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Abstract: Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional
antibiotics in order to overcome the growing problems of antibiotic resistance. Computational pre-
diction approaches receive an increasing interest to identify and design the best candidate AMPs
prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic
activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides
(DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a
positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as
negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative
and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different
physico-chemical properties of the peptides are calculated and used as features in our study. Follow-
ing data exploration and data preprocessing steps, a variety of classification algorithms are used with
100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the
peptides. Among the generated models, Random Forest has resulted in the best performance metrics
for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC:
0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision:
0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be
useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the
experimental studies.

Keywords: antimicrobial peptide (AMP); machine learning; classification model; antimicrobial peptide
prediction; antimicrobial activity; physico-chemical properties; linear cationic antimicrobial peptides

1. Introduction

Antimicrobial peptides (AMPs) are part of innate immunity and are natural antibiotics
encoded by specific genes [1]. They are produced by various tissues and cell types of human,
plant and animal species. These antimicrobial peptides usually contain 12 to 50 amino
acids [2]. Nowadays, in parallel with the elevated use of antibiotics, resistance to antibiotics
is rapidly increasing. The World Health Organization (WHO) reported that antimicrobial
resistance continues to rise up all over the world and new resistance mechanisms emerge.
Therefore, we could be faced with an era when infections can no longer be treated with
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antibiotics [3]. The increasing number of bacteria, which are resistant to antibiotics, create a
need for the development of new antimicrobial agents that can be applied in treatment [4].
Studying the properties of antimicrobial peptides in detail is a very important topic for
drug design [5]. Although AMPs are mainly used to kill Gram-positive and Gram-negative
bacteria, they have potential to fight against mycobacteria, viruses, and cancerous cells. In
this respect, AMPs are considered as a powerful alternative to antibiotics since they have
lower risk to develop resistance [3,4]. Hence, discovering or designing novel antimicrobial
peptides became a major field of interest.

The increasing interest in AMPs has recently increased the efforts to discover new
peptides with antimicrobial activities. Prior to the time-consuming, costly, and difficult
production processes, the accurate prediction of the activity of candidate peptides is very
important. Along this line, several computational approaches such as de novo compu-
tational design [6–9], linguistic model [10,11], pattern insertion algorithm [12–15], and
evolutionary-genetic algorithms [16–19] have been proposed for predicting the antimicro-
bial activity of AMPs and for identifying promising AMP candidates without undertaking
expensive wet-lab experiments. Among different computational methods for the estimation
of antimicrobial peptides [20], the use of machine learning methods became popular [21–24].
Machine learning is a computational technique where the generated models can make
predictions via learning data [25]. Significant advancements in computational power and
easy-to-use statistical learning tools that have come to the fore in recent years have increased
the popularity of machine learning approaches. In this respect, machine learning which can
leverage large datasets that are produced by high-throughput methods has become a viable
option for the accurate classification of AMPs [26]. Lata et al. used the Support Vector
Machine (SVM) method for prediction and classification of peptides on data which were col-
lected from the Antimicrobial Peptides Database [24]. Their model is based on amino acid
composition, and by using five-fold cross-validation, they obtained 92.14% accuracy [24].
Burdukiewicz et al. attempted to identify essential AMP potential regions via applying
Random Forest (RF) as a classification algorithm [27]. Chung et al. made predictions for
antimicrobial peptides on different organisms including amphibians, humans, fish, insects,
plants, bacteria, and mammals [28]. Amino acid (aa) compositions, amino acid pairs, and
the physico-chemical properties are used as features. They performed feature selection, and
applied RF, SVM, k-Nearest Neighbor (kNN) algorithms. They reported that RF generated
the best result, which was over 92% accuracy on all tested organisms [28]. Bhadra et al.
also utilized an RF algorithm for AMP prediction using physico-chemical properties as
features [23]. They grouped each property into three specific classes. For example, for hy-
drophobicity property, three classes are polar, neutral, and hydrophobic, while these three
classes are positive, neutral, and negative for net charge property. They used AMP and
non-AMP data with different ratios, where 19 different ratios were used in total; 1:3 ratio
yielded 96% accuracy with 10-fold cross-validation technique and reduced feature sets [23].
Wang et al. combined sequence alignment with feature selection methods for classification
of AMPs [29]. Xiao et al. modeled a two-level classifier. First level is for classifying peptide
sequences as an AMP, and the second level is to separate these AMPs into 10 functional
categories [21]. There are many computational tools to predict AMPs based on machine
learning approaches [17,30–34]. Additionally, deep learning methods have been used to
apply to antimicrobial peptides prediction problems. Bhadra et al. presented a method
called deepAMP for sequences shorter than 30 aa. In their method, they used an optimal
feature set of reduced amino acid composition with convolutional neural network and
obtained 77% accuracy. They also compared their results with RF and SVM algorithms.
While the RF model gives close accuracy (75%) to CNN, the model used for SVM has a
lower accuracy (72%) [35]. Su et al. designed a deep neural network which consists of an
embedding layer and multi-convolutional layers for AMP identification. Compared with
the existing models, their model achieved a higher accuracy score (92%) [36]. Schneider
et al. used self-organizing maps as input layers for their feedforward neural network on
AMP data and obtained 92% reclassification accuracy with balanced prediction on sam-
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ples [37]. Witten et al. reported a convolutional neural network model for the classification
and regression of AMPs [38]. They used Minimum Inhibition Concentration (MIC) values
for regression and compared with ridge regression and kNN algorithms. They showed
that CNN has better root mean squared error value (0.501) than others. Moreover, for the
classification part, when their CNN model is compared with other state-of-the-art methods,
they have shown that higher prediction performance (97%) is obtained. Beltran et al. pro-
posed a new feature selection approach to concentrate on molecular descriptors [39]. Their
approach is applied on six benchmark datasets for evaluation. Additionally, they compared
their results with state-of-the-art prediction tools and showed that their model outperforms
these tools for prediction of antimicrobial and antibacterial peptides. In addition to the
above-mentioned research efforts, some recent studies also used deep neural networks for
the prediction of antimicrobial peptides [40–43]. However, there is no standardization in
terms of the use of machine learning methods for the AMP prediction.

Nowadays, antimicrobial peptide databases provide comprehensive information on
thousands of natural or synthetic antimicrobial peptides. The peptide sequences deposited
in these databases can be utilized for de novo design of AMPs using computer-aided
approaches [44,45]. However, in these databases, there is no standardization in terms of
the experimental methods that are used to measure the activity of the AMPs in vitro. On
the other hand, the antimicrobial activities of several AMPs have been predicted in silico.
However, these algorithms do not take into account the physico-chemical and structural
properties of the peptides and the mechanism of antimicrobial action against specific target
microorganisms. Therefore, there is a need for new approaches based on the structure-
activity relationship to accurately predict the antimicrobial activity of candidate peptides
before synthesis.

In the last decade, a vast number of studies focused on the development of compu-
tational methods for determining the antimicrobial activity of natural or synthetic AMPs.
However, the vast majority of these methods do not take into account the specific prop-
erties of bacterial targets. However, an AMP can exhibit different mechanisms of action
against different target microorganisms. AMPs firstly interact with the bacterial cell wall
and hence, it is considered that the cell wall composition greatly affects the antimicrobial
activity of AMPs [46]. It is also well known that Gram-positive and Gram-negative bacteria
have different cell-surface architectures. For example, Gram-negative bacteria have a thin
peptidoglycan cell wall, surrounded by an outer membrane mainly containing lipopolysac-
charide. Gram-positive bacteria lack an outer membrane but the cell wall contains thicker
peptidoglycan layer and teichoic acids. Cell surface envelopes play a crucial role in the
penetration and initial interaction of AMPs. Therefore, the prediction of the antimicrobial
activity of AMPs need be considered separately for these two different bacterial groups.
For this reason, in this paper, we aimed to develop a machine learning approach based on
physico-chemical and structural properties of peptides and to predict their activities against
Gram-positive and Gram-negative bacteria, separately. For this purpose, two different data
sets were created in this study by selecting the peptides that are active against (i) E. coli,
P. aeruginosa, and A. baumannii species for Gram-negative bacteria, and (ii) S. aureus, L.
monocytogenes, and B. cereus species for Gram-positive bacteria. Different classification
models are generated on each dataset and the results are compared using performance
evaluation metrics in terms of accuracy, recall, specificity, precision, Area Under Curve
(AUC), F1 measure, and balanced accuracy.

The rest of this paper is organized as follows. The Materials and Methods section
presents our dataset and data preprocessing steps, and the machine learning algorithms
that we used to predict AMPs. The Results section highlights our findings and provides an
extensive evaluation of our method. The Discussions section discusses the biological rele-
vance of our findings. Finally, the Conclusions section concludes the paper and summarizes
avenues for further research.
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2. Materials and Methods
2.1. Dataset and Data Preprocessing

In this study, as a data resource, several AMP databases were investigated. Database of
Antimicrobial Activity and Structure of Peptides (DBAASP v.2. http://dbaasp.org, accessed
on 10 August 2021) [47] was chosen due to the following reasons: (i) DBAASP is one of the
most comprehensive AMP databases and it is widely used in literature. (ii) This database
provides users with detailed information about the activity of thousands of peptides, where
the antimicrobial activity has been tested experimentally or in silico against more than 4200
different organisms (bacteria, fungi, some parasites, viruses, and cancer cells). (iii) DBAASP
has an application programmable interface (API). (iv) While most other databases were
outdated, DBAASP is being updated frequently. Therefore, in this study, we have compiled
our dataset from DBAASP.

In Figure 1, we illustrate our data preprocessing steps. In terms of synthesis type,
ribosomally synthesized peptides, non-ribosomally synthesized peptides, and synthetic
peptides were included in our datasets (Figure 1, Step 1). In terms of peptide complexity,
we focused on monomers since 90% of the peptides in databases are monomeric peptides
which consist of only one polypeptide chain (Figure 1, Step 2). Most of the property
calculation algorithms recognize natural amino acids. Hence, the peptides which contain
non-standard amino acids, or which have N and C terminal modifications were removed
from the datasets (Figure 1, Step 3 and 4).
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As a continuation of this work, we plan to perform de novo antimicrobial peptide
design by using the dataset that we have compiled in this study. Along this line, in
therapeutic applications, the prediction of non-hemolytic peptides are reported as more
important than the hemolytic peptides for the elimination of the detrimental effects of
AMPs on the host [48]. Hence, here we focused on non-hemolytic peptides, and the
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peptides having hemolytic activity against human erythrocytes were removed from the
datasets (Figure 1, Step 5).

AMPs exhibit their antimicrobial effects mainly through two different mechanisms.
The membrane-targeting AMPs disrupt cell membrane integrity and lead to cytoplasmic
leakage while the AMPs that use non-membrane targeting mechanisms mainly inhibit
essential intracellular functions by interfering with DNA, RNA or proteins. AMPs shorter
than 20 aa usually exert their antimicrobial effect by using non-membrane target mecha-
nisms and they are defined as cell-penetrating antimicrobial peptides [49,50]. However,
in this study, we focused on membrane-active peptides which are generally longer than
20 aa. Among the peptides longer than 20 aa in DBAASP, most of the peptide entries are
shorter than 50 aa, hence we have selected the peptides with lengths ranging from 20 to
50 aa (Figure 1, Step 6).

Linear cationic antimicrobial peptides (LCAMPs) are the largest class of AMPs and they
are widely found in different organisms [49]. Therefore, LCAMPs which have antimicrobial
activity against Gram-negative bacteria including Escherichia coli, Pseudomonas aeruginosa,
Acinetobacter baumannii species, and Gram-positive bacteria including Staphylococcus aureus,
Listeria monocytogenes, Bacillus cereus species are selected from the DBAASP (Figure 1,
Step 7 and 8).

The CD-HIT [50] program was used to eliminate the sequences that have more than
80% identity (Figure 1, Step 9). The CD-HIT program is widely used in the AMP prediction
problem for removing highly similar sequences [51–59].

In this study, the class labels of peptides are assigned according to the antimicrobial
peptide activities against target organisms. In this respect, Minimum Inhibition Concentra-
tion (MIC) values are widely used to assess the in vitro levels of susceptibility or resistance
of specific bacterial strains to a particular AMP [50]. Hence, we utilized MIC values pro-
vided in DBAASP for each protein against different target organisms. All concentration
units were converted to µg/mL using the molecular weights of the peptides. While the
peptides having MIC value < 25 µg/mL against one of our target organisms are assigned
as positive (antimicrobial), the peptides having MIC >100 µg/mL are assigned as negative
(non-antimicrobial) (Figure 1, Step 10). This procedure is repeated separately for our Gram-
negative and Gram-positive datasets. Hence, we assigned a class label to each peptide in
our dataset.

The final dataset includes 231 positive (AMP) and 114 negative (non-AMP) labeled
peptides in the Gram-negative dataset, and 165 positive and 194 negative samples in the
Gram-positive dataset.

2.1.1. Feature Generation

Machine learning algorithms paved the way for the discovery of novel AMPs. Since
ML models require numerical or categorical data (features) as an input, an informative
encoding of proteins is crucial. Unfortunately, the development of appropriate encodings
for proteins is a major challenge, and hence the feature generation problem for peptides
has not been entirely solved so far. Therefore, the development of novel amino acid
encodings is an active stand-alone research branch. A recent review paper [60] discussed
state-of-the-art encodings of amino acids as well as their properties in sequence- and
structure-based aggregation.

Generation of Physico-Chemical Features (Descriptors)

Most AMPs exhibit their antimicrobial effects mainly by perturbing bacterial mem-
brane integrity. Therefore, the development of an effective predictive model strongly
depends on the deep understanding of physico-chemical parameters, especially those that
affect the AMP–membrane interaction. For AMPs, the sequence length of the peptide,
normalized hydrophobic moment, normalized hydrophobicity, net charge, isoelectric point,
penetration depth, orientation of peptides relative to the surface of membrane (tilt angle),
propensity to disordering, linear moment and in vitro aggregation are widely used physico-
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chemical properties [9,46,60–63]. As Spanig et al. noted in their recent review paper [60],
the physico-chemical property encoding is also utilized by several web servers such as
AVPpred [64] and DBAASP [47] in order to perform database queries, classify, and retrieve
peptides. Moreover, physico-chemical properties have been employed in different studies
to predict the antimicrobial effects of synthetic peptides [65] or to find substructures with
antimicrobial potency in larger proteins [66]. These parameters strongly affect the extent
of peptide–membrane interactions and the depth of the penetration in lipid bilayer, and
determine the mode of action of membrane-targeting AMPs [46]. For instance, net charge
reflects the propensity of electrostatic interaction of cationic peptides with the negatively
charged membrane while hydrophobicity is responsible for the insertion and partition of
the peptides into the hydrophobic core of the bilayer [5]. In our study, these 10 features
were used as features to represent each peptide. All these features except sequence length
are calculated by the DBAASP web server. Table 1 presents example sequences that are in-
cluded in our Gram-negative dataset. As shown in Table 1, along with 10 physico-chemical
properties, each peptide has a class label as 0 or 1, where 0 implies that the peptide is
not active against Gram-negative bacteria, and 1 implies that the peptide is active against
these bacteria.

Table 1. An example of AMP and non-AMP peptides included in our Gram-negative dataset and
their physico-chemical properties, excerpted from DBAASP [47].

Name
of

Sequence
Sequence Seq.

Length
Norm.
Hyd.

Moment
Norm.
Hyd.

Net
Charge

Isoelectric
Point

Penet.
Depth

Tilt
An-
gle

Disordered
Conf.

Propensity
Linear

Moment
Propensity

In Vitro
Aggregation

Mean
MIC

Class
(AMP

Category)

XPF-B2 GWASKIGTQLGKMAKVGLKEFVQS 24 1.11 −0.25 3 10.7 15 76 0.09 0.16 0 256.81 0

Ovalbumin
(271–290) SNVMEERKIKVYLPRMKMEE 20 0.13 −0.28 1 9.38 30 67 −0.11 0.29 0 800 0

MBI 29 A1 KWKSFIKKLTSVLKKVVTTALPALIS 26 1.03 −0.54 6 11.37 12 106 0.16 0.27 3.4 9.33 1

Cyanophlyctin FLNALKNFAKTAGKRLKSLLN 21 1.69 −0.24 5 11.74 15 88 −0.03 0.25 0 12 1

Generation of Sequence-Based, Structure-Based, and Linguistic-Based Features

Several studies have provided web servers or standalone programs to calculate fea-
tures from peptide sequences [67–69]. These tools are reviewed in detail in [60]. Propy tool,
which was developed by Cao et al., provides five feature groups with 13 subfeatures from
proteins or peptide sequences [70]. Chen et al. developed iFeature tool, which calculates
18 feature groups and also provides clustering and feature selection on protein and peptide
sequences [71]. PyBioMed is another Python package that computes features not only from
protein, DNA sequences but also from chemical structures [72]. It is a frequently used
tool in this field due to its wide scope in attribute definition [73–75]. The PyProtein [72]
is a module of PyBioMed for calculating the structural and physico-chemical features of
proteins and peptides. It computes five feature groups including physico-chemical, amino
acid composition, pseudo amino acid composition (PseAAC), Composition, Transition, and
Distribution (CTD) of physico-chemical properties, autocorrelation, sequence order, and
conjoint triad. These features are also known as different Chou’s PseAAC modes [70]. For
our Gram-positive and Gram-negative datasets, 1497 features including amino acid compo-
sition (20), dipeptide composition (400), CTD composition (21), CTD transition (21), CTD
distribution (105), Moran autocorrelation (240), Geary autocorrelation (240), Moreau–Broto
autocorrelation (240), quasi-sequence-order descriptors (100), sequence order coupling
number (60), and pseudo amino acid composition (50) are calculated via freely available
PyProtein module in PyBioMed python package [72]. These features are also used in other
studies for AMP prediction using machine learning [61,76].

2.2. Machine Learning Models

AdaBoost: Boosting technique creates a strong learner by bringing together several
weak learners. The basic approach of boosting methods is to train the estimators cumula-
tively. In this model, the training set is first trained with a weak learner. For this algorithm,
incorrectly predicted samples after the training step are important. In the next training
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phase, the incorrectly learned training data in the first iteration is retrained by giving more
priority [77].

LogitBoost: LogitBoost has been developed to provide solutions to the overfitting
problem experienced in AdaBoost. This algorithm linearly reduces the errors in the training
to solve the above-mentioned problem [78].

Decision Tree: The decision tree creates a classification or regression model in the
form of a tree structure. While dividing the dataset into smaller and smaller subsets, an
associated decision tree is progressively and concurrently developed [79].

Random Forest: Random Forests (RF) are an ensemble learning method for classifica-
tion, regression, and other tasks, by generating a large number of decision trees during the
training phase and estimating the class or number according to the type of problem [80].

Support Vector Machine: A Support Vector Machine (SVM) can be defined as a
vector space-based machine learning method that finds a decision boundary between the
two classes that are furthest away from any point in the training data [81].

K-Nearest Neighbor: The k-nearest neighbor (kNN) algorithm is one of the supervised
learning algorithms that is used in solving both classification and regression problems.
The algorithm is used by making use of the data in a sample set with known classes. The
distance of the new data, which will be added to the sample data set, is calculated according
to the existing data, and its k closest neighbors are examined [82].

The Konstanz Information Miner (KNIME) platform is used for the implementation of
our workflow [83] and the Jupyter Notebook [84] was used for visualization.

2.2.1. Model Construction

As illustrated in Figure 2, we applied several machine learning algorithms that are
explained in the above section to classify antimicrobial and non-antimicrobial peptides. We
also constructed stacking ensemble learners. All the findings we obtained in our study were
obtained using 100-fold Monte Carlo Cross-Validation (MCCV) [85]. MCCV is a technique
that selects a part of the data (unaltered) to create the training set, and then assigns the
remaining data as the test set. This process is then repeated many times randomly, creating
new training and testing segments each time. In our study, the training set is 90% of the
data and the test is 10%.
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2.2.2. Performance Metrics

We have assessed the performance of our models using several performance evaluation
metrics such as accuracy, recall, specificity, AUC, F1 measure, and balanced accuracy. These
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metrics are employed as follows where TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative.

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Recall (Sensitivity) =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

F1 =
2TP

2TP + FP + FN
(4)

Balanced Accuracy =
1
2

(
TP

TP + FN

)
+

1
2

(
TN

TN + FP

)
(5)

3. Results
3.1. Training Models Using Physico-Chemical Features

In our experiments, firstly we have used the above-mentioned ten physico-chemical
features and different machine learning methods: (i) to learn whether the peptides in each
of our datasets have antimicrobial activity or not and (ii) to classify them accordingly. To
this end, we have applied methods such as AdaBoost, Decision Tree, LogitBoost, RF, and
SVM. As shown in Tables 2 and 3, for both Gram-negative and Gram-positive datasets, RF
classifier resulted in the best performance metrics. While the AUC rate reached up to 90%
for Gram-positive data, this rate was 92% for Gram-negative data. Not only for AUC rate,
but also for other measures such as accuracy, recall, specificity, precision, and F1 measure,
RF yielded the best performance metrics. Figure 3 displays the comparative evaluation of
different models using AUC values for (a) Gram-negative dataset and (b) Gram-positive
dataset. As it can be seen in Figure 3a and in Table 2, while 92% AUC value is obtained
for Gram-negative dataset, 90% AUC value is obtained for Gram-positive dataset (shown
in Figure 3b and in Table 3) using RF classifier. While the AUC values of other classifiers
range between 0.77–0.87 for Gram-positive dataset (shown in Figure 3b and in Table 3), it
ranges between 0.78–0.89 for Gram-negative dataset.

Table 2. Comparison of different models according to different performance metrics for Gram-
negative dataset, using physico-chemical features.

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced

Acc.

AdaBoost 0.85 ± 0.06 0.92 ± 0.06 0.72 ± 0.20 0.87 ± 0.07 0.88 ± 0.06 0.89 ± 0.04 0.82 ± 0.13
Decision Tree 0.79 ± 0.06 0.87 ± 0.07 0.66 ± 0.24 0.84 ± 0.07 0.78 ± 0.07 0.85 ± 0.04 0.76 ± 0.15

LogitBoost 0.86 ± 0.05 0.92 ± 0.06 0.74 ± 0.16 0.88 ± 0.06 0.89 ± 0.06 0.90 ± 0.03 0.83 ± 0.11
RF 0.89 ± 0.05 0.93 ± 0.04 0.79 ± 0.16 0.90 ± 0.06 0.92 ± 0.05 0.91 ± 0.03 0.86 ± 0.10

SVM 0.80 ± 0.05 0.93 ± 0.06 0.56 ± 0.21 0.81 ± 0.07 0.82 ± 0.06 0.86 ± 0.03 0.74 ± 0.13
SVM + kNN 0.80 ± 0.07 0.93 ± 0.05 0.56 ± 0.25 0.81 ± 0.08 0.82 ± 0.08 0.86 ± 0.04 0.74 ± 0.15
LogitBoost +

kNN 0.80 ± 0.05 0.93 ± 0.06 0.56 ± 0.21 0.81 ± 0.07 0.82 ± 0.06 0.86 ± 0.03 0.74 ± 0.13

To analyze the pairwise correlations of the features, Pearson correlation values between
all pairs of features have been calculated using Python Seaborn Library. These relations
were illustrated in Supplementary Figures S1 and S2 using a heatmap. The only statistically
significant pairwise correlation worth mentioning was observed between the “Isoelectric
Point” and “Net Charge” features. Between any other pairs of features, no significant
correlation is observed.
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Table 3. Comparison of different models according to different performance metrics for Gram-positive
dataset, using physico-chemical features.

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced

Acc.

AdaBoost 0.84 ± 0.06 0.85 ± 0.08 0.83 ± 0.14 0.83 ± 0.10 0.86 ± 0.06 0.83 ± 0.05 0.84 ± 0.11
Decision Tree 0.77 ± 0.07 0.77 ± 0.10 0.77 ± 0.16 0.769 ± 0.09 0.77 ± 0.06 0.76 ± 0.05 0.77 ± 0.13

LogitBoost 0.83 ± 0.06 0.84 ± 0.09 0.82 ± 0.15 0.83 ± 0.10 0.87 ± 0.05 0.83 ± 0.05 0.83 ± 0.12
RF 0.87 ± 0.04 0.87 ± 0.07 0.87 ± 0.08 0.87 ± 0.07 0.90 ± 0.04 0.87 ± 0.04 0.87 ± 0.07

SVM 0.77 ± 0.07 0.85 ± 0.11 0.71 ± 0.19 0.75 ± 0.12 0.81 ± 0.06 0.78 ± 0.05 0.78 ± 0.15
SVM + kNN 0.76 ± 0.08 0.81 ± 0.11 0.72 ± 0.21 0.76 ± 0.13 0.80 ± 0.07 0.77 ± 0.05 0.76 ± 0.16
LogitBoost +

kNN 0.77 ± 0.07 0.85 ± 0.11 0.71 ± 0.19 0.75 ± 0.12 0.81 ± 0.06 0.78 ± 0.05 0.78 ± 0.15

Feature selection procedure tries to reduce the computational costs by removing
redundant or irrelevant variables from input data. This technique contributes to better
understanding the generated model and allows one to improve the model via focusing on
the important features. In order to perform this task, one needs to score or rank the features
in terms of how useful they are at predicting the output. There are different approaches
for feature ranking that are based on statistics measurements or wrapper approaches that
are based on machine learning [86]. Moreover, more advanced approaches that integrate
biological knowledge into the machine learning algorithm for performing feature selection
or for selecting groups of features are used in different recent tools. Such an approach was
adopted by different tools such as SVM RCE, SVM-RCE-R [87–89], maTE [90], CogNet [91],
miRcorrNet [92], miRModuleNet [93], and Integrating Gene Ontology-Based Grouping
and Ranking [94]. Recently, these tools and their competitors were reviewed in [95].

In this study, for each tested machine learning algorithm, we have recorded the scores
assigned to each feature during the MCCV (100 iteration) procedure. Since we obtain
higher performance metrics using RF classifier, we have utilized the feature scores of this
model throughout the rest of the paper. When we analyze the feature scores (shown in
Figures 4 and 5), we observe that Net Charge, Isoelectric Point, Disordered Conformation
Propensity, Normalized Hydrophobicity, and Normalized Hydrophobic Moment are more
crucial features than others for both Gram-negative and Gram-positive datasets.
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3.2. Data Exploration, Outlier Detection, and Elimination

In order to obtain the underlying structure of the data, we apply Principal Component
Analysis (PCA) on Gram-negative and Gram-positive datasets separately. PCA is a dimen-
sionality reduction technique that maps the data in high dimensional space (here each
dimension corresponds to a physico-chemical property of a peptide) to a lower dimensional
space (usually 2D or 3D) preserving the original structure of the data [96]. This technique
is commonly used to highlight variation in a dataset and to capture strong patterns. Hence,
PCA helps to visualize the data and the outliers. PCA has been applied to antimicrobial
peptide data in several studies for data exploration and outlier detection purposes [97–100].
In our study, we also applied PCA to our dataset for visualizing the AMP and non-AMP
samples. In Figure 6, we present PCA results of the Gram-negative dataset (Figure 6a,c)
and of the Gram-positive dataset (Figure 6b,d). While Figure 6a,b refer to the PCA results
in 3D, Figure 6c,d refer to the PCA results in 2D. Interactive 3D plots are provided as Sup-
plementary Material. We observe in Figure 6 that there are some outlier samples (peptides)
in both Gram-negative and Gram-positive datasets.

The presence of outliers can result in a poor fit and lower predictive modeling per-
formance in classification or regression problems. For most machine learning datasets,
due to the large number of input variables, the identification and removal of outliers is
challenging by only using simple statistical methods. There are different computational
approaches for outlier detection. One of those approaches depends on novelty detection
based on machine learning [101], more specifically on one-class approaches [102–106].

In this study, in order to have a more homogenous group of peptides having an-
timicrobial activities, we wanted to eliminate outlier samples (peptides) if one of their
physico-chemical features acts as an outlier. To see the distribution of the attributes in posi-
tive class (AMP) and negative class (non-AMP), we plotted the histograms for each feature.
Figure 7 presents two histograms drawn for the Net Charge feature of the Gram-positive
dataset for (a) AMP class and (b) Non-AMP class. It can be observed from Figure 7 that
while the net charge values are in the range of [0, 31] for AMP class, it is in the range of
[−6, 16] for the negative class. Based on our analysis using such histograms, we define a
certain range of values for each feature for the positive class (AMP, the peptides having
antimicrobial activity). We perform this analysis separately for the Gram-positive dataset
and the Gram-negative dataset, and we eliminate the peptides in the positive class if
their physico-chemical properties are outside of this predefined range. The range for each
attribute is shown in Table 4.
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Table 4. Minimum and maximum values of each feature that are used in outlier elimination.

Features

Gram-Negative Dataset Gram-Positive Dataset

Minimum
Threshold

Maximum
Threshold

Minimum
Threshold

Maximum
Threshold

Hydrophobic Moment 0.4 2 0.1 1.7

Normalized Hydrophobicity −0.9 0.55 −0.8 1

Net Charge 5 13 4 13

Isoelectric Point 10.5 13 10 13

Penetration Depth 13 30 12 30

Tilt Angle 40 150 30 152

Linear Moment 0.1 0.4 0.15 0.32

Propensity in vitro Aggregation 0 250 0 87

Disordered Conformation Propensity −0.5 0.08 −0.85 0.15

At the end of the outlier elimination step, we obtain 194 non-AMPs and 88 AMPs for
the Gram-positive dataset; 114 non-AMPs and 90 AMPs for the Gram-negative dataset. In
Figure 8, we present PCA results of the Gram-negative dataset (shown in a,c), and of the
Gram-positive dataset (shown in b,d) after outlier detection and elimination. While PCA
plots are presented in 3D in (Figure 8a,b), they are presented in 2D in (Figure 8c,d). While
the red colors refer to non-AMPs, blue colors indicate AMPs. Compared with Figure 6,
Figure 8 implies that the positive class members are better separated from negative class
members for both datasets after outliers are eliminated.
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Using two of the datasets after outlier elimination, we repeated our classification
experiment as explained in the Methods section. As shown in Tables 5 and 6, when
outlier removal is applied, we have obtained higher performance metrics. As presented in
Tables 5 and 6, the AUC rate increased by 7% and reached 99% AUC for the Gram-negative
dataset, while this score is obtained as 97% for the Gram-positive dataset.

Table 5. Comparison of the models according to performance metrics for the Gram-negative dataset
after outlier elimination.

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced Acc.

AdaBoost 0.97 ± 0.03 0.99 ± 0.03 0.96 ± 0.04 0.95 ± 0.05 0.99 ± 0.01 0.97 ± 0.03 0.97 ± 0.04
Decision Tree 0.91 ± 0.06 0.92 ± 0.08 0.91 ± 0.08 0.89 ± 0.09 0.91 ± 0.06 0.90 ± 0.06 0.91 ± 0.08

LogitBoost 0.97 ± 0.03 0.99 ± 0.02 0.96 ± 0.05 0.95 ± 0.05 0.99 ± 0.01 0.97 ± 0.03 0.98 ± 0.03
RF 0.98 ± 0.02 0.99 ± 0.02 0.97 ± 0.04 0.97 ± 0.05 0.99 ± 0.01 0.98 ± 0.03 0.98 ± 0.03

SVM 0.98 ± 0.02 0.99 ± 0.03 0.97 ± 0.04 0.96 ± 0.04 0.98 ± 0.01 0.97 ± 0.03 0.98 ± 0.03
SVM + kNN 0.81 ± 0.11 0.82 ± 0.14 0.80 ± 0.24 0.81 ± 0.16 0.84 ± 0.10 0.80 ± 0.09 0.81 ± 0.19
LogitBoost +

kNN 0.98 ± 0.02 0.99 ± 0.03 0.97 ± 0.04 0.96 ± 0.04 0.98 ± 0.01 0.97 ± 0.03 0.98 ± 0.03

Table 6. Comparison of the models according to performance metrics for the Gram-positive dataset
after outlier elimination.

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced Acc.

AdaBoost 0.93 ± 0.04 0.92 ± 0.08 0.94 ± 0.06 0.89 ± 0.09 0.96 ± 0.03 0.90 ± 0.05 0.93 ± 0.07
Decision Tree 0.88 ± 0.05 0.82 ± 0.12 0.91 ± 0.06 0.82 ± 0.11 0.86 ± 0.07 0.81 ± 0.09 0.86 ± 0.09

LogitBoost 0.93 ± 0.05 0.93 ± 0.09 0.93 ± 0.07 0.88 ± 0.11 0.96 ± 0.03 0.90 ± 0.07 0.93 ± 0.08
RF 0.95 ± 0.03 0.95 ± 0.07 0.95 ± 0.05 0.90 ± 0.09 0.97 ± 0.02 0.92 ± 0.05 0.95 ± 0.06

SVM 0.91 ± 0.04 0.90 ± 0.11 0.91 ± 0.06 0.85 ± 0.11 0.93 ± 0.04 0.86 ± 0.06 091 ± 0.09
SVM + kNN 0.77 ± 0.10 0.75 ± 0.16 0.78 ± 0.20 0.68 ± 0.17 0.81 ± 0.08 0.68 ± 0.08 0.76 ± 0.18
LogitBoost +

kNN 0.91 ± 0.04 0.90 ± 0.11 0.91 ± 0.06 0.85 ± 0.11 0.93 ± 0.04 0.86 ± 0.04 0.91 ± 0.09

3.3. Training Models Using an Extended Set of Features

In addition to the physico-chemical features, structural properties, sequence order,
compositional features, the pattern of terminal residues, amino acid composition, dipep-
tide composition, autocorrelation, pseudo amino acid composition, and sequence order
properties have been suggested as additional features for representing amino acid se-
quences [60,64]. Hence, in our experiments, we have also tested the effect of different
features, in addition to the ten physico-chemical features. As explained in the Methods
section, amino acid composition, pseudo amino acid composition, autocorrelation, and
sequence order properties are calculated for the peptides included in our dataset. These
1497 additional features were added to the initially calculated 10 physico-chemical features,
and our final dataset included 1507 features in total. Using the datasets including the
extended set of features, we have repeated our classification experiment as explained in the
Methods section. For both Gram-negative and Gram-positive datasets, when an extended
set of features are utilized, the obtained performance metrics (as shown in Tables 7 and 8)
were slightly lower than the performance metrics obtained using only ten physico-chemical
features (as shown in Tables 5 and 6). For the Gram-negative dataset, while the extended
set of features yielded 98% AUC with LogitBoost, physico-chemical features yielded 99%
AUC with RF. For the Gram-positive dataset, while the model using an extended set of
features achieved 95% AUC with RF, the generated model using only ten physico-chemical
features achieved 97% AUC.
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Table 7. Comparison of the models according to performance metrics for the Gram-negative dataset
with 1507 features.

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced Acc.

AdaBoost 0.96 ± 0.03 0.98 ± 0.04 0.95 ± 0.05 0.94 ± 0.06 0.98 ± 0.02 0.96 ± 0.03 0.96 ± 0.05
Decision Tree 0.90 ± 0.06 0.90 ± 0.09 0.90 ± 0.08 0.88 ± 0.09 0.90 ± 0.06 0.88 ± 0.07 0.90 ± 0.08

LogitBoost 0.97 ± 0.03 0.98 ± 0.03 0.95 ± 0.06 0.95 ± 0.06 0.98 ± 0.01 0.96 ± 0.03 0.97 ± 0.04
RF 0.95 ± 0.04 0.98 ± 0.04 0.94 ± 0.06 0.93 ± 0.07 0.98 ± 0.02 0.95 ± 0.04 0.96 ± 0.05

Table 8. Comparison of the models according to performance metrics for the Gram-positive dataset
with 1507 features.

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced Acc.

AdaBoost 0.89 ± 0.05 0.88 ± 0.10 0.90 ± 0.08 0.82 ± 0.11 0.93 ± 0.04 0.84 ± 0.07 0.89 ± 0.09
Decision Tree 0.82 ± 0.10 0.74 ± 0.14 0.86 ± 0.16 0.75 ± 0.13 0.80 ± 0.07 0.73 ± 0.10 0.80 ± 0.15

LogitBoost 0.90 ± 0.05 0.89 ± 0.09 0.91 ± 0.07 0.84 ± 0.11 0.94 ± 0.03 0.85 ± 0.06 0.90 ± 0.08
RF 0.92 ± 0.04 0.91 ± 0.09 0.92 ± 0.06 0.86 ± 0.10 0.95 ± 0.03 0.88 ± 0.06 0.92 ± 0.08

3.4. Training Models Using an Extended Set of Features and Applying Feature Selection

There are a high number of features (1507) in the extended feature set. To remove
redundant features and select informative ones, we repeated our experiments with different
feature selection methods including Information Gain (IG) [107], Maximum Relevance-
Minimum Redundancy (MRMR) [108], Conditional Mutual Information Maximization
(CMIM) [109], SelectKBest (SKB) [110], XGBoost (XGB) [111], Fast Correlation-Based Fil-
ter (FCBF) [112]. We have focused on the top 3 scoring features in both Gram-negative
and Gram-positive datasets. The performance metrics obtained after feature selection are
presented in Tables 9 and 10 for Gram-negative and Gram-positive datasets, respectively.
For the Gram-negative dataset, the generated LogitBoost model with the three selected
features by XGBoost resulted in the best performance metric (96% AUC) among all other
tested classifiers and all other tested feature selection methods. The top 3 selected features
on the Gram-negative dataset are GearyAuto_Steric14 from Geary Autocorrelation set,
PAAC42 from pseudo amino acid composition, and PolarityT13 from composition, transi-
tion, and distribution of physico-chemical properties. On the Gram-negative dataset, the
performance of the physico-chemical feature set (99% AUC with RF with 10 features) was
still higher than the performance of the extended feature set (98% AUC with LogitBoost
with 1507 features), and also higher than the performance of the extended feature set after
feature selection (96% AUC with LogitBoost with 3 features).

Table 9. Comparison of the models according to performance metrics for the Gram-negative dataset
after feature selection (XGBoost).

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced Acc.

AdaBoost 0.94 ± 0.05 0.97 ± 0.05 0.91 ± 0.09 0.91 ± 0.09 0.95 ± 0.06 0.93 ± 0.07 0.94 ± 0.07
Decision Tree 0.90 ± 0.07 0.90 ± 0.11 0.89 ± 0.09 0.87 ± 0.10 0.90 ± 0.08 0.88 ± 0.10 0.90 ± 0.10

LogitBoost 0.94 ± 0.05 0.98 ± 0.04 0.91 ± 0.09 0.90 ± 0.09 0.96 ± 0.06 0.94 ± 0.07 0.95 ± 0.06
RF 0.94 ± 0.05 0.97 ± 0.06 0.92 ± 0.08 0.91 ± 0.08 0.96 ± 0.05 0.93 ± 0.07 0.94 ± 0.07
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Table 10. Comparison of the models according to performance metrics for the Gram-positive dataset
after feature selection (Information gain).

Model Accuracy Recall Specificity Precision Area Under
Curve F1 Balanced Acc.

AdaBoost 0.86 ± 0.06 0.91 ± 0.10 0.83 ± 0.10 0.74 ± 0.12 0.90 ± 0.05 0.80 ± 0.07 0.87 ± 0.10
Decision Tree 0.83 ± 0.10 0.77 ± 0.12 0.86 ± 0.16 0.76 ± 0.14 0.82 ± 0.07 0.75 ± 0.10 0.82 ± 0.14

LogitBoost 0.87 ± 0.05 0.90 ± 0.10 0.86 ± 0.08 0.77 ± 0.11 0.91 ± 0.04 0.82 ± 0.06 0.88 ± 0.09
RF 0.90 ± 0.04 0.89 ± 0.10 0.91 ± 0.07 0.84 ± 0.11 0.94 ± 0.04 0.86 ± 0.06 0.90 ± 0.08

For the Gram-positive dataset, the generated RF model with the three selected features
by Information Gain resulted in the best performance metric (94% AUC) among all other
tested classifiers and all other tested feature selection methods. On the Gram-positive
dataset, the performance of the physico-chemical feature set (97% AUC with RF with
10 features) was still higher than the performance of the extended feature set (95% AUC
with RF with 1507 features), and also higher than the performance of the extended feature
set after feature selection (94% AUC with RF with 3 features). It is interesting to note that
on the Gram-positive dataset, the top 3 scoring features of the extended descriptors are
isoelectric point, net charge, and disordered conformation propensity, which all belong to
our initial 10 physico-chemical features.

When we compare the performance metrics before and after feature selection is applied
on the extended set of features, we observed that for Gram-positive and for Gram-negative
datasets, the AUC performance metrics only decreased by 1% and 2%, respectively, when
three selected features are used to generate the model (as compared with the 1507 features
included in the extended set of features). That is to say that using only 3 features yields
satisfactory performance results (96% and 94% AUC) for Gram-negative and Gram-positive
datasets, respectively.

Similarly, to compare the performance metrics of the models which use physico-
chemical features with the models which use the extended set of features, we reduced the
number of features in the original dataset to the same number of features (top 3 scoring
features). For this purpose, we applied the same feature selection strategy on our original
dataset which includes only physico-chemical features. We wanted to test whether a
certain number of attributes will be sufficient for prediction. In Figure 9, we present the
AUC values obtained using (i) 10 physico-chemical features, (ii) extended set of features
(1507 features), (iii) top 3 scoring features of physico-chemical descriptors, and (iv) top 3
scoring features of extended descriptors. As illustrated in Figure 9a, for the Gram-negative
dataset, the models which use the physico-chemical features yield the best AUC score
(99%). For this dataset, the extended features and the top 3 scoring features (normalized
hydrophobicity, normalized hydrophobic moment, net charge) of the physico-chemical
features generate the same AUC values (98%). It can be observed from Figure 9b that on
the Gram-positive dataset, the model which uses physico-chemical features achieves 97%
AUC and hence obtains better performance metrics than the extended dataset and than
the models using top 3 scoring features. On the Gram-positive dataset, the top 3 scoring
features of physico-chemical descriptors are net charge, isoelectric point, and disordered
conformation propensity.
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4. Discussion

Antimicrobial peptides are characterized as positively charged, short-chain com-
pounds which act against a wide range of microorganisms by interacting with the target
cell components using different mechanisms [53]. The fact that AMPs have various mecha-
nisms of action on the membrane makes bacterial resistance formation against them more
complex compared to the conventional therapeutics. Therefore, AMPs are an attractive
alternative to combat resistant bacteria [9]. However, AMPs derived from natural sources
have some disadvantages such as low stability, salt tolerance, and high toxicity that limit
their therapeutic applications. Computational studies on AMPs help us to better under-
stand the effect of the physico-chemical properties of the peptides on stability and activity
of AMPs. With the help of computational approaches in the study of AMPs, now it has
become possible to overcome the above-mentioned difficulties and to design peptides with
broad-spectrum activities and good stability [5].

In this study, a machine learning-based approach was developed for the first time to
separately predict the peptides active against Gram-positive and Gram-negative bacteria.
It is well known that Gram-positive and Gram-negative bacteria have different cell-surface
architectures. For example, Gram-negative bacteria have a thin peptidoglycan cell wall,
surrounded by an outer membrane mainly containing lipopolysaccharide. Gram-positive
bacteria lack an outer membrane but the cell wall contains a thicker peptidoglycan layer
and teichoic acids. Cell surface envelopes play a crucial role in the penetration and initial
interaction of AMP. Therefore, the prediction of the antimicrobial activity of AMPs needs
to be considered separately for these two different bacterial groups. For this purpose, in
this study, two different data sets were created by selecting peptides that are active against
(i) E. coli, P. aeruginosa, and A. baumannii species for Gram-negative bacteria and (ii) S. aureus,
L. monocytogenes, and B. cereus species for Gram-positive bacteria.

As mentioned above, in this study, we have an important biological question. The
whole study aims to answer this biological question via developing a specific classification
model for AMP prediction, separately for Gram-positive and Gram-negative datasets. For
this reason, we created a new AMP prediction dataset from publicly available DBAASP
dataset by filtering for specific values (as shown in Figure 1 and as explained in detail
in the Section 2.1). In this study, we have only focused on linear cationic antimicrobial
peptides. Among these peptides, we selected the peptides having antimicrobial activity
against above-mentioned species. For each peptide, in order to define the activity against a
group of bacteria (positive class label), we have utilized MIC values. Since we focus on the
membrane-targeting AMPs, we have selected the peptides with lengths ranging from 20
to 50 aa. Here we focused on non-hemolytic peptides because in therapeutic applications,
the prediction of non-hemolytic peptides is reported as more important than the hemolytic
peptides for the elimination of the detrimental effects of AMPs on the host. Since there are
many peptides with very similar sequences, we eliminated those with a similarity rate of
80% or more using the CD-HIT program [52]. We carried out our classification procedure
with the remaining peptides.

The antimicrobial activity of the peptides (AMP or non-AMP class) was predicted
separately for each bacterial group by using different physico-chemical properties. For
each bacterial group, different models were developed using different classification algo-
rithms. We have experimented with several machine learning methods including Adaboost,
Logitboost, Decision Tree, RF, SVM, and stacking classifiers using 100-fold MCCV. In our
experiments using ten physico-chemical features, we have observed that RF outperforms
other classifiers. As summarized in Tables 2 and 3, 0.92 and 0.90 AUC values were ob-
tained for Gram-negative and Gram-positive datasets, respectively. Additionally, in this
research effort, for the first time, feature scoring and feature ranking were performed for
Gram-positive and Gram-negative datasets separately, and the importance (score) of each
feature in these two data sets were compared.

In order to understand the underlying structure of the data, we apply PCAon Gram-
negative and Gram-positive datasets separately. The PCA results in Figure 6a–d show that
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when we visualize the AMP and non-AMP samples with PCA plots, we have noticed that
there are some outlier samples (peptides) in both Gram-negative and positive datasets. In
order to understand more in detail why these samples are outliers and to compile a more
homogenous dataset, we have examined the physico-chemical features of the peptides.
To see the distribution of each feature, we plotted histograms for the Gram-negative and
the Gram-positive datasets separately (Figure 7a,b). Based on our analysis using such
histograms, we define a certain range of values for each attribute for the positive class
which represents the peptides having antimicrobial activity as illustrated in Table 4. While
the peptides within the selected ranges are kept, other peptides are eliminated from our
dataset. Once again, PCA visualization has been applied to this outlier eliminated dataset
and it has been observed that the peptides can be better separated into two classes in this
new dataset (Figure 8a–d). For this outlier eliminated dataset, all classification experiments
have been repeated. As shown in Tables 5 and 6, we have achieved higher performance
metrics when outlier removal is applied.

The studies on the structure-activity relationship of AMPs emphasized that the antimi-
crobial activity is affected by changes in many structural and physico-chemical parameters
such as net charge, hydrophobicity, and peptide chain length. Therefore, studying these
properties of peptides and the similarities and differences between these features provide
important insights for the development of new antimicrobial peptide prediction meth-
ods [113]. In this study, the net charge was found as the most important feature for the
Gram-negative data set while it is identified as the second most important feature for the
Gram-positive dataset. The net charge is an important feature that shows the affinity of
cationic peptides to bind to anionic cell surface structures through electrostatic interactions.
In other words, the positive charge of the cationic AMPs enables an electrostatic interaction
with the negatively charged bacterial cell wall components [114]. The outer surface of the
Gram-negative bacteria contains lipopolysaccharides (LPS), while Gram-positive bacteria
contain acidic polysaccharides (teichoic acids). These structures confer a net negative
charge to the surface of both Gram-positive and Gram-negative bacteria. In addition, the
inner membrane of Gram-negative bacteria and the single membrane of Gram-positive
bacteria are composed of negatively charged phospholipids. The net positive charge is the
most conserved property of AMPs, making it possible to bind to the negatively charged
outer surface of the bacteria [115]. Therefore, the net charge of AMPs has an essential
role in the administration of peptide−membrane interactions resulting in the disruption
of the membrane integrity [5]. The consistency of the results obtained with this compu-
tational study with the previous experimental results also supports the validity of the
computational models created in this study. As mentioned above, Gram-positive and
Gram-negative bacteria possess different cell wall components such as teichoic acid and
lipopolysaccharides (LPSs). The difference in the importance of the net charge feature
between the two datasets (peptides active against Gram-positive bacteria vs. peptides
active against Gram-negative bacteria) may be due to the differences between the cell wall
components of anionic characters.

On the other hand, for the Gram-positive dataset, the isoelectric point (pI) was found to
be the most important feature, while it was the second most important feature for the Gram-
negative dataset. The pI is defined as the pH at which the net charge of a protein/peptide
is equal to zero. In other words, a protein has zero net charge at its isoelectric point.
As the pH of the environment becomes closer to the isoelectric point of the peptide, the
net charge on the peptide surface gradually decreases and peptide–peptide interaction
increases. Proteins have minimum solubility at or near their isoelectric point while protein
solubility increases when pH moves away from pI. The pI is a feature that is closely related
to the peptide charge and directly affects solubility. When the pH is equal to the pI of the
peptide, the peptide loses its solubility and hereby its biological function [116]. Therefore,
pI has an important role to exhibit the AMP’s antimicrobial activity; pIs of the AMPs are
generally at alkaline pH, and hereby maintain their activity at physiological pH. Therefore,
the isoelectric point is another important feature that administers the antibacterial activity
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of AMPs [117–120]. Ahn et al. reported that rather than the net charge, pI was a better
parameter for predicting the antibacterial activity [121]. Our results are in accordance with
the previous literature, supporting the feature ranking analysis performed in this study.
Along this line, the findings of this study support the idea that isoelectric point and the net
charge are two main descriptors of antimicrobial peptides.

In our experiments, the above-mentioned two features were followed by the disor-
dered conformation propensity, normalized hydrophobicity, and normalized hydrophobic
moment features, respectively, for both bacterial groups. The majority of LCAMPs are
disordered structures in aqueous solution and acquire their biologically active confor-
mation upon interaction with the membrane. The majority of linear AMPs adapt to the
alpha-helical conformation in lipid membrane environment, and this regular structure is
important for antimicrobial activity for this AMP class [122]. Hence, the identification of
disordered conformation propensity feature as the third important feature in our analysis
makes sense in terms of the underlying biology.

Hydrophobicity and hydrophobic moment are two important physico-chemical fea-
tures that affect the antimicrobial activity of AMPs. In this study, the effect of these
determinants was found lower than expected. The hydrophobicity reflects the ratio of hy-
drophobic residues within a peptide sequence. In the first step of peptide–lipid interactions,
AMPs attach to the cell surface by electrostatic interactions, and then the hydrophobic
interactions become a primary driving force for their insertion and partitions into the
lipid bilayer [123,124]. In general, the increase of hydrophobicity promotes antimicrobial
activity in peptides [125]. However, some studies demonstrated that an increase above
a certain level in hydrophobicity leads to a decrease in antimicrobial activity [125]. The
hydrophobic moment is defined as a quantitative measure of peptide amphipathicity [126].
The amphipathic α-helical AMPs have polar and hydrophobic residues that are arranged
in opposite faces. This arrangement facilitates the interactions of AMPs to membranes.
The increase of the hydrophobic moment results in a significant elevation in antimicrobial
activity, however, it also leads to cytotoxicity [124].

In addition to the physico-chemical descriptors, we have comparatively evaluated the
effect of structure-based and sequence-based features on the classification performance. To
this end, we have computed an extended set of features including amino acid composition,
dipeptide composition, pseudo amino acid composition, CTD of physico-chemical prop-
erties, different autocorrelations, quasi-sequence-order descriptors, and sequence order
coupling number, separately for Gram-positive and Gram-negative datasets. We have
compared the performances of the models which use only the physico-chemical features
with the models which use an extended set of features, separately for Gram-positive and
Gram-negative datasets. As shown in Tables 7 and 8, the addition of an extended set of
features did not improve performance metrics, and even lowered the metrics slightly. For
the Gram-positive dataset, when we applied feature selection on the extended set of fea-
tures, we observed that all three selected features (isoelectric point, net charge, disordered
conformation propensity) belong to the physico-chemical features category. Among 1507
different descriptors belonging to the structure-based, linguistic-based, sequence-based,
and physico-chemical-based classes in the extended dataset, the identification of the three
physico-chemical descriptors as the top three scoring features was noteworthy. These three
physico-chemical descriptors are computed from sequence information only. A similar
observation is reported for miRNAs in [127–129]. In these studies, it is shown for miRNAs
that the use of sequence information only (k-mer representation) is just enough for the pre-
diction, while different studies use structure information, motif representation, and k-mer
for that purpose. Khabbaz et al. [61] imported AMPs with reported quantitative hemolytic
activity from DBAASP and extracted 1541 features from physico-chemical, structure, and
sequence categories. They trained models using SVM classifier with radial basis function
(RBF) and Polynomial kernels, Linear Support Vector Classifier (LSVC), RF, Naïve Bayes
and kNN. In their experiments, the top three scoring features (aggregation propensity,
polarity, charge density) among the 1541 features belong to the physico-chemical cate-



Appl. Sci. 2022, 12, 3631 21 of 27

gory. They have also applied feature selection and reported the performance metrics for
90 selected features among 1541 features. Among the selected 90 features, three features
(aggregation propensity in vivo, charge density, isoelectric point) in the top ten scoring
features belong to the physico-chemical features. In their study, the performance metrics
reported after feature selection (including 90 features) were very close to the performance
metrics before applying feature selection (with 1541 features).

The models developed in this study were mainly based on physico-chemical features
because as a continuation of this work, we are working on de novo antimicrobial pep-
tide design by using the datasets that we have compiled in this study, and by using the
classification models that we have developed in this study, separately for Gram-positive
and Gram-negative datasets. Before synthesizing de novo peptides, we would like to
computationally evaluate the antimicrobial activity of these candidate peptides using our
classification model. During the wet-lab part of our future studies (when we synthesize
those peptides), we need to know about those physico-chemical features. As a future work,
once we identify a promising candidate (a de novo peptide), we plan to continue with the
recombinant peptide production steps in wet-lab, and we plan to test the antimicrobial
activity of this peptide against Gram-positive or Gram-negative bacteria in wet-lab.

5. Conclusions

The main contribution of this paper is the development of two accurate classification
models for the prediction of antimicrobial peptides active against (i) Gram-negative and
(ii) Gram-positive bacteria, separately. To this end, we have compiled two different datasets
for (i) peptides active against Gram-negative bacteria and (ii) peptides active against Gram-
positive bacteria, and evaluated different machine learning models for the prediction of
antimicrobial peptide activity. In our experiments with 100-fold MCCV, the RF algorithm
achieved better results compared to other algorithms for both datasets. At the end of
our feature ranking procedure, the net charge was found as the most important feature
for Gram-negative dataset and second most important feature for Gram-positive dataset.
Moreover, for the Gram-positive dataset, the pI was found as the most important feature,
while it was determined as the second most important feature for the Gram-negative
dataset. In literature, both net charge and the isoelectric point of a peptide are known to
have a considerable effect in terms of determining the activity of AMPs [119]. Hence, our
findings are not contradictory with previous results which suggest that net charge and pI
are the main factors for strong antimicrobial activity, and this situation further proves the
validity of the computational models created in this study. The PCA visualization is applied
on the Gram-negative and the Gram-positive dataset, and some outlier samples have been
observed. Based on the distribution of the positive and negative labeled samples (peptides
having antimicrobial activity vs. non-AMP peptides), certain ranges are defined for each
attribute. In our secondary experiments, in which the peptides outside those ranges were
eliminated (outlier detection), we observed that the AUC results increased by 7% for both
the Gram-negative and Gram-positive dataset.

We repeated our experiments using an extended feature set including amino acid
composition, pseudo amino acid composition, sequence order, autocorrelation, composition,
distribution, and transition of physico-chemical properties. When we run our workflow on
these extended feature sets, the performance metrics did not improve, and even lowered
slightly. For the Gram-negative dataset, while the extended set of features yielded 98%
AUC with LogitBoost, physico-chemical features yielded 99% AUC with RF. For the Gram-
positive dataset, while the model using an extended set of features achieved 95% AUC
with RF, the generated model using only ten physico-chemical features achieved 97% AUC.
When we compared the performance metrics obtained using physico-chemical properties
(10 features) with an extended set of features (1507 features), we observed that rather than
using a large selection of features, a small number of features yielded better results on both
Gram-negative and Gram-positive datasets.
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Different feature selection methods are applied on the extended dataset for removing
redundant features. It is worthwhile to note that for the Gram-positive dataset, among
1507 different descriptors belonging to the structure-based, linguistic-based, sequence-
based, and physico-chemical-based classes in the extended dataset, all 3 selected features
(isoelectric point, net charge, disordered conformation propensity) are physico-chemical
descriptors. After the feature selection is applied on the extended dataset including 1507 fea-
tures, the AUC values of the models using the top 3 scoring features decreased only by
1% and 2% for the Gram-positive and Gram-negative datasets, respectively. When we
compare the performance metrics before and after feature selection is applied, we can
deduce that using only 3 features yields satisfactory performance results (96% and 94%
AUC) for Gram-negative and Gram-positive datasets, respectively. However, for both of
the Gram-negative and Gram-positive datasets, the performance of the models using 10
physico-chemical features (99% and 97% AUC values respectively) was still higher than the
performance of the extended feature set, and higher than the performance of the extended
feature set after feature selection.

To conclude, AMPs are considered as the most promising alternatives to antibiotics.
Therefore, accurate prediction of antimicrobial peptides contributes to the production of
more effective peptides with lower costs. Additionally, since computational prediction
approaches minimize the losses during production steps, they became popular in this field.
In this respect, the classification model that we have developed in this study paves the way
to the precise prediction and the design of antimicrobial peptides that are highly effective
against specific bacterial pathogens. Even though the classification approach that we have
developed here is only applied on the bacteria, it has the potential to be utilized for the
prediction of antifungal, antivirus, antiprotozoal, and anticancer agents in future studies.
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4. Neubauer, D.; Jaśkiewicz, M.; Migoń, D.; Bauer, M.; Sikora, K.; Sikorska, E.; Kamysz, E.; Kamysz, W. Retro analog concept:
Comparative study on physico-chemical and biological properties of selected antimicrobial peptides. Amino Acids 2017,
mboxemph49, 1755–1771. [CrossRef]

5. Büyükkiraz, M.E.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol.
2021, 132, 1573–1596. [CrossRef] [PubMed]

6. Mishra, B.; Wang, G. Ab Initio Design of Potent Anti-MRSA Peptides Based on Database Filtering Technology. J. Am. Chem. Soc.
2012, 134, 12426–12429. [CrossRef] [PubMed]

7. Faccone, D.; Veliz, O.; Corso, A.; Noguera, M.; Martínez, M.; Payes, C.; Semorile, L.; Maffía, P.C. Antimicrobial activity of de novo
designed cationic peptides against multi-resistant clinical isolates. Eur. J. Med. Chem. 2014, 71, 31–35. [CrossRef] [PubMed]

8. Chen, C.H.; Starr, C.G.; Troendle, E.P.; Wiedman, G.; Wimley, W.C.; Ulmschneider, J.P.; Ulmschneider, M.B. Simulation-Guided
Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J. Am. Chem. Soc. 2019, 141, 4839–4848. [CrossRef]

9. Vishnepolsky, B.; Zaalishvili, G.; Karapetian, M.; Nasrashvili, T.; Kuljanishvili, N.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.;
Tartakovsky, M.; Grigolava, M.; et al. De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative
Bacteria. Pharmaceuticals 2019, 12, 82. [CrossRef] [PubMed]

10. Loose, C.; Jensen, K.; Rigoutsos, I.; Stephanopoulos, G. A linguistic model for the rational design of antimicrobial peptides. Nature
2006, 443, 867–869. [CrossRef]

11. Nagarajan, D.; Nagarajan, T.; Roy, N.; Kulkarni, O.; Ravichandran, S.; Mishra, M.; Chakravortty, D.; Chandra, N. Computational
antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J. Biol. Chem. 2018,
293, 3492–3509. [CrossRef] [PubMed]

12. Cardoso, M.H.; Cândido, E.S.; Chan, L.Y.; Torres, M.D.T.; Oshiro, K.G.N.; Rezende, S.B.; Porto, W.F.; Lu, T.K.; de la Fuente-Nunez,
C.; Craik, D.J.; et al. A Computationally Designed Peptide Derived from Escherichia coli as a Potential Drug Template for
Antibacterial and Antibiofilm Therapies. ACS Infect. Dis. 2018, 4, 1727–1736. [CrossRef] [PubMed]

13. Cândido, E.D.S.; Cardoso, M.H.; Chan, L.Y.; Torres, M.; Oshiro, K.G.N.; Porto, W.F.; Ribeiro, S.; Haney, E.F.; Hancock, R.; Lu, T.K.;
et al. Short Cationic Peptide Derived from Archaea with Dual Antibacterial Properties and Anti-Infective Potential. ACS Infect.
Dis. 2019, 5, 1081–1086. [CrossRef] [PubMed]

14. Fensterseifer, I.C.; Felício, M.R.; Alves, E.S.; Cardoso, M.; Torres, M.; Matos, C.O.; Silva, O.N.; Lu, T.K.; Freire, M.V.; Neves, N.C.;
et al. Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochim. Biophys. Acta
(BBA)—Biomembr. 2019, 1861, 1375–1387. [CrossRef] [PubMed]

15. Oshiro, K.G.N.; Cândido, E.S.; Chan, L.Y.; Torres, M.D.T.; Monges, B.E.D.; Rodrigues, S.G.; Porto, W.F.; Ribeiro, S.M.; Henriques,
S.T.; Lu, T.K.; et al. Computer-Aided Design of Mastoparan-like Peptides Enables the Generation of Nontoxic Variants with
Extended Antibacterial Properties. J. Med. Chem. 2019, 62, 8140–8151. [CrossRef] [PubMed]

16. Fjell, C.D.; Jenssen, H.; Cheung, W.; Hancock, R.; Cherkasov, A. Optimization of Antibacterial Peptides by Genetic Algorithms
and Cheminformatics. Chem. Biol. Drug Des. 2010, 77, 48–56. [CrossRef] [PubMed]

17. Maccari, G.; Di Luca, M.; Nifosì, R.; Cardarelli, F.; Signore, G.; Boccardi, C.; Bifone, A. Antimicrobial Peptides Design by
Evolutionary Multiobjective Optimization. PLoS Comput. Biol. 2013, 9, e1003212. [CrossRef] [PubMed]

18. Porto, W.F.; Irazazabal, L.; Alves, E.S.F.; Ribeiro, S.M.; Matos, C.O.; Pires, Á.S.; Fensterseifer, I.C.M.; Miranda, V.J.; Haney, E.F.;
Humblot, V.; et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design.
Nat. Commun. 2018, 9, 1490. [CrossRef]

19. Yoshida, M.; Hinkley, T.; Tsuda, S.; Abul-Haija, Y.; McBurney, R.T.; Kulikov, V.; Mathieson, J.S.; Reyes, S.G.; Castro, M.D.; Cronin,
L. Using Evolutionary Algorithms and Machine Learning to Explore Sequence Space for the Discovery of Antimicrobial Peptides.
Chem 2018, 4, 533–543. [CrossRef]

20. Liu, S.; Fan, L.; Sun, J.; Lao, X.; Zheng, H. Computational resources and tools for antimicrobial peptides. J. Pept. Sci. 2017, 23, 4–12.
[CrossRef] [PubMed]

21. Xiao, X.; Wang, P.; Lin, W.-Z.; Jia, J.-H.; Chou, K.-C. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial
peptides and their functional types. Anal. Biochem. 2013, 436, 168–177. [CrossRef] [PubMed]

22. Schierz, A.C. Virtual screening of bioassay data. J. Cheminform. 2009, 1, 21. [CrossRef] [PubMed]
23. Bhadra, P.; Yan, J.; Li, J.; Fong, S.; Siu, S.W.I. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution

patterns of amino acid properties and random forest. Sci. Rep. 2018, 8, 1697. [CrossRef]
24. Lata, S.; Mishra, N.K.; Raghava, G.P. AntiBP2: Improved version of antibacterial peptide prediction. BMC Bioinform. 2010, 11, S19.

[CrossRef] [PubMed]

http://doi.org/10.1016/j.ijantimicag.2011.05.004
http://www.ncbi.nlm.nih.gov/pubmed/21733662
http://doi.org/10.3389/fmicb.2017.00811
http://www.ncbi.nlm.nih.gov/pubmed/28539918
http://doi.org/10.1007/s00726-017-2473-7
http://doi.org/10.1111/jam.15314
http://www.ncbi.nlm.nih.gov/pubmed/34606679
http://doi.org/10.1021/ja305644e
http://www.ncbi.nlm.nih.gov/pubmed/22803960
http://doi.org/10.1016/j.ejmech.2013.10.065
http://www.ncbi.nlm.nih.gov/pubmed/24269514
http://doi.org/10.1021/jacs.8b11939
http://doi.org/10.3390/ph12020082
http://www.ncbi.nlm.nih.gov/pubmed/31163671
http://doi.org/10.1038/nature05233
http://doi.org/10.1074/jbc.M117.805499
http://www.ncbi.nlm.nih.gov/pubmed/29259134
http://doi.org/10.1021/acsinfecdis.8b00219
http://www.ncbi.nlm.nih.gov/pubmed/30346140
http://doi.org/10.1021/acsinfecdis.9b00073
http://www.ncbi.nlm.nih.gov/pubmed/31016969
http://doi.org/10.1016/j.bbamem.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/30926365
http://doi.org/10.1021/acs.jmedchem.9b00915
http://www.ncbi.nlm.nih.gov/pubmed/31411881
http://doi.org/10.1111/j.1747-0285.2010.01044.x
http://www.ncbi.nlm.nih.gov/pubmed/20942839
http://doi.org/10.1371/journal.pcbi.1003212
http://www.ncbi.nlm.nih.gov/pubmed/24039565
http://doi.org/10.1038/s41467-018-03746-3
http://doi.org/10.1016/j.chempr.2018.01.005
http://doi.org/10.1002/psc.2947
http://www.ncbi.nlm.nih.gov/pubmed/27966278
http://doi.org/10.1016/j.ab.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23395824
http://doi.org/10.1186/1758-2946-1-21
http://www.ncbi.nlm.nih.gov/pubmed/20150999
http://doi.org/10.1038/s41598-018-19752-w
http://doi.org/10.1186/1471-2105-11-S1-S19
http://www.ncbi.nlm.nih.gov/pubmed/20122190


Appl. Sci. 2022, 12, 3631 24 of 27

25. Dhall, D.; Kaur, R.; Juneja, M. Machine Learning: A Review of the Algorithms and Its Applications. In Proceedings of ICRIC 2019;
Springer: Cham, Switzerland, 2020; pp. 47–63.

26. Lee, E.Y.; Lee, M.W.; Fulan, B.M.; Ferguson, A.L.; Wong, G.C.L. What can machine learning do for antimicrobial peptides, and
what can antimicrobial peptides do for machine learning? Interface Focus 2017, 7, 20160153. [CrossRef] [PubMed]

27. Burdukiewicz, M.; Sidorczuk, K.; Rafacz, D.; Pietluch, F.; Chilimoniuk, J.; Rödiger, S.; Gagat, P. Proteomic Screening for Prediction
and Design of Antimicrobial Peptides with AmpGram. Int. J. Mol. Sci. 2020, 21, 4310. [CrossRef]

28. Chung, C.-R.; Jhong, J.-H.; Wang, Z.; Chen, S.; Wan, Y.; Horng, J.-T.; Lee, T.-Y. Characterization and Identification of Natural
Antimicrobial Peptides on Different Organisms. Int. J. Mol. Sci. 2020, 21, 986. [CrossRef] [PubMed]

29. Wang, P.; Hu, L.; Liu, G.; Jiang, N.; Chen, X.; Xu, J.; Zheng, W.; Li, L.; Tan, M.; Chen, Z.; et al. Prediction of Antimicrobial Peptides
Based on Sequence Alignment and Feature Selection Methods. PLoS ONE 2011, 6, e18476. [CrossRef] [PubMed]

30. Agrawal, P.; Raghava, G.P.S. Prediction of Antimicrobial Potential of a Chemically Modified Peptide From Its Tertiary Structure.
Front. Microbiol. 2018, 9, 2551. [CrossRef] [PubMed]

31. Gull, S.; Shamim, N.; Minhas, F. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
Comput. Biol. Med. 2019, 107, 172–181. [CrossRef] [PubMed]

32. Torrent, M.; Nogués, V.M.; Boix, E. A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinform. 2009,
10, 373. [CrossRef] [PubMed]

33. Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMP R3: A database on sequences, structures and signatures of
antimicrobial peptides: Table 1. Nucleic Acids Res. 2016, 44, D1094–D1097. [CrossRef] [PubMed]

34. Lin, W.; Xu, D. Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Bioinformatics
2016, 32, 3745–3752. [CrossRef] [PubMed]

35. Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H.K.; Wong, K.H.; Siu, S.W. Deep-AmPEP30: Improve Short Antimicrobial
Peptides Prediction with Deep Learning. Mol. Ther.-Nucleic Acids 2020, 20, 882–894. [CrossRef] [PubMed]

36. Su, X.; Xu, J.; Yin, Y.; Quan, X.; Zhang, H. Antimicrobial peptide identification using multi-scale convolutional network. BMC
Bioinform. 2019, 20, 730. [CrossRef]

37. Schneider, P.; Müller, A.T.; Gabernet, G.; Button, A.L.; Posselt, G.; Wessler, S.; Hiss, J.A.; Schneider, G. Hybrid Network Model for
“Deep Learning” of Chemical Data: Application to Antimicrobial Peptides. Mol. Inform. 2017, 36, 1600011. [CrossRef] [PubMed]

38. Witten, J.; Witten, Z. Deep learning regression model for antimicrobial peptide design. bioRxiv 2019, 692681. [CrossRef]
39. Beltran, J.A.; Aguilera-Mendoza, L.; Brizuela, C.A. Optimal selection of molecular descriptors for antimicrobial peptides

classification: An evolutionary feature weighting approach. BMC Genom. 2018, 19, 672. [CrossRef] [PubMed]
40. Fu, H.; Cao, Z.; Li, M.; Wang, S. ACEP: Improving antimicrobial peptides recognition through automatic feature fusion and

amino acid embedding. BMC Genom. 2020, 21, 597. [CrossRef] [PubMed]
41. Müller, A.T.; Kaymaz, A.C.; Gabernet, G.; Posselt, G.; Wessler, S.; Hiss, J.A.; Schneider, G. Sparse Neural Network Models of

Antimicrobial Peptide-Activity Relationships. Mol. Inform. 2016, 35, 606–614. [CrossRef] [PubMed]
42. Hamid, M.-N.; Friedberg, I. Identifying antimicrobial peptides using word embedding with deep recurrent neural networks.

Bioinformatics 2019, 35, 2009–2016. [CrossRef] [PubMed]
43. Li, C.; Sutherland, D.; Hammond, S.A.; Yang, C.; Taho, F.; Bergman, L.; Houston, S.; Warren, R.L.; Wong, T.; Hoang, L.M.N.; et al.

AMPlify: Attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens.
BMC Genom. 2022, 23, 77. [CrossRef] [PubMed]

44. Liu, S.; Bao, J.; Lao, X.; Zheng, H. Novel 3D Structure Based Model for Activity Prediction and Design of Antimicrobial Peptides.
Sci. Rep. 2018, 8, 11189. [CrossRef] [PubMed]

45. Capecchi, A.; Cai, X.; Personne, H.; Köhler, T.; van Delden, C.; Reymond, J.-L. Machine learning designs non-hemolytic
antimicrobial peptides. Chem. Sci. 2021, 12, 9221–9232. [CrossRef] [PubMed]

46. Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D.E.; Tartakovsky, M.; Managadze, G.; Grigolava, M.; Makhatadze, G.I.;
Pirtskhalava, M. Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria. J. Chem. Inf. Model.
2018, 58, 1141–1151. [CrossRef] [PubMed]

47. Vishnepolsky, B.; Grigolava, M.; Zaalishvili, G.; Karapetian, M.; Pirtskhalava, M. DBAASP Special prediction as a tool for the
prediction of antimicrobial potency against particular target species. In Proceedings of the 4th International Electronic Conference
on Medicinal Chemistry, Basel, Switzerland, 1–30 November 2018.

48. Plisson, F.; Ramírez-Sánchez, O.; Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic
peptides. Sci. Rep. 2020, 10, 16581. [CrossRef] [PubMed]

49. Ohtsuka, Y.; Inagaki, H. In silico identification and functional validation of linear cationic α-helical antimicrobial peptides in the
ascidian Ciona intestinalis. Sci. Rep. 2020, 10, 12619. [CrossRef]

50. Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration
(MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [CrossRef]

51. Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatices
2006, 22, 1658–1659. [CrossRef]

52. Vishnepolsky, B.; Pirtskhalava, M. Comment on: ‘Empirical comparison of web-based antimicrobial peptide prediction tools’.
Bioinformatics 2019, 35, 2692–2694. [CrossRef]

http://doi.org/10.1098/rsfs.2016.0153
http://www.ncbi.nlm.nih.gov/pubmed/29147555
http://doi.org/10.3390/ijms21124310
http://doi.org/10.3390/ijms21030986
http://www.ncbi.nlm.nih.gov/pubmed/32024233
http://doi.org/10.1371/journal.pone.0018476
http://www.ncbi.nlm.nih.gov/pubmed/21533231
http://doi.org/10.3389/fmicb.2018.02551
http://www.ncbi.nlm.nih.gov/pubmed/30416494
http://doi.org/10.1016/j.compbiomed.2019.02.018
http://www.ncbi.nlm.nih.gov/pubmed/30831306
http://doi.org/10.1186/1471-2105-10-373
http://www.ncbi.nlm.nih.gov/pubmed/19906288
http://doi.org/10.1093/nar/gkv1051
http://www.ncbi.nlm.nih.gov/pubmed/26467475
http://doi.org/10.1093/bioinformatics/btw560
http://www.ncbi.nlm.nih.gov/pubmed/27565585
http://doi.org/10.1016/j.omtn.2020.05.006
http://www.ncbi.nlm.nih.gov/pubmed/32464552
http://doi.org/10.1186/s12859-019-3327-y
http://doi.org/10.1002/minf.201600011
http://www.ncbi.nlm.nih.gov/pubmed/28124834
http://doi.org/10.1101/692681
http://doi.org/10.1186/s12864-018-5030-1
http://www.ncbi.nlm.nih.gov/pubmed/30255784
http://doi.org/10.1186/s12864-020-06978-0
http://www.ncbi.nlm.nih.gov/pubmed/32859150
http://doi.org/10.1002/minf.201600029
http://www.ncbi.nlm.nih.gov/pubmed/27870247
http://doi.org/10.1093/bioinformatics/bty937
http://www.ncbi.nlm.nih.gov/pubmed/30418485
http://doi.org/10.1186/s12864-022-08310-4
http://www.ncbi.nlm.nih.gov/pubmed/35078402
http://doi.org/10.1038/s41598-018-29566-5
http://www.ncbi.nlm.nih.gov/pubmed/30046138
http://doi.org/10.1039/D1SC01713F
http://www.ncbi.nlm.nih.gov/pubmed/34349895
http://doi.org/10.1021/acs.jcim.8b00118
http://www.ncbi.nlm.nih.gov/pubmed/29716188
http://doi.org/10.1038/s41598-020-73644-6
http://www.ncbi.nlm.nih.gov/pubmed/33024236
http://doi.org/10.1038/s41598-020-69485-y
http://doi.org/10.1038/nprot.2007.521
http://doi.org/10.1093/bioinformatics/btl158
http://doi.org/10.1093/bioinformatics/bty1023


Appl. Sci. 2022, 12, 3631 25 of 27

53. Lee, J.H.; Chung, H.; Shin, Y.P.; Kim, I.-W.; Natarajan, S.; Veerappan, K.; Seo, M.; Park, J.; Hwang, J.S. Transcriptome Analysis of
Psacothea hilaris: De Novo Assembly and Antimicrobial Peptide Prediction. Insects 2020, 11, 676. [CrossRef]

54. Fernandes, F.C.; Rigden, D.; Franco, O.L. Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system
application. Biopolymers 2012, 98, 280–287. [CrossRef]

55. Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34, 2740–2747.
[CrossRef]

56. Gautam, A.; Sharma, A.; Jaiswal, S.; Fatma, S.; Arora, V.; Iquebal, M.A.; Nandi, S.; Sundaray, J.K.; Jayasankar, P.; Rai, A.; et al.
Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries. Probiotics Antimicrob. Proteins 2016, 8, 141–149.
[CrossRef]

57. Gabere, M.N.; Noble, W.S. Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics 2017,
33, 1921–1929. [CrossRef] [PubMed]

58. Waghu, F.H.; Gopi, L.; Barai, R.S.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S. CAMP: Collection of sequences and structures of
antimicrobial peptides. Nucleic Acids Res. 2014, 42, D1154–D1158. [CrossRef] [PubMed]

59. Yu, X.-Y.; Fu, R.; Luo, P.-Y.; Hong, Y.; Huang, Y.-H. Construction and Prediction of Antimicrobial Peptide Predicition Model
Based on BERT. Available online: https://jasonyanglu.github.io/files/lecture_notes/%E6%B7%B1%E5%BA%A6%E5%AD%
A6%E4%B9%A0_2020/Project/Construction%20and%20Prediction%20of%20Antimicrobial%20Peptide.pdf (accessed on
16 December 2021).

60. Spänig, S.; Heider, D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min.
2019, 12, 7. [CrossRef] [PubMed]

61. Khabbaz, H.; Karimi-Jafari, M.H.; Saboury, A.A.; BabaAli, B. Prediction of antimicrobial peptides toxicity based on their
physico-chemical properties using machine learning techniques. BMC Bioinform. 2021, 22, 549. [CrossRef] [PubMed]

62. Moretta, A.; Salvia, R.; Scieuzo, C.; Di Somma, A.; Vogel, H.; Pucci, P.; Sgambato, A.; Wolff, M.; Falabella, P. A bioinformatic
study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Sci. Rep. 2020,
10, 16875. [CrossRef] [PubMed]

63. Vishnepolsky, B.; Pirtskhalava, M. Prediction of Linear Cationic Antimicrobial Peptides Based on Characteristics Responsible for
Their Interaction with the Membranes. J. Chem. Inf. Model. 2014, 54, 1512–1523. [CrossRef] [PubMed]

64. Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res.
2012, 40, W199–W204. [CrossRef]

65. Lira, F.; Perez, P.S.; Baranauskas, J.A.; Nozawa, S.R. Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree
Model. Appl. Environ. Microbiol. 2013, 79, 3156–3159. [CrossRef] [PubMed]

66. Pane, K.; Durante, L.; Crescenzi, O.; Cafaro, V.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Izzo, V.; Di Donato, A.; Notomista, E.
Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the
detection of “cryptic” antimicrobial peptides. J. Theor. Biol. 2017, 419, 254–265. [CrossRef] [PubMed]

67. Chen, Z.; Zhao, P.; Li, F.; Marquez-Lago, T.T.; Leier, A.; Revote, J.; Zhu, Y.; Powell, D.R.; Akutsu, T.; Webb, G.I.; et al. iLearn:
An integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and
protein sequence data. Briefings Bioinform. 2020, 21, 1047–1057. [CrossRef] [PubMed]

68. Muhammod, R.; Ahmed, S.; Farid, D.M.; Shatabda, S.; Sharma, A.; Dehzangi, A. PyFeat: A Python-based effective feature
generation tool for DNA, RNA and protein sequences. Bioinformatics 2019, 35, 3831–3833. [CrossRef] [PubMed]

69. Nikam, R.; Gromiha, M.M. Seq2Feature: A comprehensive web-based feature extraction tool. Bioinformatics 2019, 35, 4797–4799.
[CrossRef] [PubMed]

70. Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z. Propy: A tool to generate various modes of Chou’s PseAAC. Bioinformatics 2013, 29, 960–962.
[CrossRef] [PubMed]

71. Chen, Z.; Zhao, P.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Wang, Y.; Webb, G.I.; Smith, A.I.; Daly, R.J.; Chou, K.-C.; et al. iFeature: A
Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 2018,
34, 2499–2502. [CrossRef] [PubMed]

72. Dong, J.; Yao, Z.-J.; Zhang, L.; Luo, F.; Lin, Q.; Lu, A.-P.; Chen, A.F.; Cao, D.-S. PyBioMed: A python library for various molecular
representations of chemicals, proteins and DNAs and their interactions. J. Cheminform. 2018, 10, 16. [CrossRef]

73. Mahmud, S.H.; Chen, W.; Meng, H.; Jahan, H.; Liu, Y.; Hasan, S.M. Prediction of drug-target interaction based on protein features
using undersampling and feature selection techniques with boosting. Anal. Biochem. 2020, 589, 113507. [CrossRef] [PubMed]

74. Yeh, S.-J.; Lin, J.-F.; Chen, B.-S. Multiple-Molecule Drug Design Based on Systems Biology Approaches and Deep Neural Network
to Mitigate Human Skin Aging. Molecules 2021, 26, 3178. [CrossRef]

75. Yeh, S.-J.; Chung, Y.-C.; Chen, B.-S. Investigating the Role of Obesity in Prostate Cancer and Identifying Biomarkers for Drug
Discovery: Systems Biology and Deep Learning Approaches. Molecules 2022, 27, 900. [CrossRef]

76. Wani, M.A.; Garg, P.; Roy, K.K. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides.
Med. Biol. Eng. Comput. 2021, 59, 2397–2408. [CrossRef] [PubMed]

77. Freund, Y.; Schapire, R.E. A Short Introduction to Boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780.
78. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder

by the authors). Ann. Stat. 2000, 28, 337–407. [CrossRef]

http://doi.org/10.3390/insects11100676
http://doi.org/10.1002/bip.22066
http://doi.org/10.1093/bioinformatics/bty179
http://doi.org/10.1007/s12602-016-9215-0
http://doi.org/10.1093/bioinformatics/btx081
http://www.ncbi.nlm.nih.gov/pubmed/28203715
http://doi.org/10.1093/nar/gkt1157
http://www.ncbi.nlm.nih.gov/pubmed/24265220
https://jasonyanglu.github.io/files/lecture_notes/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0_2020/Project/Construction%20and%20Prediction%20of%20Antimicrobial%20Peptide.pdf
https://jasonyanglu.github.io/files/lecture_notes/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0_2020/Project/Construction%20and%20Prediction%20of%20Antimicrobial%20Peptide.pdf
http://doi.org/10.1186/s13040-019-0196-x
http://www.ncbi.nlm.nih.gov/pubmed/30867681
http://doi.org/10.1186/s12859-021-04468-y
http://www.ncbi.nlm.nih.gov/pubmed/34758751
http://doi.org/10.1038/s41598-020-74017-9
http://www.ncbi.nlm.nih.gov/pubmed/33037295
http://doi.org/10.1021/ci4007003
http://www.ncbi.nlm.nih.gov/pubmed/24730612
http://doi.org/10.1093/nar/gks450
http://doi.org/10.1128/AEM.02804-12
http://www.ncbi.nlm.nih.gov/pubmed/23455341
http://doi.org/10.1016/j.jtbi.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28216428
http://doi.org/10.1093/bib/bbz041
http://www.ncbi.nlm.nih.gov/pubmed/31067315
http://doi.org/10.1093/bioinformatics/btz165
http://www.ncbi.nlm.nih.gov/pubmed/30850831
http://doi.org/10.1093/bioinformatics/btz432
http://www.ncbi.nlm.nih.gov/pubmed/31135038
http://doi.org/10.1093/bioinformatics/btt072
http://www.ncbi.nlm.nih.gov/pubmed/23426256
http://doi.org/10.1093/bioinformatics/bty140
http://www.ncbi.nlm.nih.gov/pubmed/29528364
http://doi.org/10.1186/s13321-018-0270-2
http://doi.org/10.1016/j.ab.2019.113507
http://www.ncbi.nlm.nih.gov/pubmed/31734254
http://doi.org/10.3390/molecules26113178
http://doi.org/10.3390/molecules27030900
http://doi.org/10.1007/s11517-021-02443-6
http://www.ncbi.nlm.nih.gov/pubmed/34632545
http://doi.org/10.1214/aos/1016218223


Appl. Sci. 2022, 12, 3631 26 of 27

79. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: Boca Raton, FL, USA, 2017.
[CrossRef]

80. Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,
Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [CrossRef]

81. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
82. Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. Rev. Int. Stat.

1989, 57, 238–247. [CrossRef]
83. Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME—The Konstanz

information miner. ACM SIGKDD Explor. Newsl. 2009, 11, 26–31. [CrossRef]
84. Randles, B.M.; Pasquetto, I.V.; Golshan, M.S.; Borgman, C.L. Using the Jupyter Notebook as a Tool for Open Science: An

Empirical Study. In Proceedings of the 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL), Toronto, ON, Canada,
19–23 June 2017; pp. 1–2.

85. Xu, Q.-S.; Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [CrossRef]
86. Jovic, A.; Brkic, K.; Bogunovic, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 25–29 May 2015; pp. 1200–1205.

87. Yousef, M.; Jung, S.; Showe, L.C.; Showe, M.K. Recursive Cluster Elimination (RCE) for classification and feature selection from
gene expression data. BMC Bioinform. 2007, 8, 144. [CrossRef]

88. Yousef, M.; Bakir-Gungor, B.; Jabeer, A.; Goy, G.; Qureshi, R.; Showe, L.C. Recursive Cluster Elimination based Rank Function
(SVM-RCE-R) implemented in KNIME. F1000Research 2021, 9, 1255. [CrossRef] [PubMed]

89. Yousef, M.; Jabeer, A.; Bakir-Gungor, B. SVM-RCE-R-OPT: Optimization of Scoring Function for SVM-RCE-R. In Database and
Expert Systems Applications—DEXA 2021 Workshops; Kotsis, G., Tjoa, A.M., Khalil, I., Moser, B., Mashkoor, A., Sametinger, J., Fensel,
A., Martinez-Gil, J., Fischer, L., Czech, G., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1479,
pp. 215–224. [CrossRef]

90. Yousef, M.; Abdallah, L.; Allmer, J.; Abddallah, L. maTE: Discovering expressed interactions between microRNAs and their
targets. Bioinformatics 2019, 35, 4020–4028. [CrossRef] [PubMed]

91. Yousef, M.; Ülgen, E.; Sezerman, O.U. CogNet: Classification of gene expression data based on ranked active-subnetwork-oriented
KEGG pathway enrichment analysis. PeerJ Comput. Sci. 2021, 7, e336. [CrossRef] [PubMed]

92. Yousef, M.; Goy, G.; Mitra, R.; Eischen, C.M.; Jabeer, A.; Bakir-Gungor, B. miRcorrNet: Machine learning-based integration of
miRNA and mRNA expression profiles, combined with feature grouping and ranking. PeerJ 2021, 9, e11458. [CrossRef] [PubMed]

93. Yousef, M.; Goy, G.; Bakir-Gungor, B. miRModuleNet: Detecting miRNA-mRNA Regulatory Modules. Front. Genet. 2022,
13, 767455. [CrossRef]

94. Yousef, M.; Sayıcı, A.; Bakir-Gungor, B. Integrating Gene Ontology Based Grouping and Ranking into the Machine Learning
Algorithm for Gene Expression Data Analysis. In Database and Expert Systems Applications—DEXA 2021 Workshops; Kotsis, G., Tjoa,
A.M., Khalil, I., Moser, B., Mashkoor, A., Sametinger, J., Fensel, A., Martinez-Gil, J., Fischer, L., Czech, G., et al., Eds.; Springer
International Publishing: Cham, Switzerland, 2021; pp. 205–214. [CrossRef]

95. Yousef, M.; Kumar, A.; Bakir-Gungor, B. Application of Biological Domain Knowledge Based Feature Selection on Gene Expression
Data. Entropy 2020, 23, 2. [CrossRef] [PubMed]

96. Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572.
[CrossRef]

97. Porto, W.F.; Pires, Á.S.; Franco, O.L. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-
Stabilized Peptides. PLoS ONE 2012, 7, e51444. [CrossRef] [PubMed]

98. Shu, M.; Yu, R.; Zhang, Y.; Wang, J.; Yang, L.; Wang, L.; Lin, Z. Predicting the Activity of Antimicrobial Peptides with Amino Acid
Topological Information. Med. Chem. 2013, 9, 32–44. [CrossRef] [PubMed]

99. Moll, L.; Badosa, E.; Planas, M.; Feliu, L.; Montesinos, E.; Bonaterra, A. Antimicrobial Peptides with Antibiofilm Activity against
Xylella fastidiosa. Front. Microbiol. 2021, 12, 753874. [CrossRef]

100. Lin, H.; Yan, T.; Wang, L.; Guo, F.; Ning, G.; Xiong, M. Statistical design, structural analysis, andin vitrosusceptibility assay of
antimicrobial peptoids to combat bacterial infections. J. Chemom. 2016, 30, 369–376. [CrossRef]

101. Thudumu, S.; Branch, P.; Jin, J.; Singh, J. A comprehensive survey of anomaly detection techniques for high dimensional big data.
J. Big Data 2020, 7, 1–30. [CrossRef]

102. Manevitz, L.M.; Yousef, M. One-Class SVMs for Document Classification. J. Mach. Learn. Res. 2001, 2, 139–154.
103. Manevitz, L.; Yousef, M. One-class document classification via Neural Networks. Neurocomputing 2007, 70, 1466–1481. [CrossRef]
104. Abdallah, L.; Badarna, M.; Khalifa, W.; Yousef, M. MultiKOC: Multi-One-Class Classifier Based K-Means Clustering. Algorithms

2021, 14, 134. [CrossRef]
105. Abedalla, L.; Badarna, M.; Khalifa, W.; Yousef, M. K-Means Based One-Class SVM Classifier. In Database and Expert Systems

Applications; Anderst-Kotsis, G., Tjoa, A.M., Khalil, I., Elloumi, M., Mashkoor, A., Sametinger, J., Larrucea, X., Fensel, A.,
Martinez-Gil, J., Moser, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1062, pp. 45–53.
[CrossRef]

http://doi.org/10.1201/9781315139470
http://doi.org/10.1109/ICDAR.1995.598994
http://doi.org/10.1007/BF00994018
http://doi.org/10.2307/1403797
http://doi.org/10.1145/1656274.1656280
http://doi.org/10.1016/S0169-7439(00)00122-2
http://doi.org/10.1186/1471-2105-8-144
http://doi.org/10.12688/f1000research.26880.2
http://www.ncbi.nlm.nih.gov/pubmed/33500779
http://doi.org/10.1007/978-3-030-87101-7_21
http://doi.org/10.1093/bioinformatics/btz204
http://www.ncbi.nlm.nih.gov/pubmed/30895309
http://doi.org/10.7717/peerj-cs.336
http://www.ncbi.nlm.nih.gov/pubmed/33816987
http://doi.org/10.7717/peerj.11458
http://www.ncbi.nlm.nih.gov/pubmed/34055490
http://doi.org/10.3389/fgene.2022.767455
http://doi.org/10.1007/978-3-030-87101-7_20
http://doi.org/10.3390/e23010002
http://www.ncbi.nlm.nih.gov/pubmed/33374969
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1371/journal.pone.0051444
http://www.ncbi.nlm.nih.gov/pubmed/23240023
http://doi.org/10.2174/157340613804488350
http://www.ncbi.nlm.nih.gov/pubmed/22741801
http://doi.org/10.3389/fmicb.2021.753874
http://doi.org/10.1002/cem.2801
http://doi.org/10.1186/s40537-020-00320-x
http://doi.org/10.1016/j.neucom.2006.05.013
http://doi.org/10.3390/a14050134
http://doi.org/10.1007/978-3-030-27684-3_7


Appl. Sci. 2022, 12, 3631 27 of 27

106. Yousef, M.; Khalifa, W.; Abedallah, L. Ensemble Clustering Classification compete SVM and One-Class classifiers applied on
plant microRNAs Data. J. Integr. Bioinform. 2016, 13, 304. [CrossRef] [PubMed]

107. Kent, J.T. Information gain and a general measure of correlation. Biometrika 1983, 70, 163–173. [CrossRef]
108. Brown, G.; Pocock, A.; Zhao, M.-J.; Lujan, M. Conditional Likelihood Maximisation: A Unifying Framework for Information

Theoretic Feature Selection. J. Mach. Learn. Res. 2012, 13, 27–66.
109. Fleuret, F. Fast Binary Feature Selection with Conditional Mutual Information. J. Mach. Learn. Res. 2004, 5, 1531–1555.
110. Pedregosa, F. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
111. Chen, T.; He, T. xgboost: eXtreme Gradient Boosting. Available online: https://cran.microsoft.com/snapshot/2017-12-11/web/

packages/xgboost/vignettes/xgboost.pdf (accessed on 8 March 2022).
112. Senliol, B.; Gulgezen, G.; Yu, L.; Cataltepe, Z. Fast Correlation Based Filter (FCBF) with a different search strategy. In Proceedings

of the 2008 23rd International Symposium on Computer and Information Sciences, Istanbul, Turkey, 27–29 October 2008; pp. 1–4.
113. Pirtskhalava, M.; Grigolava, M. Transmembrane and Antimicrobial Peptides. Hydrophobicity, Amphiphilicity and Propensity to

Aggregation. arXiv 2013, arXiv:1307.6160.
114. Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve

the Activity and Biocompatibility In Vivo. Biomolecules 2018, 8, 4. [CrossRef] [PubMed]
115. Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002, 66, 236–248. [CrossRef] [PubMed]
116. Osorio, D.; Rondón-Villarreal, P.; Torres, R.T.R. Peptides: A Package for Data Mining of Antimicrobial Peptides. R J. 2015, 7, 4–14.

[CrossRef]
117. Romestand, B.; Molina, F.; Richard, V.; Roch, P.; Granier, A.C. Key role of the loop connecting the two beta strands of mussel

defensin in its antimicrobial activity. J. Biol. Inorg. Chem. 2003, 270, 2805–2813. [CrossRef]
118. Bezerra, I.; Moreira, L.; Chiavone-Filho, O.; Mattedi, S. Effect of different variables in the solubility of ampicillin and corresponding

solid phase. Fluid Phase Equilibria 2018, 459, 18–29. [CrossRef]
119. Le, H.; Ting, L.; Jun, C.; Weng, W. Gelling properties of myofibrillar protein from abalone (Haliotis Discus Hannai Ino) muscle.

Int. J. Food Prop. 2018, 21, 277–288. [CrossRef]
120. Ni, N.; Wang, Z.; He, F.; Wang, L.; Pan, H.; Li, X.; Wang, Q.; Zhang, D. Gel properties and molecular forces of lamb myofibrillar

protein during heat induction at different pH values. Process Biochem. 2014, 49, 631–636. [CrossRef]
121. Ahn, H.-S.; Cho, W.; Kang, S.-H.; Ko, S.-S.; Park, M.-S.; Cho, H.; Lee, K.-H. Design and synthesis of novel antimicrobial peptides

on the basis of α helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study. Peptides 2006,
27, 640–648. [CrossRef]

122. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M. Physicochemical Features and Peculiarities of Interaction of Antimicrobial
Peptides with the Membrane. Pharmaceuticals 2021, 14, 471. [CrossRef] [PubMed]

123. Papo, N.; Shai, Y. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid
membranes? Peptides 2003, 24, 1693–1703. [CrossRef]

124. Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012,
51, 149–177. [CrossRef] [PubMed]

125. Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of Peptide Hydrophobicity in the Mechanism of
Action of α-Helical Antimicrobial Peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [CrossRef] [PubMed]

126. Eisenberg, D.; Weiss, R.M.; Terwilliger, T. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature
1982, 299, 371–374. [CrossRef] [PubMed]

127. Yousef, M.; Levy, D.; Allmer, J. Species Categorization via MicroRNAs—Based on 3′UTR Target Sites using Sequence Features. In
Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, Funchal, Portugal,
19–21 January 2018; pp. 112–118.

128. Yousef, M.; Khalifa, W.; Acar, I.E.; Allmer, J. Distinguishing between MicroRNA Targets from Diverse Species using Sequence Mo-
tifs and K-mers. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies,
Porto, Portugal, 21–23 February 2017; pp. 133–139.

129. Yousef, M.; Khalifa, W.; Acar, I.E.; Allmer, J. MicroRNA categorization using sequence motifs and k-mers. BMC Bioinform. 2017,
18, 170. [CrossRef]

http://doi.org/10.1515/jib-2016-304
http://www.ncbi.nlm.nih.gov/pubmed/28187418
http://doi.org/10.1093/biomet/70.1.163
https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf
https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf
http://doi.org/10.3390/biom8010004
http://www.ncbi.nlm.nih.gov/pubmed/29351202
http://doi.org/10.1002/bip.10260
http://www.ncbi.nlm.nih.gov/pubmed/12491537
http://doi.org/10.32614/RJ-2015-001
http://doi.org/10.1046/j.1432-1033.2003.03657.x
http://doi.org/10.1016/j.fluid.2017.11.033
http://doi.org/10.1080/10942912.2018.1454463
http://doi.org/10.1016/j.procbio.2014.01.017
http://doi.org/10.1016/j.peptides.2005.08.016
http://doi.org/10.3390/ph14050471
http://www.ncbi.nlm.nih.gov/pubmed/34067510
http://doi.org/10.1016/j.peptides.2003.09.013
http://doi.org/10.1016/j.plipres.2011.12.005
http://www.ncbi.nlm.nih.gov/pubmed/22245454
http://doi.org/10.1128/AAC.00925-06
http://www.ncbi.nlm.nih.gov/pubmed/17158938
http://doi.org/10.1038/299371a0
http://www.ncbi.nlm.nih.gov/pubmed/7110359
http://doi.org/10.1186/s12859-017-1584-1

	Introduction 
	Materials and Methods 
	Dataset and Data Preprocessing 
	Feature Generation 

	Machine Learning Models 
	Model Construction 
	Performance Metrics 


	Results 
	Training Models Using Physico-Chemical Features 
	Data Exploration, Outlier Detection, and Elimination 
	Training Models Using an Extended Set of Features 
	Training Models Using an Extended Set of Features and Applying Feature Selection 

	Discussion 
	Conclusions 
	References

