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Most of the phenomena of various fields of applied sciences are nonlinear problems. Recently, various types of analytical
approximate solution techniques were introduced and successfully applied to the nonlinear differential equations. One of the
aforementioned techniques is the Homotopy analysis method (HAM). In this study, we applied HAM to find critical buckling
load of a column under end load dependent on direction. We obtained the critical buckling loads and compared them with the
exact analytic solutions in the literature.

1. Introduction

Nonlinear differential equations arise in a wide range of
scientific studies from physics to biology, from engineering
to economics. However it is not possible to find an exact
analytical solution for the nonlinear equations every time.
Analytical approximate solution techniques such as perturba-
tion and nonperturbative techniques have been used to solve
these nonlinear equations in recent years. These techniques
have been widely applied in many fields of engineering and
science. Neither perturbation techniques nor nonperturba-
tion techniques ensure the convergence of solution series
and adjust or control the convergence region and rate of
approximation series.

On the other hand an analytic approach, the homotopy
analysis method (HAM) which is proposed by Liao, provides
a convenient way to adjust and control the convergence
region and the rate of approximation series by the auxiliary
parameter ℏ and auxiliary function𝐻(𝑡) [1, 2]. HAMhas been
applied successfully to obtain the series solution of various
types of linear andnonlinear differential equations such as the
viscous flows of non-Newtonian fluids [3–13], the KdV-type
equations [14–16], nanoboundary layer flows [17], nonlinear
heat transfer [18, 19], finance problems [20, 21], Riemann

problems related to nonlinear shallow water equations [22],
projectile motion [23], Glauert-jet flow [24], nonlinear water
waves [25], ground water flows [26], Burgers-Huxley equa-
tion [27], time-dependent Emden-Fowler type equations
[28], differential difference equation [29], difference equa-
tion [30], Laplace equation with Dirichlet and Neumann
boundary conditions [31], and thermal-hydraulic networks
[32].

One of the fields that nonlinear differential equations
arise is the stability analysis of columns in mechanical
engineering. Many researchers applied analytical approxi-
mate solution techniques to the stability analysis of various
types of columns with different end conditions. Atay and
Coşkun investigated the elastic stability of a homogenous and
nonhomogenous Euler beam [33–39]. Pinarbasi investigated
the buckling analysis of nonuniform columns with elastic
end restraints [40]. Huang and Luo determined critical
buckling loads of beams with arbitrarily axial inhomogeneity
[41]. Recently, Yuan and Wang [42] solved the postbuckling
differential equations of extensible beam-columns with six
different cases. Eryılmaz and Atay investigated the buckling
loads of Euler column with a continuous elastic restraint by
using HAM [43].
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Figure 1: Buckling of various types of columns [45].

Table 1: Stability criteria for the various columns given in Figure 1.

𝜉 𝜂
1

𝜂
2

Stability criteria

∞ 0 −
1

1 + 𝑎
𝑎√𝛼 + tan√𝛼 = 0

∞ −𝑎 0 1 − 𝑎√𝛼 tan√𝛼 = 0

In this study we apply HAM to find the critical buckling
load of a column under end load dependent on direction.

2. Column under End Load
Dependent on Direction

Consider a fixed-free, uniform homogeneous column of
flexural rigidity EI, length 𝐿 which is subjected to a load 𝑃
that is dependent on the deflection and slope of the free end
of the buckled column as shown in Figure 1 [44].

The governing buckling equation is given by [45]

𝑑
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, (1)
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where 𝜂
1
and 𝜂

2
are nondimensional parameters defined in

Figure 1. The general solution of (1) is

𝑤 = 𝑐
1
sin√𝛼𝑥 + 𝑐

2
cos√𝛼𝑥 + 𝑐

3
𝑥 + 𝑐
4
. (3)

Substituting the general solution into the aforementioned
boundary conditions, the stability criteria take the following
form [45]:
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(4)

The stability criteria for the columns in Figure 1 are given in
Table 1.

3. Basic Idea of Homotopy Analysis
Method (HAM)

Liao introduced the homotopy analysis method (HAM) in
[1, 2]. To demonstrate the homotopy analysis method, let us
consider the following differential equation:

𝑁[𝑤 (𝑥)] = 0, (5)

where 𝑁 is a nonlinear operator, 𝑥 denotes the indepen-
dent variable, and 𝑤(𝑥) is an unknown function. Liao [2]
constructs the so-called zero order deformation equation as
follows:

(1 − 𝑞) 𝐿 [𝜙 (𝑥; 𝑞) − 𝑤
0
(𝑥)] = 𝑞ℏ𝐻 (𝑥)𝑁 [𝜙 (𝑥; 𝑞)] , (6)

where 𝑞 ∈ [0, 1] is the embedding parameter, ℏ is a
nonzero auxiliary linear parameter,𝐻(𝑥) is nonzero auxiliary
function, 𝑤

0
(𝑥) is the initial guess of 𝑤(𝑥), 𝐿 is an auxiliary

linear operator, and 𝜙(𝑥; 𝑞) is an unknown function. As 𝑞
increases from 0 to 1, 𝜙(𝑥; 𝑞) varies from the initial guess
𝑤
0
(𝑥) to the exact solution 𝑤(𝑥). By expanding 𝜙(𝑥; 𝑞) in a

Taylor’s series with respect to 𝑞, one has

𝜙 (𝑥; 𝑞) = 𝑤
0
(𝑥) +

∞

∑

𝑚=1

𝑤
𝑚
(𝑥) 𝑞
𝑚
, (7)
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where

𝑤
𝑚
(𝑥) =

1

𝑚!

𝜕
𝑚
𝑁[𝜙(𝑥; 𝑞)]

𝜕𝑞𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0

. (8)

If the initial guess, auxiliary linear operator, auxiliary param-
eter, and auxiliary function are properly chosen the series (8)
converges at 𝑞 = 1; then we have

𝑤 (𝑥) = 𝑤
0
(𝑥) +

∞

∑

𝑚=1

𝑤
𝑚
(𝑥) . (9)

Let us define the vector

𝑤⃗
𝑚
(𝑥) = {𝑤

1
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2
(𝑥) , . . . , 𝑤

𝑛
(𝑥)} . (10)

Differentiating equation (6) 𝑚-times with respect to 𝑞 and
then setting 𝑞 = 0 and finally dividing by 𝑚!, Liao has the
so-called𝑚th order deformation equation:

𝐿 [𝑤
𝑚
(𝑥) − 𝜒

𝑚
𝑤
𝑚−1
(𝑥)] = ℏ𝐻 (𝑥) 𝑅

𝑚
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where

𝑅
𝑚
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(𝑥)] =

1
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𝜕
𝑚−1
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, (12)

𝜒
𝑚
= {
0, 𝑚 ≤ 1,

1, 𝑚 > 1.
(13)

In order to obey both of the rule of solution expression and
the rule of the coefficient ergodicity [2], the corresponding
auxiliary function is determined by𝐻(𝑥) = 1. For any given
operator𝑁, the term 𝑅

𝑚
[𝑤⃗
𝑚−1
(𝑥)] can be easily expressed by

(12). So we can obtain 𝑤
1
(𝑥), 𝑤

2
(𝑥), . . . by means of solving

the linear high order deformation equation (11). The 𝑚th
order approximation of𝑊(𝑥) is given by

𝑤 (𝑥) ≅ 𝑊 (𝑥) =

𝑛

∑

𝑚=0

𝑤
𝑚
(𝑥) . (14)

The approximate solution consists of ℏ, which is a cornerstone
of the HAM in determining convergence of series solution
rapidly. We may adjust and control the convergence region
and rate of the solution series (14) by means of the auxiliary
parameter ℏ. To obtain valid region of ℏ we first plot the
so-called ℏ-curves of 𝑊(𝑥, ℏ). The valid region of ℏ is the
interval, which corresponds to the line segments nearly
parallel to the horizontal axis.

Theorem 1 (Convergence Theorem [2]). As long as the series
(9) converges to 𝑤(𝑥), where 𝑤

𝑚
(𝑥) is governed by the high

order deformation equation (11) under the definitions (12) and
(13), it must be the exact solution of (1) subject to the boundary
conditions (2).

For the proof see [2].

4. HAM Formulation of the Problem

To solve (1) bymeans of homotopy analysismethod,we define
the nonlinear operator 𝑁[𝜙(𝑥; 𝑞)] and the auxiliary linear
operator 𝐿 as follows:

𝑁[𝜙 (𝑥; 𝑞)] = 𝜙
(ıv)
(𝑥; 𝑞) + 𝛼𝜙
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𝐿 [𝜙 (𝑥; 𝑞)] = 𝜙
(ıv)
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(15)

Using the embedding parameter 𝑞 ∈ [0, 1], we construct a
family of equations:

(1 − 𝑞) 𝐿 [𝜙 (𝑥; 𝑞) − 𝑤
0
(𝑥)] = 𝑞ℏ𝐻 (𝑥)𝑁 [𝜙 (𝑥; 𝑞)] . (16)

The high order deformation equation is as follows:
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By using (17) and (18), choosing 𝐻(𝑥) = 1, the high order
deformation equation (17) yields the equation
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Starting with an initial approximation𝑤
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(𝑥), we successively
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𝑖
(𝑥), 𝑖 = 1, 2, 3, . . ., by (19). The solution is of the
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Since the governing equation (1) is a fourth order differential
equation we choose the initial approximation as 𝑤

0
(𝑥) =

𝑎𝑥
3
+ 𝑏𝑥
2
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unknown coefficients 𝑎, 𝑏, 𝑐, 𝑑. Then we obtained 𝑤
𝑖
(𝑥), 𝑖 =

1, 2, 3, . . ., by using the 𝑚th order deformation equation (19)
as follows:
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(21)
Ten iterations are conducted and we get

𝑊
10
(𝑥, ℏ) =

10

∑

𝑛=0

𝑤
𝑛
(𝑥) = 𝑤

0
(𝑥)

+ 𝑤
1
(𝑥) + 𝑤

2
(𝑥) + ⋅ ⋅ ⋅ + 𝑤

10
(𝑥) .

(22)

By substituting (22) into the boundary conditions, we ob-
tained four homogeneous equations. By representing the
coefficient matrix of these equations with [𝑊(𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ)]

we get the following equation:

[𝑊 (𝛼, 𝜉, 𝜂
1
, 𝜂
2
, ℏ)] [𝑎 𝑏 𝑐 𝑑]

𝑇

= [0 0 0 0]
𝑇

, (23)

where 𝑎, 𝑏, 𝑐, and 𝑑 are the unknown constants of ini-
tial approximation 𝑤

0
(𝑥) and 𝑇 denotes the transpose of

the matrix. For nontrivial solution the determinant of the
coefficient matrix [𝑊(𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ)] must vanish. Thus the

problem takes the following form:
Det [𝑊 (𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ)] = 0. (24)

The smallest positive real root of (24) is the critical buckling
load. We defined the function 𝑈(𝛼, 𝜉

0
, 𝜉
1
, 𝜁, ℏ) as follows:

𝑈 (𝛼, 𝜉, 𝜂
1
, 𝜂
2
, ℏ) = Det [𝑊 (𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ)] , (25)

and then we pilot the ℏ-curves of the𝑈(𝛼, 𝜉, 𝜂
1
, 𝜂
2
, ℏ) in order

to find convergence region of the ℏ.
The ℏ curves of 𝑈(𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ) and 𝑈󸀠(𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ)

are given in Figure 2. The valid region of ℏ is the region
which corresponds to the line segments nearly parallel to the
horizontal axis.The valid region ofℏ is about−1.5 < ℏ < −0.4.

Finally we obtained the critical buckling loads from (24)
for ℏ = −0.99. We compared the exact solutions given by
Wang et al. [45] and HAM solutions in Tables 2 and 3.

−5

−10

−15

−20

−25

−30
−2.0 −1.5 −1.0 −0.5 0.0

U10(1, 1, 1, 1, ℏ)

U
󳰀
10(1, 1, 1, 1, ℏ)

ℏ

Figure 2: The ℏ curves of 𝑈(𝛼, 𝜉, 𝜂
1
, 𝜂
2
, ℏ) and 𝑈󸀠(𝛼, 𝜉, 𝜂

1
, 𝜂
2
, ℏ).

Table 2: Comparison of exact and HAM solutions of critical
buckling loads for the column in Figure 1(a) with 𝜂

1
= 0, 𝜂

2
=

−1/(1 + 𝑎), and 𝜉 = ∞.

𝑎
Critical load√𝛼

Exact solution [45] HAM solution
0.1 2.86277 2.86277
0.2 2.65366 2.65366
0.3 2.49840 2.49840
0.4 2.38064 2.38064
0.5 2.28893 2.28893
0.6 2.21571 2.21571
0.7 2.15598 2.15598
0.8 2.10638 2.10638
0.9 2.06453 2.06453
1 2.02876 2.02876

Table 3: Comparison of exact and HAM solutions of critical
buckling loads for the column in Figure 1(b) with 𝜂

1
= −𝑎, 𝜂

2
= 0,

and 𝜉 = ∞.

𝑎
Critical load√𝛼

Exact solution [45] HAM solution
0.1 1.428870 1.428870
0.2 1.313840 1.313840
0.3 1.219950 1.219950
0.4 1.142230 1.142230
0.5 1.076870 1.076870
0.6 1.021110 1.021110
0.7 0.972911 0.972911
0.8 0.930757 0.930757
0.9 0.893519 0.893519
1 0.860334 0.860334

5. Conclusions

In this work, a reliable algorithm based on the HAM to solve
the critical buckling load of Euler column with elastic end
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restraints is presented. Two cases are given to illustrate the
validity and accuracy of this procedure.The series solutions of
(1) by HAM contain the auxiliary parameter ℏ. In general, by
means of the so-called ℏ-curve, it is straightforward to choose
a proper value of ℏ which ensures that the series solution is
convergent. Figure 2 shows the ℏ-curves obtained from the
𝑚th order HAM approximation solutions. In Tables 2 and
3 the critical buckling loads for various values of 𝜉

0
, 𝜉
1
, 𝜁

obtained by HAM are tabulated. The HAM solutions and the
exact solutions in [45] are compared. As a result HAM is
an efficient, powerful and accurate tool for buckling loads of
columns.
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