emphasis (HGZE) 

Small Zone Low Gray Level Emphasis (SZLGE) 

Small Zone High Gray Level Emphasis (SZHGE) 
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Large Zone Low Gray Level Emphasis (LZLGE) 

Large Zone High Gray Level Emphasis (LZHGE) 

Gray Level Variance (GLV) 

Zone Size Variance (ZSV) 

NGTDM 

Coarseness 

Contrast 

Busyness 

Complexity 

Strength 

 

According to the definition made by Engelbrecht [95], the human brain is a complex 

system that functions like a parallel computer that has the potential to perform tasks 

extremely quickly. ANN, an artificial learning approach developed inspired by the 

learning ability of the human brain, imitate the transmission of information by biological 

nerve cells with the help of signals. Figure 3.2 shows the human nervous system 

consisting of a three-stage system [96]. At the center of this system is the brain. In the 

figure, arrows from left to right indicate transmission of information, while arrows from 

right to left represent feedback. Receptors convert external impulses into electrical signals 

and transmit them to the neural net, i.e. the brain. Effectors convert the electrical impulses 

sent by the neural net into interpreted outputs. 

 

 

Figure 3.5 Block diagram representation of nervous system [97] 

 

Figure 3.3 shows a biological neuron and an artificial neuron inspired by it. The dendrites 

in the biological neuron correspond to the input in the artificial neuron, while the axons 

represent the output. Cell body corresponds to transfer functions. Weights are used to 

represent the function of synapses. The basic components of the artificial neural network 

can be explained as follows. 
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Figure 3.6 (a) Biological neuron [98] and (b) artificial neuron [97] 

 

The task of the input layer is to send the inputs directly to the next layer without any 

calculation or processing. The weights contain certain coefficients to show how important 

the inputs are. Therefore, they are very important elements for the success of the network. 

Hidden layers are layers located between the input and output layers and can be multiple. 

A small number of hidden layers may cause insufficient learning, and too many of these 

layers cause the network to fail due to memorization. Therefore, the number of hidden 

layers is among the hyperparameters that need to be optimized. The values collected by 

the summation junction are sent to the activation function. The activation function is also 

known as the transfer function. There is an activation function for each neuron, and these 

functions make certain calculations to provide neuron outputs. Different types of 

summation and activation functions can be used. Output layer is the layer in which inputs 

given to the network from the input layer are transformed into final network outputs. 

There is only one input and one output layer in a neural network. ANN basically consist 
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of these components, but network models customized according to the problem can be 

designed [98]. 

In this study, fast artificial neural network library (FANN) was used for ANN 

trainings [99]. Applying multi-layer feed forward networks, FANN is designed to be fast 

and easy to use. In the use of this library, FANN Tool was used as a GUI [100]. There 

are some training algorithms in the FANN library. The algorithm to be used for the 

training process is chosen with the fann_set_training_algorithm function. Here, 

FANN_TRAIN_RPROP algorithm is used by default. We can briefly explain these 

algorithms used in our study as follows: 

• FANN_TRAIN_INCREMENTAL: It is the standard backpropagation algorithm. 

Weights are updated after each training. In this method, weights are updated many 

times during each epoch and it is not suitable enough for complex problems while 

working fast for some problems. 

• FANN_TRAIN_BATCH: In this method using the standard backpropagation 

algorithm, the weights are updated only once during an epoch according to the 

mean square error calculation. In this sense, it is different from the incremental 

training algorithm. Batch training algorithm works slower, but due to more 

accurate error calculation, it gives more successful results in some problems than 

incremental training algorithm. 

• FANN_TRAIN_RPROP: This method, which is a more advanced version of 

batch training algorithm, does not use learning_rate and works adaptively. It gives 

good results for many problems. The RPROP algorithm is described by the work 

done by Riedmiller and Braun [101]. However, actually used here is the iRPROP 

algorithm, a type of RPROP algorithm introduced by Igel and Husken [102]. 

• FANN_TRAIN_QUICKPROP: Quickprop algorithm [103], which emerged as a 

more advanced version of batch training algorithm, has gained the potential to 

give better results by including the learning_rate parameter. 

Some activation functions were used during the training processes. These activation 

functions, which are standard in the FANN library and used with the training algorithms 

mentioned above, are as follows: 

• FANN_SIGMOID: Sigmoid, one of the most widely used activation functions, 

outputs between 0 and 1. It is especially used in binary classification problems. 
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• FANN_SIGMOID_STEPWISE: This method, which outputs between 0 and 1 and 

is defined as a stepwise linear approximation to sigmoid, works faster than 

sigmoid, but is less precise. 

• FANN_SIGMOID_SYMMETRIC: This function, known as tanh and one of the 

most used activation functions, outputs between -1 and 1. 

• FANN_SIGMOID_SYMMETRIC_STEPWISE: This method, which outputs 

between -1 and 1 and is defined as a stepwise linear approximation to symmetric 

sigmoid, works faster than symmetric sigmoid, but is less precise. 

3.3 Results and Discussion 

In summary, for subtype classification of NSCLC, 39 features obtained from PET 

images using feature extraction methods was given to ANN. Training and tests were 

carried out using mentioned training algorithms and activation functions. The results of 

the four algorithms of FANN Library are shown in Table 3.2. These are developed and 

specialized algorithms based on the backpropagation algorithm. According to Table 

3.3.1, Incremental, the basest training algorithm, has the lowest success. Batch and 

RPROP, which are more advanced algorithms, achieved 68% success rate. Quickprop, 

the most advanced algorithm, achieved the highest success with 73% test accuracy. 

Such subtype classification studies are very important in terms of subtype-specific 

therapies. Therefore, the methods developed to solve the problem of differentiating ADC 

and SqCC from each other and the optimization studies on these methods are equally 

important. It can be said that ANN, which is a machine learning method, forms the basis 

of deep learning methods. Based on this, the results obtained provided motivation for the 

deep learning studies in the subtype classification of NSCLC problem carried out 

thereafter. 

 

Table 3.3 Train and test success of training algorithms 

Training Algorithm Train Accuracy (%) Test Accuracy (%) 

Incremental 86 54 

Batch 87 68 

RPROP 88 68 

Quickprop 87 73 
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Chapter 4 

Study-2 

4.1 Deep Learning Methods in Slice-Based Subtype 

Classification of Non-small Cell Lung Cancer 

Computer-aided technologies have been used in the medical field for many years. 

With the development of computer-aided imaging technologies as well as machine 

learning methods, research on decision support mechanisms, automatic detection, 

segmentation and classification have gained momentum. The major developments in the 

automatic analysis of medical images have been thanks to the convolutional neural 

networks (CNN) method as in other image types. 

In this study, two-dimensional slices containing tumor tissues segmented using the 

random walk method from PET images were used. Here, we examined multilayer 

perceptron (MLP) model and LeNet, SqueezeNet, VGG16 and VGG19 as CNN models 

to classify two subtypes of NSCLC using these slices. This study is a slice-based study, 

and while the train and test data sets were split, they were kept on a slice basis, not on a 

patient basis. We used some optimizers and regularization methods to increase the 

success of the models. We also considered optimizing certain hyperparameters of these 

models by performing cross-validation on each training set. 

4.2 Materials and Methods 

This study was performed using 18F-FDG PET / CT images of 94 patients with 

NSCLC. The images were obtained in the Nuclear Medicine Department of Acıbadem 

Kayseri Hospital in Kayseri between March 2010 and April 2014. The PET / CT imaging 

device was Siemens Biograph 6, HiRez. 10 to 15 mCi of 18F-FDG was injected to the 

patients and PET / CT acquisitions were performed approximately 60 minutes after the 

injection. At 8 or 9 bed positions PET scanning was performed for 2 to 3 minutes at each 



 

 

36 

position. Three-dimensional iterative reconstruction algorithm was used for the 

reconstruction of the images. Two nuclear medicine experts evaluated the images and 3D 

whole body projection using the e-Soft software platform (Siemens, USA). This study 

was approved by the Research Ethics Committee of the Kayseri Research and Training 

Hospital (KRTH) with protocol number 20.02.2013/55. All procedures performed in 

studies involving human participants were in accordance with the ethical standards of the 

institutional and/or national research committee and with the 1964 Helsinki Declaration 

and its later amendments or comparable ethical standards. Informed consent was obtained 

from all individual participants included in the study. Five of the patients were female, 

and 88 were male (mean age was around 63, age interval was 39-84). Until now, no 

studies were published regarding the tumor variability among male or female NSCLC 

patients. Thus, we have designed this study without considering the effect of gender on 

cancer subtype characteristics. Thirty-eight patients were diagnosed with ADC, and the 

rest were diagnosed with SqCC. For the diagnosis, the specimens were obtained with fine 

needle or excisional biopsy, and the subtype evaluations were performed in the pathology 

department of KRTH. 

Even though we obtained PET and CT images, we mainly focused on the PET 

images, especially the slices with tumors. Here, tumor tissues segmented from PET 

images by random walk method were used. As a result, we had a total of 1457 segmented 

PET slices that consisted of 516 ADC and 941 SqCC subtypes. The images and their 

labels were stored in order to get prepared for the next stage. While Figure 4.1 shows four 

segmented slices with a tumor obtained from one patient, Figure 4.2 and 4.3 depict 

segmented slices obtained from different patients with ADC and SqCC subtypes, 

respectively. In order to provide the sub-images containing the tumor with a uniform size 

to the deep learning models, we had to specify a common and appropriate size for them. 

The maximum row and column values of the segmented images were taken as the limits 

of the bounding box with the tumor in 3D. As a result, the bounding box size was specified 

as 64-by-64 for the training and test phases of the classification process. In the bounding 

box, all the pixel intensity values were assigned as zero, except for the segmented region 

that included the tumor. 
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Figure 4.4 Segmented slices with a tumor obtained from one patient 
 

 

Figure 4.5 Segmented slices obtained from different patients with ADC 
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Figure 4.6 Segmented slices obtained from different patients with SqCC 

 

Before training process, the data were divided into two groups: train dataset and 

test dataset. For this process, 20% of the data was randomly selected and collected as the 

test data. As a result, 291 slices were determined as the test data and 1166 slices were set 

as the train data. For the training process, 20% of train data, 234 images were randomly 

selected and collected for validation. As a result, 932 train, 234 validation and 291 test 
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data were generated for training and testing processes in CNN and MLP implementations. 

The models have been trained and tested using computers with Nvidia Tesla K80 GPU. 

In this study, in addition to using LeNet, SqueezeNet, VGG16 and VGG19 models 

as CNN methods, MLP model was also used as a deep ANN approach. During the training 

of all these models, hyperparameter optimization was made. Table 4.1 shows the 

hyperparameters used and their corresponding values. 

 

Table 4.2.1 Hyperparameters 
Hyperparameters Values 

Optimizers Adam / RMSprop / Adadelta / Momentum 

Regularizations L1 / L2 / Elastic / None 

Drop Out 0.5 / None 

Batch Size 16 / 32 

Learning Rate 1 / 0.1 / 0.01 / 0.001 / 0.0001 

Hidden Layer (for only MLP) 3 / 7 / 11 / 15 

Activation Function ReLu / Tanh (for only MLP) 

Augmentation Rotation range: 90, Horizontal Flip, Vertical Flip / None 

 

As can be seen in Table 4.1, there is "None" value for regularization and dropout. It means 

that no regularization or dropout has been used on the model. Dropout was used for fully 

connected layers at the end of the models and the dropout value was set to 0.5. For MLP, 

3, 7, 11 and 15 hidden layer models were examined. In addition, the success of the models 

was evaluated by using ReLu and Tanh functions to be used as the activation functions 

of the hidden layers. For augmentation, the rotation range value was 90 degrees. In 

addition, horizontal flip and vertical flip were used. As a result, 5592 train data were 

obtained after augmentation. In other words, the number of train data was increased by 6 

times. However, the validation and test data were not augmented. Here, the value "None" 

means that no augmentation is performed and only the original data were used. 

4.3 Results and Discussion 

In this study, some CNN and MLP models were examined to classify two subtypes 

(ADC and SqCC) of NSCLC. LeNet, SqueezeNet, VGG16, VGG19 models were used as 

CNN models. In addition, some optimization and regularization techniques were applied 

to prevent overfitting and increase the success and hyperparameter optimization was 
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done. Table 4.2 shows the results. According to this ranking, the most successful models 

appeared to be VGG19 and VGG16 with 95% success with test loss around 0.17. At the 

same time, VGG models had the highest run time. 

 

Table 4.3 Classification success of the models 

Model 
Run 

Time 

Val. 

Loss 

Val. 

Acc. 

Test 

Loss 

Test 

Acc. 
Recall Precision 

F-score 

(%) 

VGG19 316 0.197 0.944 0.169 0.955 0.948 0.954 95.1 

VGG16 244 0.222 0.949 0.178 0.955 0.951 0.952 95.1 

LeNet 38 0.181 0.936 0.233 0.935 0.920 0.938 92.8 

MLP 27 0.235 0.927 0.224 0.931 0.930 0.923 92.6 

SqueezeNet 55 0.355 0.842 0.262 0.890 0.889 0.878 88.3 

 

LeNet and MLP models yielded almost the same performance levels and they were 

the second most successful models with 92% success. When run times were compared, it 

can be said that LeNet worked about 8 times faster than VGG19, and MLP worked almost 

1.5 times faster than LeNet. The inference that can be made from these is that in order to 

increase the success by 1% or 2%, it may be necessary to use a model several times 

slower. 

The importance of this study is to perform subtype classification from PET images 

with NSCLC without the need for a pathological procedure. In doing so, a popular 

method, deep learning has been used. Moreover, no deep learning-based study on subtype 

classification of NSCLC was found from PET images. In this sense, this study is quite 

original in terms of its place in the literature. All these efforts are expected to promote the 

identification of cancer subtypes, which are very important for future targeted therapies. 

Although this study has yielded highly successful results, in order to be able to progress 

more appropriately to clinical studies, the data in future studies were split on patient basis 

and train and test stages were carried out. 
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Chapter 5 

Study-3 

5.1 Studies on 3D CNN Models using 3D Patient Data 

Many architectures based on convolutional neural networks (CNN) method, which 

is an image-based deep learning method, have been derived due to the efforts to increase 

success or adapt to various types of images. And in this area new developments are being 

made every day. Dimension-based studies are also included in these development 

activities. 3D CNN architectures are used for 3D image studies. These architectures have 

3D convolution and 3D pooling operations. Although these types of studies are generally 

used in cases where volumetric context is important, they can also be used to give the 

interrelated data to the network as a stack. For example, in the problem of action 

recognition in a video, there is a series of 2D images that are interrelated and sequential, 

and there is a need for 3D conversion to analyze them together. Similarly, 3D structures 

gain importance in analyzing patient images obtained by medical imaging methods such 

as PET, CT and MRI. Here, for example, this method can be used for volumetric analysis 

of a tumor or for different patient-based evaluations. 

In the literature, there are many studies in different fields made with 3D CNN 

models. In addition to natural image recognition problems such as object [104] [105], 

human action [106], hand gesture [107] and facial expression [108], there are also many 

medical studies such as Alzheimer’s disease prediction [109], skull stripping [110], 

sclerosis lesion segmentation [111] and lung cancer detection and classification [112]. 

In this study, the purpose of using 3D images was to combine our 2D slices on a 

patient basis. Then, these 3D data were trained and tested using 3D CNN models. 

5.2 Materials and Methods 

In this study, PET scans of the same patients mentioned in the second study were 

used. In order to keep the data patient-based, 2D slices belonging to each patient was 
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combined to form a 3D data. Here, because the slice amount of each patient was different, 

the empty sections were completely filled with black slice. As a result, a single data of 

64x64x64 size was generated for each patient. 

In this study, 3D versions of LeNet, SqueezeNet, VGG16 and VGG19 models were 

used to work with 3D data. In order to create 3D models, convolution and pooling layers 

were transformed from 2 dimensions to 3 dimensions. As an example, in Figure 5.1 and 

Figure 5.2, 2D and 3D versions of the SqueezeNet model are shown respectively. 

 

 

Figure 5.3 2D SqueezeNet architecture [113] 
 

 

Figure 5.4 3D SqueezeNet architecture [114] 
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5.3 Results and Discussion 

The previous study was a slice-based study, and that study had good success using 

2D images and 2D models. With this study, we turned to patient-based studies in terms 

of a more appropriate progression to clinical studies, and one way to achieve this was to 

switch from 2 to 3 dimensions to keep slices patient-based. However, unfortunately, this 

study did not yield a good success and as seen in the Table 5.1, 60% validation accuracy 

was obtained in all models. 

 

Table 5.31 Results of 3D Models 

CNN Models (3D versions) Validation Accuracy (%) 

LeNet 60 

SqueezeNet 60 

VGG16 60 

VGG19 60 

 

As a result of combining 2D images of each patient as 3D data, a single data 

belonging to each patient was created, and for this reason, 94 3D data were studied instead 

of 1457 slices. Considering that the success of deep learning methods is often directly 

proportional to the amount of data, such a failure may not come as surprise. In addition, 

when converting 64x64 sized 2D images to 64x64x64 sized 3D images, a very large part 

of the 3D patient data does not contain any information, since zeros are assigned to areas 

other than tumor tissue. In other words, there is a tiny tumor tissue inside a large and 

pitch-black cube. Therefore, it has been evaluated that this may be one of the factors that 

make learning difficult. Apart from these, it has also been discussed that there may be a 

special case for the data we have. 
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Chapter 6  

Study-4 

6.1 Metabolic Imaging Based Sub-Classification of 

Lung Cancer 

Lung cancer is one of the deadliest cancer type whose 84% is non-small cell lung 

cancer (NSCLC). In this study, deep learning-based classification methods were 

investigated comprehensively to differentiate two subtypes of NSCLC, namely 

adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The study used 1457 18F-

FDG PET images/slices with tumor from 94 patients (88 men), 38 of which were ADC 

and the rest were SqCC. Three experiments were carried out to examine the contribution 

of peritumoral areas in PET images on subtype classification of tumors. We assessed 

multilayer perceptron (MLP) and three convolutional neural network (CNN) models such 

as SqueezeNet, VGG16 and VGG19 using three kinds of images in these experiments: 1) 

Whole slices without cropping or segmentation, 2) cropped image portions (square 

subimages) that include the tumor and 3) segmented image portions corresponding to 

tumors using random walk method. Several optimizers and regularization methods were 

used to optimize each model for the diagnostic classification. The classification models 

were trained and evaluated by performing stratified 10-fold cross validation, and F-score 

and area-under-curve (AUC) metrics were used to quantify the performance. According 

to our results, it is possible to say that inclusion of peritumoral regions/tissues both 

contributes to the success of models and makes segmentation effort unnecessary. To the 

best of our knowledge, deep learning-based models have not been applied to the subtype 

classification of NSCLC in PET imaging, therefore, this study is a significant cornerstone 

providing thorough comparisons and evaluations of several deep learning models on 

metabolic imaging for lung cancer. Even simpler deep learning models are found 
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promising in this domain, indicating that any improvement in deep learning models in 

machine learning community can be reflected well in this domain as well. 

6.2 Materials and Methods 

In this study, PET scans of the same patients mentioned in the second study were 

used. With this data, three different datasets were prepared to be used in three 

experiments. In the first experiment, FDG-PET images containing 168x168 pixels 

obtained from the scans were determined as the first dataset without any processing. For 

the second experiment, each FDG-PET slice was manually cropped to include tumor and 

peritumoral tissue, and these ROIs formed our second dataset. Here, instead of specifying 

a standard bounding box size, the boxes were manually cropped to the extent that the 

tumor could fit inside. Since tumors did not have a standard shape, the amount of 

peritumoral areas varied in different slices. For the last experiment, the tumors were 

segmented on each slice using a standard “random walk” algorithm comprising our last 

dataset. It was used to distinguish tumor from background semi-automatically. In an 

unpublished preliminary study, we have tested the performances of segmentation 

approaches suggested for PET images such as Otsu’s, active contour and random walk 

methods. We found random walk approach to perform the best among these approaches 

when compared to manual drawing of a nuclear medicine expert.  Finally, we worked 

with a total of 1457 images that consisted of 516 ADC and 941 SqCC subtypes for all 

experiments. Figure 6.1 shows sample images from different patients with ADC and 

SqCC. 

 

 

Figure 6.4 Images from different patients with (A) ADC and (B) SqCC 
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In order to feed the images with a uniform size to deep learning models as the input, 

we had to specify a common and appropriate image size. In the first experiment, all 

images had already a fixed size, as there was no need for further processing. The datasets 

prepared for the second and third experiments, we considered the largest subimage size 

as 64x64 pixels that all the tumors in all slices could fit inside. In the bounding box, zero 

padding was performed by setting all pixel values to zero except ROIs for the second 

experiment and except segmented regions for the last experiment. At the end of all these 

processes, the datasets were fed to deep learning models and the training and test 

procedures were performed. Figure 6.2 depicts the schematic representation of 

abovementioned experiments. 

 

 

Figure 6.5 Schematic representation of three experiments studied in this work 

 

In the literature, 10-fold cross validation method has been commonly used. 

However, there is no rule on this issue yet. In this study, the dataset was randomly split 

for stratified 10-fold cross validation which was used in many deep and conventional 

machine learning based bioimage and biosignal studies [29]. CNN and MLP models were 

trained from scratch starting with random weights using NVIDIA DGX-1 with NVIDIA 

Tesla V100 GPUs at Abdullah Gül University, High Performance Computing (HPC) 

Laboratory. The number of epochs for each training process was 100, and early stopping 

approach was used to prevent overfitting. 
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For each model mentioned above several regularization and optimization 

techniques were used during the training process. The parameters were optimized to 

increase the classification success, and are listed in Table 6.1. 

 

Table 6.2 Hyperparameters 
Hyperparameters Values 

Optimizers Momentum / RMSprop / Adadelta / Adam  

Regularizations None / L1 / L2 / Elastic 

Dropout None / 0.5 

Batch Size 16 / 32 

Learning Rate 1 / 0.1 / 0.01 / 0.001 / 0.0001 

Hidden Layer (only MLP) 3 / 7 / 11 / 15 

 

In the training process, stochastic gradient descent (SGD) approach helped us to 

find the optimum direction for minimizing the cost. The aim of momentum, which is 

based on an advanced SGD logic, was to accelerate the progression in cases where the 

gradient did not change direction, and to slow the progression for situations where it 

changed direction. In addition, some popular optimization methods, such as RMSprop, 

Adam, and Adadelta, which are similar to momentum, were used to estimate the optimum 

direction and speed for cost to move towards global minima.  

The regularization methods we used were lasso, ridge regression and elastic net 

approaches. Lasso and ridge regression are also known as L1 and L2, respectively. As the 

penalty term, L1 dealt with the sum of the absolute values of the model parameters, and 

L2 dealt with the sum of their squares. Elastic net was a convex combination of lasso and 

ridge regression. 

The main idea of the dropout regularization, which is known to prevent overfitting 

problems especially for deep and complex networks with large number of parameters 

(such as VGG models), is to randomly drop nodes on the network during training, based 

on a certain ratio. In this study, the dropout with the ratio of 0.5 was used for the fully 

connected layers at the end of the models.  

Table 6.2 shows the tuned CNN architectures where 64x64 images were used as the 

input. As can be seen in this table, the total number of parameters was directly 

proportional to the depth of the network. 
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Table 6.2 Tuned CNN Architectures 

SqueezeNet VGG16 VGG19 

Layer Output Param. Layer Output Param. Layer Output  Param. 

Input 64x64x1  Input 64x64x1  Input 64x64x1  

Conv. 31x31x64 640 2XConv. 64x64x64 37568 2XConv. 64x64x64 37568 
Max 

Pooling 15x15x64  Max 
Pooling 32x32x64  Max 

Pooling 32x32x64  

Fire 15x15x128 11408 2XConv. 32x32x128 221440 2XConv. 32x32x128 221440 

Fire 15x15x128 12432 Max 
Pooling 16x16x128  Max 

Pooling 16x16x128  

Max 
Pooling 7x7x128  3XConv. 16x16x256 1475328 4XConv. 16x16x256 2065408 

Fire 7x7x256 45344 Max 
Pooling 8x8x256  Max 

Pooling 8x8x256  

Fire 7x7x256 49440 3XConv. 8x8x512 5899776 4XConv. 8x8x512 8259584 
Max 

Pooling 3x3x256  Max 
Pooling 4x4x512  Max 

Pooling 4x4x512  

Fire 3x3x384 104880 3XConv. 4x4x512 7079424 4XConv. 4x4x512 9439232 

Fire 3x3x384 111024 Max 
Pooling 2x2x512  Max 

Pooling 2x2x512  

Fire 3x3x512 188992 Flatten 2048  Flatten 2048  

Dropout 3x3x512  FC 4096 8392704 FC 4096 8392704 

Fire 3x3x512 197184 Dropout 4096  Dropout 4096  

Dropout 3x3x512  FC 4096 16781312 FC 4096 16781312 

Conv. 3x3x2 1026 Dropout 4096  Dropout 4096  

Global 
Average 
Pooling 

2  FC 2 8194 FC 2 8194 
   

Total Parameters 722370 Total Parameters 39895746 Total Parameters 45205442 

 

In this study, MLP models with different number of hidden layers with 64 neurons were 

examined. The classification performance of MLP model was optimized by making its 

structure much deeper. For this purpose, MLP versions with 3, 7, 11 and 15 hidden layers 

have been generated and optimization studies have been performed. In the literature there 

is no rule of thumb for the number of neurons used in MLP architectures. While 

optimizing the number of hidden layers by using different values, we tried to optimize 

the number of neurons by the dropout method which randomly drops nodes from the 

network during the training process, based on the 0.5 ratio. 
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6.3 Results and Discussion 

The results of three experiments carried out within the scope of this study are shown 

in Table 6.3. The first experiment was performed on PET images of 168x168 size without 

any processing. The aim was to observe the success of deep learning models when the 

images were subject to classification without any extra effort. The purpose of the last two 

experiments was to examine the contribution of peritumoral regions and segmentation 

effort to subtype classification. Table 6.3 shows the performance and run time values of 

the SqueezeNet, VGG16, VGG19 and MLP models. To evaluate the performances of 

models, the F-score and area-under-curve (AUC) metrics were used in terms of correct 

detection of NSCLC subtype. 

 
Table 6.3 Results from three experiments showing classification performance of 
the models 

 Experiment-1 Experiment-2 Experiment-3 

Model 
Run 

Time (s) 

F-score 

(%) 

AUC 

(%) 

Run 

Time (s) 

F-score 

(%) 

AUC 

(%) 

Run 

Time (s) 

F-score 

(%) 

AUC 

(%) 

SqueezeNet 572 54 52 508 71 66 459 70 69 

VGG16 2906 68 63 1165 73 68 523 73 69 

VGG19 3758 68 65 1384 74 69 779 71 70 

MLP 287 65 62 231 73 69 72 70 66 

 

According to the results of the first experiment shown in Table 6.3, it requires 

significantly high run time due to the size of the images. Here, we may conclude that the 

model performances were relatively low due to extra tissues unrelated to the tumor. 

According to the results of all experiments, the most successful classification 

performances were obtained in the second experiment in which peritumoral areas were 

included. Here, VGG19 was the most successful model with 74% F-score and 69% AUC. 

In order to demonstrate the training process of this model, the graphs of average accuracy 

and average loss in 10-fold cross-validation are shown in Figure 6.3. Although the 

number of epochs were adjusted as 100, it can be seen in the figure that maximum 60 

epochs were run for VGG19 due to early stopping. VGG16 and MLP have an F-score of 

73%, followed by SqueezeNet with an F-score of 71%. Also, it is seen that MLP can 

achieve the success of complex CNN models with less run time thanks to the positive 
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effect of peritumoral areas. When the second and third experiments were compared, the 

effect of the number of pixels containing information on run time is revealed. In the 

second experiment, due to the inclusion of tumor tissue as well as peritumoral areas, run 

time values were slightly higher than those of the third experiment. When the second and 

third experiments were evaluated together, it is possible to say that peritumoral regions 

both contribute to the success of models and make segmentation effort unnecessary. Here, 

the positive effect of peritumoral regions on the classification performance means an 

important contribution in this field. In a recent prostate study using MRI, the contribution 

of peritumoral areas was emphasized [115]. Therefore, we think that the effect of 

peritumoral areas in medical image analysis will be studied more in the future. 

The hyperparameter values that led to the results given in Table 6.3 are shown in 

Table 6.4. According to this table, Adadelta was successful as an optimizer for 

SqueezeNet, while Momentum was successful on all other models. While SqueezeNet 

used L2 regularization to achieve the best performance, all other models reached the 

optimum point without using any of L1, L2 or Elastic regularization approaches. While 

dropout method worked for all CNN models, for MLP it did not work. The optimal batch 

size and learning rate values were 32 and 0.1 respectively for SqueezeNet and MLP, 16 

and 0.001 for VGG models. In addition, it is not surprising that the same combinations 

succeeded on both VGG16 and VGG19 models, which do not differ except for the 

number of layers. 

We recognize that we have only considered the classification of subtypes as ADC 

and SqCC which constitute approximately 70% of lung cancer, and neglected other 

possible subtypes such as large cell carcinoma (LCC). However, LCC accounts for only 

5–10% [116]. That is why we have limited subtypes to the first two categories. 

Since the variety of models used in the study can contribute to the comparative 

evaluation of the results, it may be useful to examine different models such as ResNet 

and DenseNet in addition to the deep learning models tested here. Furthermore, it is 

thought that expanding the datasets using data augmentation techniques may be useful 

for increasing the subtype classification success. 
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Figure 6.6 The average accuracy and loss of training and validation in the 10-fold 
cross-validation for VGG19 model in the second experiment 

 

Table 6.3 Hyperparameter values yielding performances given in Table 6.3 

Model Optimizer Regularization Dropout Batch Size Learning Rate 

SqueezeNet Adadelta L2 0.5 32 0.1 

VGG16 Momentum None 0.5 16 0.001 

VGG19 Momentum None 0.5 16 0.001 

MLP Momentum None None 32 0.1 



 

 

52 

A study on PET images [117] revealed that noise reduction and partial volume 

correction (PVC) methods improve the segmentation accuracy. Improvements in 

segmentation may indirectly lead to an increase in classification performance. Therefore, 

these methods have the potential to be examined in future classification studies with 

segmented images. 

Moreover, the effect of different segmentation approaches may also be investigated 

in this context. In random walk approach the selection of seed points, one of which should 

be at a representative background region and the other be on the tumor region, may have 

an impact on the segmentation accuracy. It is clear that when the semi/automatic approach 

segments the tumor region incorrectly and misses critical image features related to the 

subtype then the classification performance would be diminished.  

Currently, biopsy is still needed to characterize lung cancer subtypes. In this study, 

we investigated the feasibility of using PET images directly without the need for 

pathological studies to classify the subtypes of NSCLC which is a common effort put 

forward by many researchers working in this field. 

This study was carried out on 1457 PET slices obtained from 94 patients. In the 

future, we aim to increase the success by applying data augmentation methods, and plan 

to make further contributions to this topic by using various deep learning models such as 

ResNet and DenseNet, as well as multi-task learning studies. In addition, we aim to 

examine the performance of deep learning models by making segmentation 

improvements such as noise reduction and partial volume correction. Finally, we think 

that better performances can be obtained by combining PET and CT images when 

compared to using solely PET or CT images. In our research laboratory we plan on such 

a study in the near future. 
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Chapter 7 

Study-5 

7.1 Transfer Learning Studies on Subtype 

Classification of NSCLC 

The medical literature has been growing exponentially, especially in recent years 

[118]. Thanks to the contributions of the medical imaging studies to fields such as 

monitoring, diagnosis and treatment, clinical solutions of diseases have become more 

practical [119-121]. With the development and widespread use of various medical 

imaging methods, the number of medical images is increasing day by day. However, it is 

still very difficult to find enough labeled medical data in terms of performing artificial 

intelligence studies specific to a certain problem. 

Convolutional neural networks (CNN) are designed to provide solutions to 

problems such as recognition, segmentation and classification by learning the attributes 

of images. ImageNet, currently a very large dataset of 14 million images, has become a 

reference point for different CNN studies [58], [59], [122], [123] and benchmarks. The 

presence of large datasets is effective in getting successful results on general object 

recognition by facilitating learning [32]. But for real-world problems such as medical 

studies, it is not always possible to find large labelled datasets and bear the cost of 

"training from scratch". Therefore, the use of pre-trained models is a good option, rather 

than "training from scratch" with little data [124], [125]. In addition, fine-tuning studies 

can be performed using different levels of features obtained from pretrained models as a 

starting point for training [126], [127]. 

In the literature, there are transfer learning studies [128-130] as well as "training 

from scratch" studies [131-135] on the classification of medical images. 

In this study, on the problem of subtype classification of NSCLC, VGG16, 

ResNet50 and DenseNet121 models trained with ImageNet dataset were used for transfer 
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learning and fine tuning. In addition, data augmentation studies have been carried out 

because we have little data. In addition to applying momentum and RMSprop as an 

optimizer, overfitting was tried to be prevented by dropout method. 

7.2 Materials and Methods 

In this study, PET scans of the same patients mentioned in the second study were 

used. With the second experiment we conducted in the fourth study, we demonstrated the 

effect of peritumoral areas. Therefore, in this study, the dataset used in that experiment 

was used. Here, each FDG-PET slice was manually cropped to include tumor and 

peritumoral tissue, and these ROIs formed our dataset. Since it is necessary to enter 3D 

data into the model in transfer learning studies, firstly, the grayscale images were filled 

with the same gray values corresponding to the RGB channels, and thus the data reached 

64x64x3. We used MATLAB for these operations. 

Transfer learning is a machine learning method where a model developed for a task 

is reused as the starting point for a model on a second task. In transfer learning, we first 

train a base network on a base dataset and task, and then we repurpose the learned 

features, or transfer them, to a second target network to be trained on a target dataset and 

task. This process will tend to work if the features are general, meaning suitable to both 

base and target tasks, instead of specific to the base task [136]. Here, the features obtained 

from the transferred model are used in a new classifier. 

The feature extractor part seen in Figure 7.1 represents the part to which we transfer 

the features, while the classifier part at the end represents the part we just added and 

trained on. The feature extractor part seen in the figure represents the part to which we 

transfer the features, while the classifier part at the end represents the part we just added 

and trained on. 
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Figure 7.3 A representation of CNN model [137] 
 

The steps for deep learning are as follows [138]: 

1. Take layers from a pre-trained model. 

2. Freeze these layers to prevent information loss in future trainings. 

3. Add new trainable layers on top of frozen layers. 

4. Train the new layers on the current dataset. 

In this study, for transfer learning and fine tuning, we used VGG16 [59], ResNet50 

[139] and DenseNet121 [140] models, originally trained with ImageNet data. In transfer 

learning works, we only took the convolutional blocks from the models. After that, we 

have carried out the training process by adding new fully connected layers at the end. In 

other words, we froze the convolutional blocks and made only newly added fully 

connected layers trainable. Fine-tuning consists of unfreezing the entire model obtained 

(or part of it), and re-training it on the new data with a very low learning rate. This is an 

optional last step that can potentially achieve meaningful improvements, by incrementally 

adapting the pretrained features to the new data. It could also potentially lead to quickly 

overfitting [138]. Figure 7.2 shows the fine-tuning process for the VGG16 model as an 

example. Here, the last convolutional block and the newly added fully connected layer 

were left as trainable and the rest was frozen. In fine-tuning step, we made many 

experiments by unfreezing convolution blocks one by one and making them trainable. In 

addition to using the dropout method during our transfer learning study, we also used 

RMSprop and momentum optimizers.  
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Figure 7.4 Fine tuning the last convolutional block of the VGG16 network [141] 
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Data augmentation is the artificial expansion of a dataset consisting of a small 

number of images for deep learning studies. Keras library has ImageDataGenerator class 

that covers different augmentation techniques [142]. 

In augmentation works, we have focused on some main types of data augmentation 

techniques for image data [143]: 

• rotation_range is a value in degrees (0-180), a range within which to randomly 

rotate images. 

• width_shift and height_shift are ranges (as a fraction of total width or height) 

within which to randomly translate images vertically or horizontally. 

• horizontal_flip is for randomly flipping half of the images horizontally. 

• vertical_flip is for randomly flipping half of the images vertically. 

The values we used for these techniques are as follows: 

• rotation_range=20 

• width_shift_range=0.2 

• height_shift_range=0.2 

• horizontal_flip=True 

• vertical_flip=True 

For all these transfer learning and fine-tuning studies, 10-fold stratified cross-

validation was applied in the training processes. The training process, which was applied 

as 100 epochs, was stopped at the most successful point with early stopping. 

7.3 Results and Discussion 

In this work, transfer learning and fine-tuning studies were performed with VGG16, 

ResNet50 and DenseNet121 pretrained models. Later, some augmentation methods were 

also included in these, and training and test processes were carried out again. In all these 

processes, dropout technique and some optimizers such as RMSprop and momentum 

were used. Table 7.1 shows the results with and without augmentation. As can be seen in 

this table, despite the use of augmentation, 65% validation accuracy, 52% F-score and 

50% AUC values were obtained for all models. 
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Table 7.3 Results of transfer learning works 
Models Val. Acc. (%) Precision (%) Recall (%) F-score (%) AUC (%) 

VGG16 65 60 65 52 50 

ResNet50 65 60 65 52 50 

DenseNet121 65 55 65 52 50 

VGG16-aug 65 60 65 52 50 

ResNet50-aug 65 60 65 52 50 

DenseNet121-aug 65 60 65 52 50 

 

Possible reasons for the failure of the study as a result of the evaluation are as 

follows: 

1. The type of image in which the transferred models were used is completely 

different from the images we have. The features that the models were obtained 

from ImageNet data cannot help to solve the problem of classifying the medical 

images we have. 

2. Considering the failure of 3D data studies in the third chapter, it is possible to say 

that 3D studies do not work, specific to the data we have. 
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Chapter 8 

Study-6 

8.1 Shallow Network Studies on Subtype Classification 

of NSCLC 

Classification studies were carried out by training from scratch with SqueezeNet, 

VGG16, VGG19 and MLP in Study 4, and by transfer learning and fine tuning with 

VGG16, ResNet50 and DenseNet121 in Study 5. When the results of VGG16 for these 

two studies are compared, it is clear that training from scratch is more successful than 

transfer learning for the dataset we have. 

If the dataset is small, for training from scratch, it may make sense to use shallower 

and smaller networks rather than using very deep networks. There are studies in the 

literature that have achieved successful results on medical data, especially using shallow 

networks [144] [145]. 

In this study, the CNN-based and ResNet-based shallow networks we designed 

have been investigated on the subtype classification problem. In other words, the success 

potential of shallow CNN (CNN-S) and shallow ResNet (RN-S) models instead of 

standard deep networks known in the literature, such as the models in Study 4, were 

examined.  

8.2 Materials and Methods 

In this study, PET scans of the same patients mentioned in the second study were 

used. With the second experiment we conducted in the fourth study, we demonstrated the 

effect of peritumoral areas. Therefore, in this study, the dataset used in that experiment 

was used. Here, each FDG-PET slice was manually cropped to include tumor and 

peritumoral tissue, and these ROIs formed our dataset. 
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In this study, two types of networks that are not very deep and complex were created 

by using the basic structures in the architectures used for image-based deep learning 

studies. While one of these networks, CNN-S is a CNN formed as a result of repeating 

the block consisting of 2 convolution and 1 max pooling layers 2 times consecutively 

(like first two blocks in VGG models), the other network is RN-S that consists of the first 

2 stages of the classical ResNet. Later, a fully connected layer was added to these 

networks. Figure 8.1 and Figure 8.2 show the CNN-S and RN-S structure, respectively. 

 

 
Figure 8.1 CNN-S architecture 

 

 
Figure 8.2 RN-S architecture 

 

After the models were created, 100 epoch training was done by applying early 

stopping. During the training, some optimizers were applied to increase the performance. 

These optimizers were Momentum, RMSprop and Adam. Also, 10-fold stratified cross-

validation was applied in the training processes. 

8.3 Results and Discussion 

In this study, 2 types of models are designed to train from scratch. These models 

are based on classical CNN and ResNet structure and have a shallow architecture. The 

performance metrics obtained using the CNN-S model is depicted in Table 1 and the RN-

S model in Table 2. These tables also show the effect of optimizers. Here, model 

successes were calculated by averaging the 10-fold stratified cross validation results. 
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Table 8.3 Results of CNN-S model 

Model Optimizer Learning Rate Val_Acc (%) Precision (%) Recall (%) F-Score (%) AUC (%) 

CNN-S RMSprop 0.001 73 70 73 71 66 

CNN-S Momentum 0.001 72 68 72 69 63 

CNN-S Adam 0.0001 71 73 71 68 64 

 

Table 8.3 Results of RN-S model 

Model Optimizer Learning Rate Val_Acc (%) Precision (%) Recall (%) F-Score (%) AUC (%) 

RN-S Momentum 0.001 73 73 73 71 67 

RN-S RMSprop 0.01 73 73 73 71 65 

RN-S Adam 0.001 72 73 72 70 66 

 

As can be seen from the tables, the highest F-score value for both models was 71%. 

In the RN-S model, all optimizers achieved an F-score of 70% or more, while Momentum 

and Adam were below 70% in the CNN-S model. In addition, learning rate values can be 

seen in the tables. For the CNN-S model, RMSprop was the most successful optimizer 

with a learning rate of 0.001, while for the RN-S model, momentum yielded the best 

results with the same learning rate. 

We obtained 74% F-score success with VGG19, which is a very deep network in 

Study 4. In that study, we achieved this success by doing intense hyperparameter 

optimization work with the grid search method. In this study, 71% F-score value was 

obtained with shallow networks by using only limited number of optimizers and learning 

rate values. In this respect, it is possible to say that comprehensive hyperparameter 

optimization works with different shallow network variations have the potential to yield 

good results. 
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Chapter 9 

Conclusions and Future Prospects 

9.1 Conclusions 

In the literature, there are some studies on the subtype classification of NSCLC, 

although there is no study that exactly overlaps with our thesis study. In 2013, more than 

90% success was achieved in a study using hematoxylin and eosin tissue images with 

some classical machine learning methods, including ANN [146]. In a study conducted in 

2018 [147], ADC and SqCC differentiation was performed with a radiomic signature 

containing five quantitative CT image features. At the end of this study, which achieved 

89% validation success rate, it was evaluated that PET could increase the success by 

containing functional information about the tumor. In a different study [148] conducted 

in 2019, subtypes of NSCLC were classified with a hybrid method using features 

extracted from CT images and achieved 86% test accuracy. In a study using PET / CT 

images, ten machine learning methods were examined in addition to the VGG16 model 

for the problem of differentiating ADC and SqCC [149]. The VGG16 surpassed all other 

machine learning methods with a 90% AUC. In addition, it was stated in this study that 

PET images provide advantages in reflecting metabolic heterogeneity. In a different study 

[150] conducted on the same problem, some machine learning methods were examined 

using exhaled breath data. As a result, the highest AUC value achieved with the K-nearest 

neighbor classifier combining borderline2-SMOTE and feature reduction methods was 

63%. In another study [151] conducted in 2020, 78% test success was achieved with some 

classical machine learning methods using CT images. In a study [152] examining the 

classification ability of deep learning methods using CT images, F-score values of more 

than 70% were obtained. The study [153] performed using radiomic features obtained 

from PET images in 2021 increased over 85% and in this study the performance of stage-

specific PET radiomic prediction models was emphasized. 
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In this thesis, classification of two subtypes of NSCLC, ADC and SqCC, has been 

investigated. The importance of this thesis is to perform subtype tumor classification from 

only PET images without the need for a pathological procedure. In order to provide a 

successful solution to this problem, several methods were tried and many optimization 

and regularization studies were carried out on these methods. These studies have been 

examined under 6 different main headings/chapters. 

In the first study, classical ANN methods were applied on subtype classification. 

As input to ANN, 39 features obtained from PET images using GLCM, GLRLM, GLSZM 

and NGTDM techniques which are popular texture analysis based feature extraction 

methods, were provided. Later, training activities were carried out on ANN. While doing 

this, the FANN library and the FANN Tool developed for this library were used. During 

the training phase, incremental, batch, RPROP and quickprop algorithms, which are four 

training algorithms in the FANN library, were used, while the activation functions were 

sigmoid, sigmoid stepwise, sigmoid symmetric and sigmoid symmetric stepwise 

functions, which are also available in this library. As a result, quickprop training 

algorithm was found to be the most successful of the training algorithms. ANN is 

considered the foundation of deep learning. Therefore, this study is important as it 

encouraged us to switch to deep learning methods. 

In the second study, a solution was sought for subtype classification with a slice-

based approach. Here, MLP and four CNN models LeNet, SqueezeNet, VGG16 and 

VGG19 models were used for the training and test of a total of 1457 segmented PET 

slices belonging to patients. At the end of this study, highly successful results were 

obtained in all models. The VGG16 and VGG19 models, which are the most complex 

ones and have the highest run times, yielded the best results with an F-score of 95%. 

Therefore, it has emerged that working with more complex and costly networks should 

be considered in order to achieve higher success. 

The third study was the first transition from slice-based studies to patient-based 

studies. Here, the idea of combining 2D slices as 3D images has emerged, which is 

considered as a solution to separate the data as patient-based. 3D versions of LeNet, 

SqueezeNet, VGG16 and VGG19 models were used in this study. Unfortunately, 

sufficient performance was not achieved as a result of this study. It has been argued that 

the reason for this failure may be that data, which is already scarce for deep learning 

methods, is further reduced as a result of 3D transformation. 
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The fourth study compares three different experiments on the same subtype 

classification problem. In the first experiment, PET images are given directly to the 

networks without any processing. In the second experiment, the images obtained as a 

result of cropping the same PET images including the peritumoral areas are used. And 

finally, it is an experiment in which tumor tissues segmented with random walk are used. 

We investigated the feasibility of several popular deep learning methodologies. To the 

best of our knowledge, deep learning-based models have not been applied to subtype 

classification of NSCLC in PET imaging domain. Therefore, this study is a significant 

contribution providing thorough comparisons and evaluations of several deep learning 

models on metabolic imaging for lung cancer. Even simpler deep learning models were 

found to be promising in this field, indicating that any improvement in deep learning 

models in machine learning community can be reflected well in this domain as well. In 

addition, no studies investigating the contribution of peritumoral areas to subtype 

classification of NSCLC using deep learning on PET images were found in the literature. 

From this perspective, this study includes reviews that shed light on similar studies in the 

future. As a result, this study was deemed worthy of publication due to its contribution to 

the literature [5]. 

In the fifth study, instead of training CNN models from scratch, pretrained models 

were examined by transfer learning. In addition, the contribution of pretrained features at 

different levels was examined by performing fine tuning. During all these studies, in 

addition to some optimization methods, data augmentation was applied to increase the 

success. As a result, despite all this effort, successful results have not been achieved. Here 

it was emphasized that there may be incompatibilities specific to the available data and 

the problem. In addition, considering that the 3D transformations in the third study do not 

have a positive effect on success, it is possible to say that 3D studies do not work, specific 

to the data we have. 

In the last study, two shallow networks based on classical CNN and ResNet 

structures were created and successful results were tried to be obtained with the little data 

we have. In this study, the success of shallow networks instead of complex networks on 

small datasets is investigated. Because standard complex networks in the literature may 

not always be successful on small datasets. In this case, successful results can be obtained 

by obtaining shallower models by reducing and modifying the nets. Despite the lack of 

comprehensive hyperparameter optimization works, this study is promising considering 

the success achieved. 
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9.2 Societal Impact and Contribution to Global 

Sustainability 

According to the cancer report published by the World Health Organization in 2020, 

more than 18 million people are diagnosed with cancer each year, and it is estimated that 

this number will increase to 29.4 million by 2040. Also, according to this report, lung 

cancer is the most frequently diagnosed (11.6% of all cases) and has the highest mortality 

rate (18.4% of all deaths) among all types of cancer. In addition, patients with lung cancer 

have a high symptom burden and often become debilitated after treatments. All these bad 

effects cause psychological and mental depressions on the family and social environment 

of the patients. Considering all these, the importance of research and investments in lung 

cancer is obvious. Early diagnosis studies, one of the most effective public health 

measures in cancer, cover rapid clinical and pathological diagnosis and referral to 

appropriate treatment. In this study, it was aimed to accelerate clinical processes in 

diagnosis and to support subtype-specific treatments. This study is very important for 

public health, as it is focused on PET imaging, which exposes a relatively lower radiation 

dose than CT scans and is a good option against the risk of infection due to medical 

procedures. In addition, PET imaging examines metabolic functions and is shown as an 

alternative to biopsy in this sense. Since biopsy has many disadvantages for patients and 

specialists, one of our goals was to reduce the workload of the experts and the rate of 

misdiagnosis. However, currently, a biopsy is still required to characterize lung cancer 

subtypes. In this thesis, the classification of ADC and SqCC, subtypes of NSCLC, is tried 

to be performed automatically. Combining this information obtained from PET images 

with information from conventional diagnostic methods will create a strong decision 

support mechanism. In this way, rapid and reliable diagnosis will be provided, and 

guidance to subtype-specific appropriate treatments will be provided. 

9.3 Future Prospects 

All studies in this thesis are on the classification of ADC and SqCC, which account 

for approximately 70% of lung cancer, and other types have been ignored. In addition, 

studies such as staging and prognosis were excluded from the thesis, apart from the 

classification problem, due to the insufficient data available. In addition, the imbalance 
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in the dataset was an important limitation for classification studies. Within the scope of 

our thesis studies, many deep learning studies have been conducted on the problem of 

subtype classification. In the light of these studies, the importance of various methods 

such as regularization, optimization and augmentation as well as preprocessing studies 

such as segmentation and the inclusion of peritumoral areas in the image have emerged. 

Since the variety of models used in the study can contribute to the comparative evaluation 

of the results, it may be useful to examine different models in addition to the deep learning 

models used here. In addition, expanding the dataset by increasing the labeled data can 

increase the success of deep learning. Comprehensive projects involving radiologists may 

be required for this. By analyzing PET and CT images together, problems such as 

classification, staging and prognosis can be solved automatically. In addition, real time 

responses will be possible to obtain thanks to a system that will be integrated into PET / 

CT scanning devices. Thus, decision support will be provided for rapid and reliable 

diagnosis as well as reducing workload for experts. Although biopsy is still required 

currently, the need for biopsy will decrease with the increase of such studies in the future. 

Therefore, complications related to biopsy such as bleeding, bruising and infection will 

be eliminated. 
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