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ABSTRACT

A better understanding of disease development and progression mechanisms at the
molecular level is critical both for the diagnosis of a disease and for the development
of therapeutic approaches. The advancements in high throughput technologies
allowed to generate mRNA and microRNA (miRNA) expression profiles; and the
integrative analysis of these profiles allowed to uncover the functional effects of RNA
expression in complex diseases, such as cancer. Several researches attempt to
integrate miRNA and mRNA expression profiles using statistical methods such as
Pearson correlation, and then combine it with enrichment analysis. In this study, we
developed a novel tool called miRcorrNet, which performs machine learning-based
integration to analyze miRNA and mRNA gene expression profiles. miRcorrNet
groups mRNAs based on their correlation to miRNA expression levels and hence it
generates groups of target genes associated with each miRNA. Then, these groups
are subject to a rank function for classification. We have evaluated our tool using
miRNA and mRNA expression profiling data downloaded from The Cancer Genome
Atlas (TCGA), and performed comparative evaluation with existing tools. In our
experiments we show that miRcorrNet performs as good as other tools in terms of
accuracy (reaching more than 95% AUC value). Additionally, miRcorrNet includes
ranking steps to separate two classes, namely case and control, which is not available
in other tools. We have also evaluated the performance of miRcorrNet using a
completely independent dataset. Moreover, we conducted a comprehensive literature
search to explore the biological functions of the identified miRNAs. We have
validated our significantly identified miRNA groups against known databases,
which yielded about 90% accuracy. Our results suggest that miRcorrNet is able to
accurately prioritize pan-cancer regulating high-confidence miRNAs. miRcorrNet
tool and all other supplementary files are available at https://github.com/
malikyousef/miRcorrNet.
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INTRODUCTION

miRNAs are short non-coding RNAs of approximately 22 nucleotides and they

have active role in controlling downstream proteomic profiles (Bartel, 2018). At the
post-transcriptional level, miRNAs induce translational repression, mRNA deadenylation
and mRNA decay via binding to their target mRNAs (Ivey ¢ Srivastava, 2015). Hence,
miRNAs are reported as one of the most important regulators of gene expression (Ivey ¢
Srivastava, 2015). The potential role of miRNAs in regulating gene expression has
opened the door to explore them as crucial therapeutic targets in complex diseases
(Pencheva ¢ Tavazoie, 2013).

It is predicted that approximately 30% of human genes (Lewis, Burge ¢ Bartel,

2005) and nearly all cellular processes, including cell proliferation, apoptosis, necrosis,
autophagy and stress responses, are regulated by miRNAs (Keller et al., 2011) (Ivanov,
Liu & Bartsch, 2016). Since these processes are critical in carcinogenesis and tumor
progression (Ling, Fabbri ¢ Calin, 2013), miRNAs can be used as biomarkers for
various cancer types, particularly to predict the likelihood of cancer development and
progression.

Traditional analyses attempted to untangle the molecular mechanisms of
carcinogenesis using a single -omic dataset, which contributed towards the identification
of cancer-specific mutations, epigenetic alterations, etc. However, the acquisition of cancer
hallmarks requires molecular alterations at multiple levels. The advancements in
high-throughput technologies resulted in the production of mRNA and miRNA
expression profiles for a sample at relatively lower costs. As the expression profiling has
become routine experiment in biological laboratories, large expression data sets become
available for several phenotypes. In this respect, the integrative analysis of -omics data,
especially miRNA and mRNA expression profiling data could help to illuminate the
above-mentioned regulatory mechanisms; to identify potential susceptibility pathways,
diagnostic biomarkers, and to reveal novel and/or better therapeutic targets to treat cancer.

A review on miRNA-gene regulatory networks and their implications in cancer (Yousef,
Trinh & Allmer, 2014) reported that miRNAs can form complex regulatory networks
by themselves. Since miRNA expression is often tightly coordinated with gene expression,
they form an intertwined regulatory network with many possible interactions among gene
and miRNA regulatory pathways. This fact opens an interesting future work about
integrated analysis of miRNA-expression with mRNA expression.

Integration of mRNA and miRNA expression profiles have been mainly performed
using three different techniques, i.e. correlation, linear models, and Bayesian networks
(Naifang, Minping ¢» Minghua, 2013). Since miRNAs typically supress expression of their
target genes, in correlation-based techniques, the correlation values between mRNA and
miRNA pairs are calculated and hence, negatively correlated miRNA-mRNA pairs are
chosen. However, correlation-based techniques assume that each miRNA affects a single
mRNA. miRNAs often target more than one mRNA based on seed region sequence
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matches. Hence, one miRNA can affect more than one mRNA. In order to capture this
relationship, a linear model is considered. Apart from these two techniques, Bayesian
network-based approach is proposed. Using this probabilistic technique, mMRNA-miRNA
regulatory networks are generated. In addition to the correlation based, linear model and
Bayesian network-based approaches; the following techniques have been proposed to
discover miRNA-mRNA regulatory modules. Statistical approaches use statistical tests to
find significant modules (Liu et al., 2010; Jayaswal et al., 2011; Yan et al., 2012; Hecker
et al., 2013). Rule induction approaches use machine-learning methods to search for
subgroups (Tran, Satou & Ho, 2008; Song et al., 2015; Paul et al., 2017). Probability-based
approaches either use population-based probabilistic learning or probabilistic graphical
model to infer regulatory information (Joung et al., 2007; Joung ¢ Fei, 2009). Matrix
decomposition approaches convert the integrated matrix derived from several types of
information into several canonical forms (Zhang et al., 2011).

Most of the existing studies, as mentioned above, primarily detect miRNAs and mRNAs
from differential expression (DE) analysis. Various correlation metrics are then used to
determine the associations between these miRNA and mRNA pairs, which eventually
construct mRNA-miRNA networks in specific cellular context. Besides these guilt-by-
association based analyses, some studies constructed the networks from purely validated
mRNA-miRNA association information, or in some cases they combined predicted
associations to achieve better coverage; however, the latter may introduce higher
talse-positives (Huang, Morris & Frey, 2007; Long et al., 2013; Zhuang et al., 2015; Chou
et al., 2018; Li et al., 2018; Liu et al., 2018; Yao et al., 2019; Yang et al., 2019).

As presented above, there are valuable studies that have integrated miRNA and mRNA
expression profiles. But all these studies have some limitations. Firstly, most of these
studies use various target gene prediction algorithms. As a result of the use of target
gene prediction algorithms, the number of identified target genes can be up to 4,000. It is
not feasible to validate such a huge number of target genes using low throughput methods
such as luciferase reporter assays. Secondly, most of the existing studies (i) propose
methods specific to a study, (ii) base their analyses on correlating mRNA and miRNA
expression profiles, and (iii) intersect it with known databases (Peng et al., 2009; Gade
et al., 2011). Although these studies provide insights, they do not provide software tools to
reproduce the results or to use such a method for different diseases. Thirdly, almost all
of these web-based and R-based tools are not updated frequently, and they are not easy to
use for experimental biologists. Motivated by the limitation of these existing studies, in this
paper we proposed a novel tool, miRcorrNet, which conducts machine learning-based
integration of expression profiles. The tool integrates miRNA and mRNA expression
profiles in order to detect miRNA-associated genes that are able to perform
the classification task. The tool detects groups, which are later subject to the Rank
procedure. The groups consist of a set of genes that are associated with a specific miRNA.
The most distinctive feature of miRcorrNet is its ability to classify case and control samples
(namely two classes) with an efficient performance using the acquired miRNA-mRNA
groups. Thus, those groups of genes and their associated miRNAs may serve as a
biomarker for the specific disease under investigation.
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MATERIAL & METHODS

TCGA transcriptomic data analysis
We downloaded miRNA-seq and mRNA-seq expression profiles for 11 solid tumor
types from The Cancer Genome Atlas (TCGA cancer) data portal (https://portal.gdc.
cancer.gov/). For miRNA-seq profiles, raw read counts were normalized to reads per
million mapped reads (RPM). For mRNA-seq profiles, the raw read counts were
normalized to Reads Per Kilobase Million Mapped Reads (RPKM). In order to measure the
correlations of miRNA-mRNA expression values, the Pearson correlation method was
applied on the normalized expression profiles. To be able to separate cancer tissues from
normal tissues, we used the standard cut-off value which is used in literature for RNA-seq
data analysis (Mitra et al., 2020) For each cancer type, the miRNAs or mRNAs were
selected for expression association analysis if at least 50% of the samples had a normalized
expression value >1, as widely used in literature (Mitra et al., 2020).

For differential expression analysis of miRNAs and mRNAs, raw read counts were used
as input into the R/Bioconductor package edgeR (Robinson, McCarthy & Smyth, 2010).
The raw read counts were normalized with edgeR, based on the negative binomial
distribution by using Trimmed Mean of M-values (TMM). We computed the differential
expression of miRNAs and mRNAs in tumor samples compared with normal samples by
estimating an exact test P-value, which is similar to Fisher’s exact test. The nominal
P-values were adjusted by using the Benjamini-Hochberg (BH) multiple testing correction
method.

Our proposed method

In this section, miRcorrNet tool that we proposed in this study will be presented.
miRcorrNet has been developed with an inspiration from our previously developed
SVM-RCE, SVM-RNE, and maTE tools (Yousef et al., 2007; Yousef, Abdallah ¢ Allmer,
2019; Yousef et al., 2009, 2020; Yousef, Ulgen, Ugur Sezerman, 2021). The general idea
of these tools, demonstrating the main components is shown in Fig. 1. For a recent
review, see Yousef, Kumar ¢ Bakir-Gungor (2021). The general approach consists of
two components, the Grouping function G() and the Ranking function R(). These two
functions and their intended usage are illustrated in Fig. 1. Different methodologies can be
used for the grouping operation. A computational grouping method such as K-means
or another clustering algorithms as used in SVM-RCE (Yousef et al., 2007, 2020) are
examples of this grouping function. Apart from that, biological information based
grouping can also be applied (e.g., grouping based on target genes associated with a specific
miRNA as in maTE tool (Yousef, Abdallah & Allmer, 2019)). Moreover, a hybrid grouping
function can be defined using these two different grouping methods. The output of this
G() function is a list of groups, where each group contains a set of genes. An example
output of G() function for the Urothelial Bladder Carcinoma is shown in Table 1. In this
table, miRNAs and their associated genes are shown. Table 1 actually presents the groups
of miRNA that was created by calculating the correlations between mRNA and miRNA
expressions. Each entry contains the list of genes that was correlated with the specific
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Figure 1 General workflow for classification based on grouping function G() and ranking those
groups by R() fucntion. Full-size K] DOTI: 10.7717/peerj.11458/fig-1

miRNA above the threshold (0.6). For example, hsa-miR-361-3p group contains SYNJ2BP,
NLGNI1, KCNK3 genes, as it can be seen in Table 1. The mRNA expression profiles of

these genes are correlated with hsa-miR-361-3p profile; thus, we assume that those genes
might be the targets of this specific miRNA. Now the next question is if we assume that our
data only consists of these genes (SYN]J2BP, NLGN1, KCNK3) and a column of their class
labels (a sub data of the original data), what is the significance of these genes in the task of
separating the 2-class data. The answer of this question is given by the second component
of our approach, which is the Ranking function R(), which assigns a score to each group
(that is created by the G() function).
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Table 1 Output of G() function applied on BLCA.

Name of the Genes assocaited with the miRNA
miRNA/group
hsa-miR-361-5p CELF2, FBN1, LAMA4, NFIX, ENTPD1, AP1S2, ARHGAP24, HSPA12A, SYDEI1, TSHZ3, NRP2, RAB3IL1, CCDC80,

ABCD2, EMILIN1, MS4A2, SDC3, ROR2, ANGPTL2, STX2, SLC25A12, GAS7, LIX1L, SEC23A, SMOC2, ANXA6, ZEB2,
ALDH?2, GPR124

hsa-miR-361-3p SYNJ2BP, NLGN1, KCNK3

hsa-miR-15b-3p C9orf3, EMILIN1, CNRIP1, GPR124

hsa-miR-30e-5p RAB3IL1, LIXIL

hsa-miR-181a-5p SYNJ2BP, TACC2, ]MY, ZDHHC15, MEIS1

hsa-let-7a-5p FBN1, LAMA4, ENTPD1, SETBP1, EMILIN1, ANGPTL2, PDE3B

hsa-miR-22-3p PDZRN3, NPR2, SCN7A, CSGALNACT1, GNAQ, SOX10, C50rf53, LAMB2, PJA2, NFIX, GRIK3, SPARCL1, AP1S2,

TCEAL2, HECTD2, THRA, ADCY9, FAM149A, LOC653653, SYNE1, C4orf12, DCHS1, MS4A2, ABI3BP, PBX3, NR3C2,

CNRIP1, UBE2Q2, RCAN2, PCDHGB?7, RNASE4, ZDHHC15, RNF180, MYOT, SYT11, NAP1L2, STARD13, PLP1, GATAS,
GRM?7, TENCI, RAI2, SGCE, PLSCR4, GAS7, PKD2, TOR1AIP1, LIX1L, STAT5B, DCN, SMOC2, TCEAL7, LOC399959,

RHOJ, ZEB2, ALDH2, PRIMA1, PCDH18, GPR124, KCNK3

hsa-miR-126-3p LOC653653

Table 2 Ranking algorithm for acquired miRNA-mRNA groups. The ranking method R() assigns a score for each group by performing an
internal cross-validation.

Ranking Algorithm -R(X, M,f;r)

X: any subset of the input gene expression data X, the features are gene expression values
M { is a list of groups produced G() function}
fis a scalar: split into train and test data

r: repeated times (iteration)
res={} for aggregation the scores for each m;
Generate Score for each m; and then rank according to the score, Rank(m;):
For each m; in M

sm;=0;
Perform r time (here r=>5) steps 1-5:
1. Perform stratified random sampling to split X, into train X, and test X, data sets according to f (here 80:20)
2. Remove all genes (features) from X, and X, which are not in the group m;

(Creat sub data that contains just the genes belongs to group m; )

3. Train classifier on X, using SVM
4. t = Test classifier on X, —calculate performance
5.sm; = sm; + t;
Score(m;)= sm; /v ; Aggregate performance
res= { Union of Score(mi) }

Output
Return {Rank(m,),Rank(my),...,Rank(m,)} which is the sort of the list based on the score value of each group

The groups created in the G() step are used to create sub datasets from the original
data, where each sub data consists of the genes that belong to a specific miRNA group
keeping the original class labels. The Ranking function R(), as described in Table 2 is an
approach that assigns a score for each group. In other words, after the ranking process,
each group will have a score. This score expresses the ability of the relevant group to
distinguish case and control classes. To assign a score, cross validation is used with a
classification algorithm. The output of the Rank function R() is a list of group that are
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Table 3 Example of input data for miRcorrNet.

mRNA expression data

Case ID Class Al1BG A21D1 . 7773
TCGA-DK-A6AV neg 32.877 28.283 721.166
TCGA-DK-A3WX neg 39.634 57.526 e 593.293
TCGA-GC-A3WC pos 29.789 98.344 e 1,057.069
TCGA-BT-A20N pos 37.378 55.011 755.688

miRNA expression data

Case ID Class hsa-let-7a-3p hsa-miR-7a-5p hsa-miR-99b-5p
TCGA-DK-A6AV neg 44.775623 13345.98449 9772.686386
TCGA-DK-A3WX neg 34.30313 17531.35061 13508.08329
TCGA-GC-A3WC pos 9.389 15229.41331 18601.78121
TCGA-BT-A20N pos 3.534104 4717.325745 6845.372094

sorted by scores. Then, one can test the model on the top-ranked group or cumulatively on
the top j groups. We choose j to be 10. In other words, we create sub data using the
genes associated with the top ranked 10 groups, keeping the original labels. The model is
created via applying the machine learning on this new sub data; and then the model is
tested on the test set.

miRcorrNet
Let us assume that we are given a two-class gene expression data Dg,,., for gene expression,
and D,,;rna for miRNA expression over the same N samples. Table 3 is an example of
the two input datasets. Let L and K be the number of genes in Dg,,es and miRNA in D,,ignas
respectively. For simplicity, we use the terms gene and mRNA interchangeably.

The workflow of our suggested approach, miRcorrNet, is described in Fig. 2.
The workflow consists of nine components where the most main components are the C(),
G() and R() functions. The first component is the input component, where two data
sets Dgepes and D,,igna are uploaded. The second and the third components are the
removing of missing values and normalization, respectively. Next component is the fourth
one where, differentially expressed genes and miRNAs are calculated using t-test. We only
consider the mRNAs and miRNAs with p-values less and equal to 0.05. The fifth
component is the C() function is the Pearson Correlation Coefficient which is to detect
the mRNA-miRNA associations. This component uses the Pearson correlation coefficient
in order to detect the set of genes that are negatively correlated with a specific miRNA.
We set a stringent threshold as —0.6 in order to detect high-confidence associations.
The output of C() is “miRNA-mRNA correlation” matrix that serve as input to the next
component.

The “Grouping Component” is the six component that actually integrates differentially
expressed miRNAs and mRNAs in order to detect a group of miRNAs and its targets.
In other words, this process corresponds to the G() function, which generates the groups
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that will be used to create sub data sets for each group, keeping the original class labels
(as described in Fig. 3). This component creates the “Target Genes” matrix, which lists set
of target genes for each miRNA. This matrix serves as an input to the seventh component
named Ranking Component.

The Ranking component is applied to each gene group from the “Target Genes” matrix
in order to estimate its significance in terms of separating the two-class data. The 8™

Yousef et al. (2021), PeerJ, DOI 10.7717/peerj.11458

8/25


http://dx.doi.org/10.7717/peerj.11458/fig-2
http://dx.doi.org/10.7717/peerj.11458
https://peerj.com/

Peer

Input
gene; l-?-genesgenex class Target Genes Matrix
Sample; . . neg/pos miRNA; | gene, gene.gene, gene, ..., gene
’ ' neg/pos gene, gene
g'(;;le, g.e'l.le, genegene
Sampley ’ neg/pos miRNA[ | gene, gene, gene, gene, ..., gene
Create Sub Data Sets ¢ ¢

Table “defoult”-Rows: 52 Spec - Cokums: 6 Propertes Flow Variables.

Row D S|dess  |[D)NDX D TesFL2 [D]ccocso D|RRAS
T = 2 oseeen
= ' 0292001
T o o o107
T 1= o o]
eg D070
TCGACHAFDOL ey 077 o ]
TCGAGIARTQOL eg HI319514530145... 007234291 H10605... DOIESSTIBHINNS... 016067681
= : QB 1127%57... 01919708
= o: o.118s89:
TCAGATTOL peg piosasoss0s s D.iewm
= beg Do62s181952977. 1660... 0.0594681
TCADKAIVOL ey " .1emss
TCGASTAGSTO! peg TSI, 0.5
= 47 .

[

Table “Gefauit” -Rows: 52 Spec - Colums: 6 Propertes Flow Verisbles

S | dass (D] DX D] TSF12 D| ccocs0 (D] RRAS

o - powsTz

o 3... 0. 140398

04... 0.023706%0

o. ... jo 01546499

1916154850628291 0.041176206+454... [0.005048 76529718222 [0.05574825
o

o. 19527771
0.3087596758267406 (0. 16320400041897... [0.001174297456219.... 0.12694629
o 3. . 22694428

2 o 14366590

2458220506613%6... |0.2508508651109538 (0.0208 1470548889733 0. 17071920
952297345048... 0.9504748336470985 [0.2707240058451842 0. 56835870
o. i 21005520

23545707155024... [0.23505458451118.... 0. 10250377394679211 0. 18118607
0.8462667513317256 [0. 51021 0.61099460

IEEEERE a3 a4:

0.03166053291202... 0.06251813952937.

RowID s|dess  [[D]neXX |omesFi2 D] ccocs D|RRAS

T e 2 0 2 036553
TCGA'SS-AEOX01 _neg 2 o © ... 0.279%6001
TCGAFAXPOL _neg 2 0 o ... 01207%6%
TCGANF ANROT pep 0.35174612087281... 0.507551182645424 0.10932924637173509 36472283
TCCAGVAGZADL peg o. ® © o7:

TCGACHAIO01 ey o o3 o o.29527%8
TCGAGU-AATQOL ey 0.11319514530145... 0.07234231110609..._ 0.016S57228441445... 0.16067681
TCGATOANGO1 _eg o o © To.1e197085
T res o. o. o ... 01189991
TCGACFASTTOL neg 0.04224809386920...0.08950950611323... 0.002074843109228... 0.16%62688

0.001357293071660..._[0.05%%81

0. 0.
0.1795340231139%. . 0.131912505414%6.

a

2

|4

§

|2
2222

Sub data represents one miRNA/Group

0.17783005051135... 0.3245216663701628 0. 104629413856 18478 [0.20700997

o 0456143... 019928958
0.038316686322452..._[0.05422670

Score ¢ ¢

Counting Loop Start

Table Reader >l 3 Partitioning Predictor Scorer Loop End
::N - > = l—» (3 :\> Cap
v Node 6 © o L] L]
Node 5 Node 1 Node 3 Node 4 Node 7
Perform Cross Validaiton on each sub data
OutPut Ranked Matrix l
Scoring Matrix
Score Target Genes
miRNA,;
miRNAL

Figure 3 Details of the R() function.

Full-size ] DOT: 10.7717/peer;j.11458/fig-3

component is building the model based on top ranked groups. We have considered 10

models where the first one is built on the first ranked group while the second is built from

the first two ranked groups and so on for the top ranked 10 groups. We mean by building

on top groups is considering the genes that are associated on those groups.

The last component is the evaluation of the model created on top ranked groups.
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Table 4 Example of the output of R() function applied on BLCA. Whole results for this R() output has
been given as mean. The columns are the performance measurement achieved by cross-validation.
The rows are the name of each group that is the miRNA. The sorted table according to Accuracy is used
as the rank for each miRNA.

Group Accuracy Sensitivity Specificity Recall Precision F-measure Cohen’s kappa
hsa-miR-32-5p 0.65 0.55 0.71 055 0.61 0.52 0.27
hsa-miR-361-3p  0.85 0.70 0.94 070  0.87 0.76 0.66
hsa-miR-205-5p  0.91 0.90 0.91 090 0.86 0.88 0.81
hsa-miR-30e-5p  0.76 0.60 0.86 0.60  0.77 0.60 0.46
hsa-miR-181a-5p 0.89 0.75 0.97 0.75  0.96 0.82 0.75
hsa-miR-106b-5p 0.93 0.85 0.97 0.85 0.96 0.88 0.83
hsa-let-7a-5p 0.78 0.65 0.86 0.65 0.75 0.68 0.52
hsa-miR-22-3p 0.95 1.00 0.91 1.00  0.89 0.94 0.89
hsa-miR-17-3p 0.91 0.80 0.97 0.80  0.96 0.85 0.79
hsa-miR-151a-5p 0.82 0.70 0.89 0.70  0.86 0.73 0.60
hsa-miR-374a-3p 0.69 0.55 0.77 0.55  0.57 0.55 0.32
hsa-miR-186-5p  0.84 0.75 0.89 075 0.83 0.78 0.65
hsa-miR-200c-3p 0.85 0.70 0.94 0.70  0.86 0.72 0.65
hsa-miR-576-5p  0.82 0.65 0.91 0.65 0.89 0.67 0.57
hsa-let-7a-3p 0.93 0.85 0.97 0.85  0.95 0.89 0.84

For more details on the R() “Ranking Component” see Fig. 3. The input to this
component is the original Dg,,., data and the “Target Genes Matrix”. For each miRNA
entry of “Target Genes Matrix” we create a sub data of Dy, that contains just the genes
listed in the miRNA entry keeping the “class column, as seen in “Create Sub Data Sets”
component of the Fig. 3. This component creates L sub-data and each one of these datasets
is used in the next component for performing scoring. The Score component loads the
sub-data and performs cross validation procedure, recording the performance. We have
used Random Forest classifier to build the model and perform the predictions. The output
of this component is a Scoring matrix, which provides the score and the set of identified
genes for each miRNA group. This Scoring matrix will be used to rank the groups and
later to build a model using top j groups. Table 4 is an example of the output of the rank R()
component. The model will be build considering the top groups genes.

Ranking the significance of miRNAs and genes in miRcorrNet

As seen in Fig. 2, miRcorrNet repeats the process N times. Each time 90% of the data is
selected for training and the remaining 10% is selected for testing. Additionally,
miRcorrNet randomly selects samples with a ratio of 1:2 for under-sampling. In each
iteration our approach generates lists of miRNAs and their associated genes that are
slightly different thus there is a need to apply a prioritization approach on those lists.
Several genomic data analysis applications generate prioritized gene lists. Thus, we believe
that the rank aggregation methods, as utilized in miRcorrNet, are useful solutions for the
integration task. In this respect, we have embedded the RobustRankAggreg R package,
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developed by Kolde et al. (2012) into miRcorrNet. The RobustRankAggreg assigns a P-
value to each element in the aggregated list, which describes how good each element/entity
was ranked compared to the expected value.

In each iteration of N total iterations, as shown in Fig. 2, we rank the miRNAs according
to the value given by R(). Then, we have N different lists with heterogeneous miRNA
rankings. Those lists served as the input to RobustRankAggreg. Additionally, in order to
rank the genes, we have assigned the rank of the miRNA for each gene. Then, we have N
lists of ranked genes that also served to RobustRankAggreg for ranking.

Implementation

The miRcorrNet is a next-generation solution based on the general approach described in
Fig. 1, but it has been denationalised in terms of the mRNA-miRNA relationships.

The miRcorrNet tool efficiently integrated mRNA and miRNA expression profiling data.
The KNIME platform was used for the development of miRcorrNet tool (Berthold et al.,
2008). This platform has been chosen since it is easy to use, and it is open-source software
that can handle a wide range of operations. KNIME workflow consists of nodes with
specific tasks. miRcorrNet is implemented as a KNIME workflow.

Performance evaluation of the model

In order to evaluate model performance, for each established model, we calculated a
number of statistical measures, such as sensitivity, specificity, and accuracy. The following
formulations were used to calculate these statistics (with TP: true positive, FP: false
positive, TN: true negative, and FN referring to false negative classifications):

Sensitivity (SE, Recall) = TP/(TP + FN)

Specificity (SP) = TN/(TN + FP)

Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)

Additionally, we have calculated The Area Under the ROC Curve (AUC)
measurements, which estimates the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative instance.

All performance results reported in this study refer to the average of 100-fold Monte
Carlo Cross-Validation (MCCV). MCCV is the process of randomly selecting (without
replacement) some fraction of the data to form the training set, and then assigning the rest
to the test set. This process is repeated multiple times, generating new training and test
partitions each time randomly. We have chosen 90% for training and 10% for testing.

Some of the data sets used by the classifier are imbalanced. This situation can influence
the classifier to the advantage of the data set with more samples; and it is well known as the
problem of the imbalanced class distribution. We have applied an under-sampling
approach, in which the number of samples of the majority class is reduced to the number
of samples of the minority class. It reduces the bias in the size distribution of the data
subsets. We have applied an under-sampling ratio of 1:2.

In our comparative evaluation experiments, we have tested miRcorrNet and maTE
on the top 1 to top 10 groups, accumulatively. SVM-RFE is executed on different levels of
genes, i.e., 1,000, 500, 250, 125, 100, 80, 60, 40, 20, 10, 8, 6, 4, 2, 1; and SVM-RCE is
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Table 5 Used datasets details. Detail of the 11 datasets used to test miRcorrNet and other tools.
Columns, normal and tumor are class labels while its value is the number of samples belonging to

those classes.

TCGA cancer types Abbreviation Control Case Pubmed ID

Bladder urothelial carcinoma BLCA 405 19 PMID: 24476821
Breast invasive carcinoma BRCA 760 87 PMID: 31878981
Kidney chromophobe KICH 66 25 PMID: 25155756
Kidney renal papillary cell carcinoma KIRP 290 32 PMID: 28780132
Kidney renal clear cell carcinoma KIRC 255 71 PMID: 23792563
Lung adenocarcinoma LUAD 449 20 PMID: 25079552
Lung squamous cell carcinoma LUSC 342 38 PMID: 22960745
Prostate adenocarcinoma PRAD 493 52 PMID: 26544944
Stomach adenocarcinoma STAD 370 35 PMID: 25079317
Papillary thyroid carcinoma THCA 504 59 PMID: 25417114
Uterine corpus endometrial carcinoma UCEC 174 23 PMID: 23636398

Table 6 Example of performance output of the tools based on eth general approach. This is an
example of the output of the miRcorrNet, maTE, or SVM-RCE. This results acquired with
miRcorrNet using BLCA data. The column #Genes is the average number of genes. In the first
step. we build a model from the genes belonging to the first top group and then test it using the
testing part of the data. Then we build a model from the top 1 and 2 groups then test. For j = 10.
the model is built from the genes belonging to the top 10 groups and tested accordingly.

#Top Number of Accuracy Sensitivity Specificity
groups genes

10 388.79 0.94 0.92 0.95
9 355.81 0.95 0.92 0.96
8 328.58 0.94 091 0.96
7 288.23 0.93 0.91 0.95
6 259.99 0.94 0.92 0.95
5 223.87 0.94 0.92 0.95
4 182.58 0.94 091 0.95
3 146.43 0.94 0.91 0.95
2 93.16 0.93 0.9 0.94
1 45.06 0.91 0.86 0.93

executed on the following clusters levels: 90, 72, 54, 35, 18, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4,

3,2, 1.

RESULTS

Performance results

We have tested miRcorrNet on 11 high-quality cancer data sets, as listed in Table 5.
Additionally, we have applied SVM-RFE (Guyon, Weston ¢ Barnhill, 2002), maTE and
SVM-RCE on those datasets. miRcorrNet uses both miRNA and mRNA expression
profiles as an input, while the tools maTE and SVM-RFE consider just mRNA expression
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Table 7 Ranking miRNAs with RobustRankAggreg strategy using BLCA data. This table presents an example of the output of miRcorrNet
based ranking of miRNA, determined from RobustRankAggreg method. Additionally, we have added genes in column three that are
negatively correlated with the corresponding miRNA. The last column is the number of genes in each group associated with each miRNA.

miRNA Score Targets #Genes
(p-value)
hsa-miR-21-5p  8.42423E-33 RASGEF1C, SOX10, NOVAI, PCSK2, GRIK3, AR, EID1, ARHGAP6, C1QTNF7, CNTN2, TACC2, 41

hsa-miR-22-3p  1.20936E-12
hsa-miR-16-5p  0.006982937
hsa-miR-1976 ~ 0.011501451

hsa-miR-182-5p 0.125595903
hsa-miR-576-5p 0.126381607
hsa-miR-92a-3p 0.301933719
hsa-miR-26b-3p 0.92385325

LYRM7, ZFP2, FAM149A, GPRASP2, FOXP1, TNNI3K, MID2, SYNE1, LRRTM1, RBM24, NR3C2,
FAM54B, FOXF1, MEIS1, RNF180, MYOT, ZNF280D, SMAD9, PLP1, RAI2, NRXN1, CBX7, HERCI,
MOAPI1, LOC643763, MYST4, SERINC1, ZBTB4, PRIMA1, C200rf194

MEIS1 1
EVC, ZNF154, PPP3CB 3

FAM168B, AHNAK, ACOX2, PJA2, DNAJC18, F8, NFIX, ARHGAP24, TCEAL2, SETBP1, EVC, THRA, 37
RNEF38, ATL1, CRTC3, SETD7, GPRASP2, PLCL1, ZHX3, NFIA, DDR2, PBX3, KLHL13, ZFHX4, MEISI1,
PBX1, RNF180, NFIC, KIAA1614, SLC24A3, EPDR1, HERC1, TOR1AIP1, SERINCI1, NEK9, ZEB2,

GPR124

CSGALNACTI, ACOX2, CD99L2, ARHGAP24, LRRK2, ROR2, ZEB2, ALDH2

MID2, ZBTB4
SOX10, NOVAL, AQP1, EVC, LRRK2, MID2, ARHGAPI, Cl10orf72, SLC24A3, ALDH2 10
SOX10, RRAGD, ARHGAP24 3

Table 8 Comparison results using all 11 datasets. Column AUC is Area Under the Curve. All the
values are averaged over 100 MCVYV for the level top 2 groups for maTE and miRcorrNet, while 8
and 125 genes for SVM-RFE and finally for SVM-RCE an average of 190.05 genes from cluster
level 2. Standard deviation values is given for AUC.

Method Number of genes Accuracy Sensitivity Specificity AUC Standard deviation
miRcorrNet  141.1 0.96 0.94 0.97 0.98 0.05 + 0.05

maTE 7.48 0.96 0.94 0.96 0.98 0.034 + 0.026
SVM-RCE 190.05 0.96 0.94 0.97 0.99 0.06 £ 0.03
SVM-RFE 8 0.84 0.85 0.85 0.91 0.07 £ 0.04
SVM-RFE 125 0.96 0.97 0.95 0.98 0.05 + 0.03

data. Table 6 presents a sample output of miRcorrNet, maTE and SVM-RCE. Table 7
presents an example of the output of miRcorrNet, based on the ranking of miRNAs, as
determined from RobustRankAggreg method. In Table 8, we present the results obtained
using the top two groups for maTE and miRcorrNet and the top 2 clusters for SVM-RCE.
SVM-REFE does not have clusters or groups so we report the top 8 genes and top 125 genes.
In general, there were no significant differences between the results of the 4 tools
presented in Table 8. However, our aim for miRcorrNet is not to improve the performance
of an existing tool. Rather, miRcorrNet intends to provide a deep analysis for experimental
biologists and clinicians. In terms of deep analysis, miRcorrNet offers a list of mRNAs
and miRNAs that are found to be potentially important for the disease under study.
miRcorrNet lists individual mRNAs and miRNAs according to both their ranking
results and their frequencies. In addition, miRcorrNet lists mRNAs that are targets of
miRNAs. These relationships are ranked according to the p-values in ascending order, and
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Table 9 miRcorrNet results. Whole miRcorrNet results has shown using Area Under the Curve
(AUC) value in terms of performance. #Grp is the number of top groups. Number of genes mean
values has been given.

miRcorrNet performance

#Grp BLCA BRCA KICH KIRC KIRP LUAD LUSC PRAD STAD THCA UCEC
10 0.98 1.00 1.00 0.99 1.00  1.00 1.00  0.95 0.96 1.00 0.99
0.98 1.00 1.00 0.99 1.00  1.00 .00 0.95 0.98 1.00 0.99
0.99 1.00 1.00 0.99 1.00  1.00 1.00  0.96 0.97 1.00 0.99
0.97 1.00 1.00 0.99 1.00  1.00 .00 0.96 0.98 1.00 0.99
0.97 0.99 1.00 0.99 1.00  1.00 .00 095 0.93 0.99 0.99
miRcorrNet number of genes

#Grp BLCA BRCA KICH KIRC KIRP LUAD LUSC PRAD STAD THCA UCEC

[ SIS BN |

10 407 56 4916 245 365 352 398 122 86 278 389
7 290 60 2,998 207 316 257 270 69 52 219 269
5 211 49 2,031 162 297 181 194 54 26 173 193
2 84 32 870 70 157 65 68 21 13 92 75
1 46 24 306 35 69 29 28 10 8 48 33

it reveals the relationships acquired from the data. Furthermore, to separate the two
classes, namely case and control, miRcorrNet runs the model it creates for each group, and
makes a record of these results in the output file. Moreover, the results show that
miRcorrNet performs as well as other tools in terms of accuracy. The results of miRcorrNet
on all test sets are presented in Table 9. We have shown the performance results for
the top 1, 2, 5, 7 and 10 groups. While the upper table shows the performance results, the
lower table displays the number of genes (on average) corresponding to the top groups
used in the upper table. In all tested datasets, the number of genes is low (The range is
[8,69] for #Grpl), except for KICH data with 306 genes for #Grp 1. This performance
results indicate that using only one top group (genes in the top ranked group), one can get
very high accuracy in terms of distinguishing cases from controls. It means that the set of
genes in the top ranked group is a good signature of the disease and could be used as a
biomarker for the disease under study. For all other results, see Supplementary File located
at https://github.com/malikyousef/miRcorrNet.

miRcorrNet generates three output files. The first file lists the name of the miRNA and
its significance with additional information. The second file is the list of genes, sorted by
significance, and the third file includes the performance results.

Validation of miRcorrNet’s findings on miRNA-disease association
databases

miRcorrNet generates a file showing the association of diseases and miRNAs. The outputs
in this file are produced using the ranking strategy. Each miRNA is ranked in descending
order of score values indicating its association with each disease. The reliability of
miRNA-disease associations, which we think is related to the disease, needs to be proven.
For this purpose, the findings of miRcorrNet were compared with database entries, which
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keep miRNA-disease associations. For this purpose, we used dbDEMC (Yang et al., 2010),
miR2Disease (Jiang et al., 2009), miRCancer (Xie et al., 2013) and HMDD (Huang et al.,
2019). In order to limit the number of identified miRNAs for comparison, we set the
association score threshold as 1. This threshold corresponds to the top 7 miRNAs as
minimum number and the top 22 miRNAs as the maximum number among all tested
disease datasets. We found that at least 90.47% and at most 100% of the relationships that
are identified by miRcorrNet exists in the above-mentioned databases. A summary of this
comparison is shown in Table 10. This table shows the miRNA-disease associations
(obtained from databases) and the scores found by miRcorrNet. In the evidence column,
the source of the disease-miRNA association is shown. Additionally, miRcorrNet found
additional miRNAs, ‘hsa-let-7g-5p’ as associated with BLCA and ‘hsa-miR-1301’ as
associated with UCEC.

Validation on external data
We have evaluated the performance of miRcorrNet using an external dataset GSE40419,
downloaded from the Gene Expression Omnibus database (Barrett ¢ Edgar, 2006).
It consists of RNA-Seq expression profiles for 87 lung adenocarcinoma and 77
adjacent normal lung tissues. From now on, we will refer to this data as LAUD_E.
We used the LAUD data from TCGA as the training data and LAUD_E as the test data.
miRcorrNet was applied on mRNA and miRNA expression profiles of LUAD, which
produced a list of significant genes. This gene list was used to train LAUD and test the
performance of the tool using the external data, LAUD_E. In these experiments, we have
considered top 30, top 5, top 2, and top 1 genes. The results are shown in the last 4 rows of
Table 11. We observed that the generated classifier model resulted in high accuracy.
The top 5 genes identified for LUAD are PLAC9, C20RF71, FMO2, S1PR1 and AOC3.
Moreover, we performed an additional test via selecting random lists of genes (30, 5, 2, and
1 genes). We have repeated this randomization experiment five times and calculated the
mean. The results are presented on the rows of Table 11 with a title of LAUD (as the
training data) and tested on LAUD_E (as the testing data) with the corresponding number
of random genes (rows 5-8). Comparing results of random selected genes with the
significant genes (rows 5-8 and rows 9-12) we see that for the significant genes, the results
are significantly higher. Those observations prove that the list of significant genes
suggested by our tool is more robust.

DISCUSSIONS

miRcorrNet prioritizes pan-cancer regulating miRNAs

We run miRcorrNet to identify critical miRNAs in 11 TCGA cancer types. In miRBase
database (Release 22.1), more than 2500 miRNAs are available (Kozomara, Birgaoanu ¢
Griffiths-Jones, 2019). Among these miRNAs, miRcorrNet prioritized only a few (13 ~ 92,
median = 43) miRNAs as critical for each specific cancer type. We also investigated
how recurrently these miRNAs were prioritized across the cancer types. We determined
that 11 miRNAs had recurrent gene regulation across 6 or more cancer types (as shown
in Fig. 4). Among these miRNAs, miR-21-5p was associated with 9 cancer types,
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Table 10 Comparison of miRNA-disease associations between miRcorrNet findings and existing
associations in databases.

miRNA name Score Evidence miRNA name Score Evidence
BLCA BRCA
hsa-miR-21-5p 7.32 dbDEMC, hsa-miR-21-5p 9.66 dbDEMC,
miR2Disease, miR2Disease,
miRCancer miRCancer
hsa-miR-22-3p 4.67 miRCancer hsa-miR-10b-5p 7.98 dbDEMC,
miR2Disease,
miRCancer
hsa-miR-148b-3p 4.06 dbDEMC, hsa-miR-200c-3p 5.26 dbDEMC,
miR2Disease miR2Disease,
miRCancer
hsa-let-7g-5p - No evidence - - -
KICH KIRP
hsa-miR-222-3p 9.33 dbDEMC hsa-miR-21-5p 8.62 dbDEMC,
miR2Disease,
miRCancer
hsa-miR-221-3p 8.1 dbDEMC, hsa-miR-10b-5p 4.95 dbDEMC,
miR2Disease miR2Disease,
miRCancer
hsa-miR-96-5p 7.03 dbDEMC hsa-miR-589-5p 4.27 dbDEMC
KIRC UCEC
hsa-miR-28-3p 7.96 dbDEMC, hsa-miR-151a-5p 2.23 dbDEMC
miR2Disease
hsa-miR-21-5p 6.35 dbDEMC, hsa-miR-200b-3p 2.12 dbDEMC,
miR2Disease, miRCancer
miRCancer
hsa-miR-106b-3p 6.17 dbDEMC, hsa-miR-141-3p 2.01 dbDEMC,
miR2Disease miRCancer
- - - hsa-miR-1301 - No evidence
LUAD LUSC
hsa-miR-30a-3p 6.23 dbDEMC, hsa-miR-146b-3p 3.76 dbDEMC,
miR2Disease, miR2Disease
miRCancer,
HMDD
hsa-let-7a-5p 6.13 dbDEMC, hsa-miR-181a-5p 3.74 dbDEMC
miR2Disease
hsa-miR-22-3p 5.49 dbDEMC, hsa-miR-205-5p 3.44 dbDEMC,
miR2Disease, miR2Disease
PRAD STAD
hsa-miR-143-3p 331 dbDEMC, hsa-miR-21-5p 9.59 dbDEMC,
miR2Disease miR2Disease,
miRCancer
hsa-miR-375 3.04 dbDEMC, hsa-miR-148b-3p 3.22 miRCancer
miR2Disease
hsa-miR-200c-3p 1 dbDEMC hsa-miR-185-5p 2.39 dbDEMC,
miRCancer
THCA
hsa-miR-152 7.26 dbDEMC
hsa-miR-30a-5p 6.56 dbDEMC,
miRCancer
hsa-miR-148b-3p 6.5 dbDEMC
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Table 11 Performance results obtained by applying different experiments on the validation data.

Experiments Sensitivity Specificity Accuracy
LAUD_E random 1 0.63 0.52 0.59
LAUD_E random 2 0.58 0.71 0.63
LAUD_E random 5 0.73 0.77 0.74
LAUD_E random 30 0.92 0.98 0.94
LAUD (train) test on LAUD_E random 1 0.53 0.61 0.56
LAUD (train) test on LAUD_E random 2 0.53 0.73 0.62
LAUD (train) test on LAUD_E random 5 0.73 0.76 0.74
LAUD (train) test on LAUD_E random 30 0.87 0.94 091
LAUD (train) test on LAUD_E top 1 0.86 0.75 0.81
LAUD (train) test on LAUD_E top 2 0.76 0.97 0.86
LAUD (train) test on LAUD_E top 5 0.97 0.92 0.95
LAUD (train) test on LAUD_E top 30 0.98 0.97 0.97
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Figure 4 Pan-cancer regulating miRNAs predicted by miRcorrnet. (A) Eleven miRNAs the potentially
regulate 6 or more cancer types, are highlighted. (B) Ranks of these 11 miRNAs in individual cancer types
are denoted by dots. These miRNAs are sorted based on their median rank.
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miR-200C and miR-143-3p were associated with 7 cancer types, and 8 other miRNAs had
recurrent association with 6 cancer types (as shown in Fig. 4A). miR-21-5p was not only
associated with the highest number of cancer types, but is also regarded as one of the
top ranked miRNAs consistently across the cancer types (as shown in Fig. 4B).

The rankings were based on the frequency score derived from the miRcorrNet algorithm.
miR-21-5p is a well-known onco-miRNA whose elevated expression is linked with
suppression of tumor suppressor genes associated with proliferation and apoptosis across
numerous cancer types (Bandyopadhyay et al., 2010; Feng & Tsao, 2016). Moreover,
diagnostic and prognostic roles of miR-21-5p and its implication in drug resistance had
also been observed in many cancer types (Zhang et al., 2012; Faragalla et al., 2012;
Wang et al., 2014; Yang et al., 2015; Feng ¢ Tsao, 2016; Gaudelot et al., 2017; Emami et al.,
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2018). The literature-based evidence validated that miRcorrNet accurately predicted
miR-21-5p as a critical pan-cancer regulator. The miRNAs miR-141-5p, miR-200C-3p,
miR-141-3p, and miR-200b-3p were ranked as 2™ to 5%, respectively (as shown in

Fig. 4B). Both mature strands of miR-141 were prioritized as top critical miRNAs in our
study, and concordant dysregulation of miR-141-5p and miR-141-3p across cancer
types has been recently reported(Mitra, Sun & Zhao, 2015; Mitra et al., 2020). However,
due to the historical belief that one mature strand is degraded during miRNA biogenesis,
little is known about the coordinated regulatory roles of this 5p/3p pair. Here our study
indicates that the miR-141 5p/3p pair mediates recurrent regulations across the cancer
types, suggesting that they may be critical and selected during tumorigenesis. Among the
11 top ranked miRNAs, 5 of them (miR-141 5p, miR-200C-3p, miR-141-3p, miR-200B-3p,
and miR-200a-5p) are the members of the miR-200 family. Interactions between the
miR-200 family of miRNAs and ZEB1/ZEB2, two transcription factors that regulate
epithelial to mesenchymal transition (EMT), inhibited EMT and suppressed cancer
metastasis) (Korpal ¢ Kang, 2008; Mongroo ¢ Rustgi, 2010). The miRNAs miR-21-5p,
miR-200C-3p, miR-143-3p, and miR-25-3p are among the 30 miRNAs that constitute, on
average, 90% and 80% of all miRNA expression across the TCGA normal tissues and
cancer tissues, respectively. Taken together, these results suggest that miRcorrNet is able to
accurately prioritize pan-cancer regulating high-confidence miRNAs.

Comparison with existing tools

There are a few web-based and R-based (Bunn ¢ Korpela, 2021) tools to perform an
integrated miRNA-mRNA analysis. anamiR is a R-based tool that integrates mRNA and
miRNA profiles (Wang et al., 2019). The tool firstly determines DE mRNAs and miRNAs.
Afterwards, it calculates the correlation scores for all possible DE mRNA and miRNA
combinations. anamiR makes use of various miRNA-target prediction algorithms and
validated databases. Lastly, anamiR performs functional analysis for the genes of interest.
miRComb is another R based tool that conducts an integrated analysis of mRNA and
miRNA expression (Vila-Casadestis, Gironella e Lozano, 2016). It first detects DE
miRNAs and mRNAs. The mRNA-miRNA correlation values are then calculated, and
negatively correlated mRNA-miRNA pairs are determined. Among these identified
pairs, nRNA-miRNA interaction databases are used to detect the pairs that may be
important for the disease. In this way, miRComb reports potentially important
mRNA-miRNA pairs. In order to understand the biological functionality of these pairs,
miRComb allows functional analysis. Compared to miRComb, anamiR allows the use of
validated databases, while also allowing functional analysis. In addition to these R based
tools there are also web-based tools. In this respect, MMIA tool uses the correlation
information between miRNAs and mRNAs (Nam et al., 2009). It uses various target
prediction algorithms to filter the predictions. MAGIA is another web based tool that is
similar to MMIA (Sales et al., 2010). Different from MMIA, MAGIA offers 4 different
methods for integrating miRNA and mRNA data. MirConnX is another such web based
tool (Huang, Athanassiou ¢ Benos, 2011). In addition to computed correlation values,
mirConnX also uses biologically validated miRNA targets. Unfortunately, most of these

Yousef et al. (2021), PeerdJ, DOI 10.7717/peerj.11458 18/25


http://dx.doi.org/10.7717/peerj.11458
https://peerj.com/

Peer/

Table 12 List of correlation based tools for mRNA-miRNA integration.

Tool name Data sets used Link Status
anamiR Multiple Myeloma R package Not Available
Prostate Cancer for R 4.0.4
miRComb Colon Cancer R package Not Available
Rectal Cancer for R 4.0.4
Liver Cancer
Stomach Cancer
Esophageal Cancer
MMIA ALL http://cancer.informatics.indiana.edu/mmia (inactive) Not Available
MAGIA ALL http://gencomp.bio.unipd.it/magia (inactive) Not Available
MirConnX GBM http://www.benoslab.pitt.edu/mirconnx Not Available
BCM BRCA and THCA http://doi.ieeecomputersociety.org/10.1109/TCBB.2015.2462370 Not Available

web-based and R-based integrated miRNA and mRNA expression data analysis tools are
not up to date, and they are discontinued. The availability status of these tools is presented
in Table 12.

These similar studies such as anamiR and miRComb have some other limitations.
Firstly, these studies use multiple target gene prediction algorithms. As a result of the use of
target gene prediction algorithms, the number of identified target genes can be up to 4,000.
It is not feasible to validate such a huge number of target genes using low throughput
methods such as luciferase reporter assays. On the other hand, miRcorrNet predicts on
average 407 genes as target genes, which is very low compared to other studies. This would
help the experimental biologists to pinpoint and verify most interesting targets and
their functions. Secondly, two R based tools developed for this purpose (anamiR,
miRComb) are not easy to use for experimental biologists. On the contrary, miRcorrNet is
extremely user friendly, which could help the clinicians and experimental biologists to
easily obtain targets of desired miRNAs. Lastly, the tool that we developed in this study,
miRcorrNet, uses state-of-the-art machine learning techniques and it includes a ranking
step to separate the two classes, namely case and control, which is not available in
other tools. In summary, the merit of our tool is different from other existing tools that
deal with miRNA and mRNA expressions.

The goal of miRcorrNet is not to compete with other machine learning based tools that
perform feature selection and classification tasks. Although miRcorrNet has an equally
high performance as other tools reported in literature, the intended usage of miRcorrNet is
completely different. The objective of miRcorrNet is to detect significant miRNA
groups that may be able to serve as a biomarker for the disease. These significant miRNA
groups should be considered for further analysis in order to deepen our understanding of
the role of miRNA in a specific disease. Traditional tools provide a list of significant
genes that are not related to any biological background, which causes the researcher to
evaluate those significant genes by using other tools for enrichment analysis. However,
researchers need a small specific set of genes that can be investigated to determine their
contribution to the initiation and/or progression of the disease of interest. Therefore, one
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can regard miRcorrNet as a tool that identifies significant genes that are linked with a
specific miRNA, whereas traditional approaches search for significant genes that are able
to distinguish between the two-classes, hoping that using pathway analysis will shed light
on those genes.

Although miRcorrNet provides ease of use, it has one shortcoming. In its current form,
miRcorrNet performs the rank process only by using the relevant group; but intergroup
relationships are not evaluated. We expect that more accurate results can be obtained
when the combinations of groups are taken into account. We would like to implement this
idea as a future work.

CONCLUSION

Exploring the potential biological function of differential expressed genes through
integrating multiple -omics data including miRNA and mRNA expression profiles, is a
popular research topic. Nevertheless, how to assess the repression effect on target genes via
integrating miRNA and mRNA expression profiles are not fully resolved. In this study,
we proposed a novel tool, miRcorrNet, which conducts machine learning-based
integration of expression profiles. The tool integrates miRNA and mRNA expression
profiles in order to detect miRNA-associated genes that are able to perform the
classification task. The tool detects groups, which are later subject to the Rank procedure.
The groups consist of a set of genes that are associated with a specific miRNA. The strength
of miRcorrNet is that the identified set of genes, that are represented in groups are
guaranteed to distinguish two classes (cases vs. controls). Thus, those groups of genes and
their associated miRNAs may serve as a biomarker for the specific disease under
investigation.
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