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1. INTRODUCTION

The processes related to cooling or heating play an impor-
tant role in quantum engineering where control of energy of
a sub-system placed in the reservoir with given properties
may serve for effective manipulation with the efficiency of
elementary quantum engine. Intensive studies of such pro-
cesses for quantum particles (especially for cooling) were
stimulated by the 1997 Nobel Prize in Physics (Phillips,
Chu, Cohen-Tannoudji), see the reviews by Phillips (1998);
Metcalf and van der Straten (1999); Balykin et al. (2000),
and different approaches were applied by Ketterle and van
Druten (1996); Schiller and Lammerzahl (2003), including
toy modeling with Brownian particle in Borisenok and
Rozhdestvensky (2011).

A great progress has been achieved in the algorithm of so-
called phonon-induced dynamic resonance energy trans-
fer (a coherent energy-transfer mechanism for quantum
systems), where phonon interactions are able to actually
enhance the energy transfer, see Lim et al. (2014).

The important particular system for energy-manipulating
control is two-level quantum system (qubit). Some papers
describe qubit interacting in uncontrollable way with a
quantum environment. The time-optimal control of dis-
sipative spin 1/2 particles was studied by Lapert et al.
(2010). The energy minimization problem for two-level dis-
sipative quantum systems was considered in Bonnard et al.
(2010). The accent on the qubit decoherence was made
by Thorwart et al. (2000) and dephasing in Takane and
Murakami (2005) by π-pulses. The laser π-pulse optimal
control for 2- and 3-level systems was studied by Boscain
et al. (2002). Control of relaxation of a qubit was analyzed
by Mukherjee et al. (2013).

� The work was performed in the Institute of Problems of Mechani-
cal Engineering and supported by Russian Science Foundation (grant
14-29-00142).

In the frame of open-loop control the maximum population
transfer was studied in a periodically driven quantum
system by Poggi et al. (2014).

Environment can influence the qubit or other controlled
system not only as a passive destructive medium but can
also serve as an efficient tool for controlling the system, see
Pechen and Rabitz (2006); Pechen (2011). In Pechen and
Rabitz (2006) environment of incoherent photons was used
as control to prepare desired states of multi-level quantum
systems. Moreover, combination of incoherent control by
engineered reservoir (spectral density of incoherent pho-
tons) and coherent control (shaped laser pulses) was shown
by Pechen (2011) to be rich enough to realize strongest
degree of quantum state control—-complete density ma-
trix controllability of open quantum systems. That is, it
was found that one can steer with coherent and incoherent
controls any initial density matrix of an n-level quantum
system to any target density matrix.

The important case is time optimal control (see for in-
stance Khaneja et al. (2001) for spin systems). Time-
optimal theory has been applied by Kallush and Kosloff
(2006) to the 2-level system governed by the Liouville
equation to protect the system against noise. The popula-
tion transfer in two-level quantum systems has been also
performed with the algorithm of dephasing noise and/or
systematic frequency errors by Lu et al. (2013).

In the work of Liu et al. (2005) Markovian feedback of the
white-noise measurement record via a Hamiltonian was
considered, and this model was applied to stabilize the
state of two-level quantum system. Another approach of
feedback is to construct the system of dynamical equations
related to the qubit state, which includes the control field,
and then to construct a reasonable algorithm that allows
to find the control field via the dynamical variables. In
this approach one does not need to concentrate on the
details of real-time monitoring and driving the system, like
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in Liu et al. (2005), Lloyd (2000), because the final shape
of the control field can be accepted as the theoretically
calculated recommended form to achieve the control goal.
The simple way to do it is to define a goal function
expressing the desired qubit state, and to demand that
the control field must minimize the goal function. This
idea leads to speed gradient method of Fradkov (2007)
which was applied to control quantum state of a two-level
system by Saifullah (2008); Borisenok et al. (2010) in the
frame of semi-classical model where the quantum particle
was controlled with a classical external field.

In this paper we develop a speed gradient approach for
the efficient manipulation with the energy of a two-level
quantum system immersed in a quantum reservoir of in-
coherent photons whose spectral density is used as driving
control force. After the description of the quantum model
in Section 2, in Section 3 we derive a speed gradient-based
algorithm for cooling or heating the system. Section 4
contains analysis of stationary states and stability of the
algorithm, followed by numerical simulations for various
cases of cooling and heating. We finalize our results and
conclusions in Conclusions Section 5.

2. FORMULATION

We consider two-level open quantum system which inter-
acts with reservoir of incoherent photons. Spectral density
of incoherent photons is used as control. To set up the
control problem, we need to specify the set of states of the
controlled system, the space of controls, evolution equation
for the system under the action of controls, and objective
function.

We denote ground and excited states of the qubit as |1〉 and
|2〉, correspondingly. Let P1 and P2 be projectors on the
ground and excited states. Transition frequency between
the two states is denoted by ω0. Free system Hamiltonian
is H0 = ω0P2.

Set of states for a two-level quantum system is the set of
all density matrices

D2 = {ρ ∈ M2 := C2×2 |ρ ≥ 0,Trρ = 1}
This set of all density matrices is the most general set of
states of a two-level quantum system.

We consider control by spectral density of incoherent radi-
ation which interacts with the system as was proposed by
Pechen and Rabitz (2006); Pechen (2012). Hence control is
a non-negative function n(t) = n12(t) ≥ 0 which represents
spectral density of incoherent photons at the transition
frequency ω0.

Evolution of the system density matrix is Markovian
with master equation of Kossakowski-Gorini-Sudarschan-
Lindblad form
dρt
dt

= −i[H0+u(t)V, ρt]+γ [(n(t) + 1)L12(ρt) + n(t)L21(ρt)]

(1)
where γ = γ12 > 0 is the Einstein coefficient for transition
between states |2〉 and |1〉, and

L12(ρ) = 2ρ22P1 − P2ρ− ρP2

L21(ρ) = 2ρ11P2 − P1ρ− ρP1

Here ρ11 =< 1|ρ|1 > and ρ22 =< 2|ρ|2 >.

In this work we assume that coherent control is switched
off, so that u(t) = 0. We consider cooling or heating the
system towards a predefined value of energy E0. Average
energy of the system at time t is Ē = Tr(H0ρt) = ω0ρ22,
where ρ22 = 〈2|ρt2|〉 is the population of the excited level.
It is easy to check that
˙̄E = 2γω0[nρ11 − (n+ 1)ρ22] = 2γ[nω0 − (2n+ 1)Ē] (2)

where we use Trρ = ρ11 + ρ22 = 1.

The final step is to set up the goal of control which is
formulated as minimization of (non-negative) goal function

Qt =
1

2
(Ē − E0)

2, Qt → 0 as t → ∞

3. SPEED GRADIENT-BASED ALGORITHM FOR
COOLING OR HEATING THE SYSTEM

Speed gradient-based algorithm is based on the gradient
of speed of changing the goal function along a trajectory
of the system, see Fradkov (1979). Speed of changing the
goal function Qt along a trajectory has the form

ω(n) = ∂ĒQ · ˙̄E = 2γ(Ē − E0)[nω0 − (2n+ 1)Ē] (3)

Its gradient with respect to controls is

∇nω(n) = 2γ(Ē − E0)(ω0 − 2Ē) (4)

General form of speed gradient algorithm is defined by
d

dt
[n+ ψ(n)] = −Γ∇nω(n) (5)

Here Γ ≥ 0 and vector ψ satisfies the pseudogradient
condition 〈ψ,∇nω〉 ≥ 0.

Differential form of the speed gradient algorithm is
dn

dt
= 4γΓ(Ē − E0)(Ē − ω0/2) (6)

Finite (linear) form of the speed gradient algorithm is

n = 4γΓ(Ē − E0)(Ē − ω0/2) (7)

For finite form the condition n ≥ 0 implies

Ē ≥ max(E0, ω0/2) or Ē ≤ min(E0, ω0/2)

Therefore if E0 ≥ ω0/2, then algorithm may work if Ē ≥
E0 that corresponds to cooling of the system to energy
E0. The algorithm leads to negative density and hence
does not work if Ē < E0 (when E0 ≥ ω0/2). It is natural
since it is impossible to create inversion of population in a
two level system by only incoherent control.

In opposite, if target energy E0 ≤ ω0/2 then algorithm
works if Ē ≤ E0 that corresponds to heating of the system
to energy E0.

We introduce dimensionless variable x = Ē/E0 and define

r = ω0/(2E0), Γ̃ = 4γΓE2
0 . Restriction on the range

of r comes from the fact that it is meaningless for the
target energy E0 to be greater that ω0. Therefore we
have E0 ≤ ω0 that implies r ≥ 1/2. Energy Ē of the
system at any time is non-negative and can not exceed ω0,
0 ≤ Ē ≤ ω0. It implies that x should satisfy the restriction
0 ≤ x ≤ 2r.

In these dimensionless variabless for the finite form of
speed gradient algorithm by (7) we get:
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n= Γ̃(x− 1)(x− r) (8)

ẋ= 4γ

[
nr −

(
n+

1

2

)
x

]
(9)

In these units r > 1, 0 ≤ x < 1 stands for heating, and
r < 1, 1 < x ≤ 2r for cooling.

Substitution of the control (8) in the dynamical equa-
tion (9) gives

ẋ = −4γ
[
Γ̃(x− 1)(x− r)2 +

x

2

]
(10)

For the differential form (6), correspondingly, we get:

dn

dt
= Γ̃(x− 1)(x− r) . (11)

Thus, the method of speed gradient in the finite form is
defined by Eqs. (8) and (9) which together produce (10).
Speed gradient method in the differential form is defined
by Eqs. (9) and (11).

4. ANALYSIS AND SIMULATIONS

4.1 Stationary states for the finite speed gradient algorithm

Stationary states of (10) are solutions to the cubic equation

Γ̃(x∗ − 1)(x∗ − r)2 +
x∗

2
= 0

This equation has only one real solution:

x∗ =
C

6Γ̃
+

2Γ̃(r − 1)2 − 3

3C
+

2r + 1

3
, (12)

where

A=−18(2r + 1)− 8Γ̃(r − 1)3 ;

B = 8r(r − 1)3Γ̃ + 8r2 + 20r − 1 +
2

Γ̃
; (13)

C = Γ̃2/3
(
A+ 6

√
3B

)1/3

.

By B > 0 we get:

(r − 1)3
(
Γ̃− Γ+

)(
Γ̃− Γ−

)
> 0 (14)

with

Γ± =
−(8r2 + 20r − 1)± (8r + 1)3/2

16r(r − 1)3
. (15)

Here we used the property r > 0.

The typical behavior for the solution (12) is presented on
Fig. 1.

4.2 Remarks on the stabilization

In the δ-neighborhood of the control goal x = 1 + δ
(|δ| � 1), where δ < 0 corresponds to heating, and δ > 0
to cooling, by (10) we get:

δ̇ � −4γ

[
Γ̃(1− r)2δ +

1 + δ

2

]
< 0 , (16)

with the solution:

δ(t) = − 1

G
+ C · exp{−2γGt} , (17)

with the positive constant G = 1+2Γ̃(1−r)2, that provides
the stability for our algorithm.

x_star

0.5

0.6

0.7

0.8

0.7 0.8 0.9 1 1.1 1.2 1.3

r

Fig. 1. The function x∗ vs r, Γ̃ = 10.

Correspondingly, by (8),

n � Γ̃(1− r)δ . (18)

If Γ̃ � 1, the asymptotic as t → ∞ is given by δ �
1/2Γ̃(1 − r)2 and n � 1/2(r − 1). In this case the
requirement n ≥ 0 implies r > 1 that corresponds to
E0 < ω0/2. This is in agreement that in a two level
system one can excite not more that 1/2 population to
upper level (it is impossible to create population inversion
in a two level system by means of only incoherent sources).
Therefore it is impossible to stabilize energy at value more
than ω0/2.

4.3 Numerical simulations

The results of numerical simulations for the finite form of
speed gradient algorithm are given on Fig. 2 for heating
(Γ̃ = 5, 10, 15, γ = 2, r = 2, with the initial condition

x(0) = 0.2) and on Fig. 3 for cooling (Γ̃ = 5, 10, 15, γ = 2,
r = 2/3, with the initial condition x(0) = 1.3 < 2r).

The results of numerical simulations for the differential
form are presented on Fig. 3 for heating and on Fig. 4 for
cooling for the same values of the parameters (solid lines).

The value of Γ̃ here defines the characteristic time scale
1/Γ̃ of the asymptotic achievement of the control goal.

Figures 4–5 demonstrate that in the frame of our algorithm
the differential form of speed gradient approach works well
only for heating. Such effect is well-known in the theory
of gradient feedback, see, for instance, Andrievski et al.
(1996). The corresponding control fields n(t) are given by
(11) and are plotted on the same Figs. as pointed lines.

We can see from Fig. 4–5 that the control field for
cooling cannot be stabilized with the differential algorithm
because of the structure of Eqs. (10) and (11), while for
heating the control signal tends to a constant as t → ∞.

5. CONCLUSIONS

This work shows that speed gradient algorithm in its
quantum formulation is a successful tool for manipulating
the energy of a two-level quantum system. The algorithm
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system one can excite not more that 1/2 population to
upper level (it is impossible to create population inversion
in a two level system by means of only incoherent sources).
Therefore it is impossible to stabilize energy at value more
than ω0/2.

4.3 Numerical simulations

The results of numerical simulations for the finite form of
speed gradient algorithm are given on Fig. 2 for heating
(Γ̃ = 5, 10, 15, γ = 2, r = 2, with the initial condition

x(0) = 0.2) and on Fig. 3 for cooling (Γ̃ = 5, 10, 15, γ = 2,
r = 2/3, with the initial condition x(0) = 1.3 < 2r).

The results of numerical simulations for the differential
form are presented on Fig. 3 for heating and on Fig. 4 for
cooling for the same values of the parameters (solid lines).

The value of Γ̃ here defines the characteristic time scale
1/Γ̃ of the asymptotic achievement of the control goal.

Figures 4–5 demonstrate that in the frame of our algorithm
the differential form of speed gradient approach works well
only for heating. Such effect is well-known in the theory
of gradient feedback, see, for instance, Andrievski et al.
(1996). The corresponding control fields n(t) are given by
(11) and are plotted on the same Figs. as pointed lines.

We can see from Fig. 4–5 that the control field for
cooling cannot be stabilized with the differential algorithm
because of the structure of Eqs. (10) and (11), while for
heating the control signal tends to a constant as t → ∞.

5. CONCLUSIONS

This work shows that speed gradient algorithm in its
quantum formulation is a successful tool for manipulating
the energy of a two-level quantum system. The algorithm
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Fig. 2. Heating with the finite form of speed gradient
algorithm for Γ̃ = 5 (solid thin line), Γ̃ = 10

(solid thick line), and Γ̃ = 15 (dashdot line). Other
parameters are γ = 2, r = 2, the initial condition is
x(0) = 0.2.
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Fig. 3. Cooling with the finite form of speed gradient
algorithm for Γ̃ = 5 (solid thin line), Γ̃ = 10

(solid thick line), and Γ̃ = 15 (dashdot line). Other
parameters are γ = 2, r = 2/3, the initial condition
is x(0) = 1.3.

is more effective for cooling such a system rather then
for heating. This approach can be extended to multi-
level systems and allows to consider different scenarios
of energy transfer between the quantum system and the
environment.
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S., and Muga, J.G. (2013). Fast and robust population
transfer in two-level quantum systems with dephasing
noise and/or systematic frequency errors. Phys. Rev.
A., 88, 033406.

Metcalf, H.P. and van der Straten, P. (1999). Laser Cooling
and Trapping. Springer-Verlag, New York.

Mukherjee, V., Carlini, A., Mari, A., Caneva, T., Mon-
tangero, S., Calarco, T., Fazio, R., and Giovannetti, V.
(2013). Speeding up and slowing down the relaxation of
a qubit by optimal control. Phys. Rev. A, 88, 062326.

Pechen, A. (2011). Engineering arbitrary pure and mixed
quantum states. Phys. Rev. A., 84, 042106.

Pechen, A. (2012). Incoherent light as a control resource.
OSA Technical digest (Berlin, Germany, March 1921,
2012), Optical Society of America, JT2A.23.

Pechen, A. and Rabitz, H. (2006). Teaching the environ-
ment to control quantum systems. Phys. Rev. A., 73,
062102.

Phillips, W.D. (1998). Nobel lecture: Laser cooling and
trapping of neutral atoms. Reviews of Modern Physics,
70, 721–741.

Poggi, P.M., Arranz, F.J., Benito, R.M., Borondo, F., and
Wisniacki, D.A. (2014). Maximum population transfer
in a periodically driven quantum system. Phys. Rev. A,
90, 062108.

Saifullah (2008). Feedback control of probability ampli-
tudes for two-level atom in optical field. Optics Com-
munications, 281, 640–643.

Schiller, S. and Lammerzahl, C. (2003). Molecular dynam-
ics simulation of sympathetic crystallization of molecu-
lar ions. Phys. Rev. A., 68, 053406.

Takane, Y. and Murakami, T. (2005). Pulse control of
dephasing in two-level quantum systems. J. Phys. Soc.
Jap., 74, 2243.

Thorwart, M., Hartmann, L., Goychuk, I., and Hängg, P.
(2000). Controlling decoherence of a two-level atom in

a lossy cavity. J. of Modern Optics., 47, 2905.

MICNON 2015
June 24-26, 2015. Saint Petersburg, Russia

454


