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Abstract—This article presents a new transfer learning
method named group learning, that jointly aligns multi-
ple domains (many-to-many) and an extension named fast
alignment that aligns any further domain to previously
aligned group of domains (many-to-one). The proposed
group alignment algorithm (GALIA) is evaluated on brain-
computer interface (BCI) data and optimal hyper-parameter
values of the algorithm are studied for classification perfor-
mance and computational cost. Six publicly available P300
databases comprising 333 sessions from 177 subjects are
used. As compared to the conventional subject-specific
train/test pipeline, both group learning and fast alignment
significantly improve the classification accuracy except for
the database with clinical subjects (average improvement:
2.121+1.88%). GALIA utilizes cyclic approximate joint diago-
nalization (AJD) to find a set of linear transformations, one
for each domain, jointly aligning the feature vectors of all
domains. Group learning achieves a many-to-many trans-
fer learning without compromising the classification per-
formance on non-clinical BCI data. Fast alignment further
extends the group learning for any unseen domains, allow-
ing a many-to-one transfer learning with the same proper-
ties. The former method creates a single machine learning
model using data from previous subjects and/or sessions,
whereas the latter exploits the trained model for an unseen
domain requiring no further training of the classifier.

Index Terms—Brain-computer interface (BCI), transfer

learning, domain adaptation, riemannian geometry,
electroencephalography (EEG).
[. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) is a system capable
of predicting or classifying cognitive states and intentions
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of the user through the analysis of neurophysiological signals.
BCI systems based on electroencephalography (EEG) have a
wide range of applications thanks to the fact that EEG is com-
pletely non-invasive, features high temporal resolution, suits
mobile usage and requires inexpensive equipment [1], [2]. Over
the past 30 years EEG-based BCIs, which are the concern of
the present article, have been showcased in a number of dis-
parate proof-of-concepts, including wheelchair and prosthetic
control, moving a cursor on a screen, spellers, gaming and
artistic expression [3], [4], [5]. Still, current systems are far from
being production-ready for a number of reasons, among which
the most fundamental are probably the difficulty in reaching a
‘plug & play’ mode of operation and the insufficient accuracy
currently achieved on single-trial decoding.

Traditionally, BCI operates in two phases: in the training
phase a machine learning model (MLM) is calibrated in a
supervised manner (with labeled EEG data), while in the zest
phase, i.e., the actual use, the BCI must classify EEG data to infer
the classes they belong to (unsupervised mode of operation).
Generally, BCIs require a calibration session before every use,
because EEG data is highly variable, thus a pre-trained MLM
struggles in the subsequent sessions of the same user, let alone
in other subjects.

The necessity of frequent calibrations is a cumbersome ritual
for potential users, causing a waste of time and energy [6]. This is
particularly blocking for the clinical population, whose cognitive
resources are limited [6]. In view of this situation, the research
community is currently focusing on so-called transfer learning
methods, which aim at MLMs capable of overcoming the cross-
session and cross-subject dependency [7], [8], [9], [10], [11],
[12], [13], [14], [16], [17], [18], [19], [201, [21], [23], [24], [25],
[26], [27], [28], [29], [30]. In this field of research, the domain
we ought to use for learning is referred to as the source and the
domain we want to apply the learning to as the farget. If the trans-
fer is operated without using any label from the target domain,
it is called unsupervised. If some labels are used, it is called
semi-supervised. In this article we address the latter scenario.

Two transfer learning approaches can be found in the litera-
ture: rule adaptation and domain adaptation [ 7). Rule adaptation
tries to reduce the calibration time for the new tasks by adapting
classification rule. This is particularly useful when the available
data is scarce or the labeling is insufficient. The current trend
following this approach consists in fine-tuning, for the target data
at hand, deep neural networks (DNN) pre-trained on source do-
mains [8], [9], [10]. The main limitations are the computational
cost and the fact that DNNs act as black boxes, thus itis in general
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Fig. 1. Schematic representation of different transfer learning strate-
gies for domain adaptation. Circles represents domains, in general, data
of a particular subject or a particular session. The goal is shifting the
source and target domains in a homogeneous space. From left to right:
the one-to-one, many-to-one and many-to-many strategy. See text for
details.

hard to understand what they actually learn [11]. Although recent
studies on interpretable neural networks have started to unveil
this ambiguity, the research on neural networks is still in an early
phase [12], [13]. Besides, training a DNN model requires a very
large amount of data, a requirement that is still difficult to meet
with EEG [14].

The other approach, domain adaptation, tries to ‘shift’ the
source and target domain toward a homogeneous space so as to
minimize the discrepancy between the two. In the literature we
find this approach operating either from one source domain to
one target domain (one-to-one), or from several source domains
to one target domain (many-to-one) (Fig. 1). Early attempts
have adapted the well-known common spatial pattern (CSP)
filter [15], [16]. For one-to-one transfer learning, penalty terms
have been introduced to regularize the CSP objective function
[17], [18]. One-to-one transfer learning in regularized CSP
(RCSP) can be expanded to the many-to-one setting by either
taking a weighted average of multiple source data to form a
composite spatial covariance matrix or by aggregating RCSP
coefficients from each source iteratively [19], [20]. In [21]
the authors whitened the arithmetic average of the covariance
matrices estimated on the EEG trials of each subject. This
amounts to a Euclidean recentering of the covariance matrices
around the identity matrix.

A peculiar line of research has arisen thanks to the utilization
of Riemannian geometry [22]. The first attempt has recentered
the covariance matrices estimated on the EEG trials of each
subject using parallel-transport on the Riemannian manifold of
symmetric positive-definite (SPD) matrices [23]. The method,
intrinsically one-to-one, can be easily coupled with spatial fil-
tering [24]. In a subsequent attempt, a stretching and a rotation
steps have been added to the recentering step, yielding a more
precise one-to-one transfer learning method named Riemannian
Procrustes Analysis (RPA) [25]. The stretching step equalizes
the Riemannian dispersion of the observed source and target
points (i.e., covariance matrices) around the identity, which after
recentering is the barycenter of both domains. Like recentering,
the stretching steps is unsupervised. The rotation step, which
instead is semi-supervised, tries to align as much as possible the
intra-class barycenters of the two domains. In [26], recentering
on the manifold is followed by lifting onto the tangent space of
the SPD manifold. The tangent vectors are then stretched and
rotated as in the RPA, effectively aligning the tangent vectors of

the source and target domain. This method, named tangent space
alignment (TSA), also boils down to a one-to-one Procrustes
procedure. However, as it acts on the tangent space of the SPD
manifold, it is computationally simpler and faster.

A more recent trend in the domain adaptation literature is the
many-to-one strategies. In [27], a one-to-one domain adaptation
on the Riemannian manifold is followed by training one classi-
fier for each of several source domains. Then, a voting algorithm
is employed to combine the prediction of each classifier for
the classification of target data. The authors in [28] proposed
to first select source domains (e.g., subjects) based on their
one-to-one transfer learning classification performance. Then,
the distribution of the tangent space features of selected sources
are aligned using the maximum mean discrepancy criterion to
train a single classifier. Inspired from the composite CSP, in [29]
aregularization term is introduced to estimate weighted Rieman-
nian means for each class using multiple source domains. The
transfer learning methods described so far are in general very
much source-dependent, that is to say, a careful selection of the
source domain(s) is required in order to avoid negative learning
[20], [24], [27], [28], [29].

Generalizing the Procrustes cost function of TSA [26], we
have recently ended up taking a route rather different from
all previous domain adaptation attempts: in [30], all available
domains are first jointly aligned in the tangent space of the
Riemannian SPD manifold, a group MLM is then estimated and
finally this model is applied without further tuning to test all
(aligned) domains. This way, we have effectively achieved a
many-to-many transfer learning method, which we have named
group learning (Fig. 1). To the best of our knowledge the group
learning strategy in [30] is the first one jointly aligning many
domains to train a single classifier for all data. In the present
article we refine and push further this idea. We show here how
to align any further (target) domain to the group MLM without
retraining or tuning the classifier at all (fast alignment). Accord-
ingly, numerous databases can be used to build a massive group
MLM that can be applied as it is in a semi-supervised fashion on
any target data. This effectively allows a “many-to-one” transfer
learning strategy, which is what is useful in practice. We show
that group MLMs are little sensitive to the inclusion of low-
scoring subjects, i.e., that the method is not source-dependent.
We also show that choosing optimal hyper-parameters for the
algorithm is not cumbersome. As compared to the formulation
in [30], we also improve the convergence rate of the gradient
descent optimization introducing a smart initialization.

We test the proposed method on six P300 databases including
333 sessions recoded on 177 subjects. We demonstrate cross-
subject and cross-session group transfer learning. In contrast
to the state-of-the-art subject-specific learning, the proposed
group transfer learning significantly improves the accuracy
(2.12+£1.88% average improvement) in five out of the six BCI
databases that we considered (the non-clinical ones), that is, it
features positive learning for non-clinical data. The runtime of
GALIA on a regular PC we have observed is below 10 s for an
8-subject database and up to 1000 s for a 126-subject database.
The complete Julia computer programming code to replicate our
analysis is available in a GitHub repository [31].
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The reminder of the article is organized as it follows: The
Materials and Methods section summarizes useful elements of
Riemannian geometry. Then it describes the proposed group
learning algorithm, the fast alignment method, the processing
pipeline and the BCI databases we have used. The Results
section reports the accuracy of the proposed group learning
algorithm under different hyper-parameters settings as com-
pared to subject-specific train-test accuracy. The Discussion
section considers advantages and limitations of this study. It
also points to several possible directions for future research on
group learning.

II. METHODS AND MATERIALS

Hereby we present the group learning method for the case
of BCIs based on event-related potentials (ERPs). However, the
method is very general in that it may apply to any collection of
feature vectors (not just BCI data).

Throughout this article we denote matrices by upper case bold
letters (A), vectors by lower case bold letters (a), variables by
lower case italic letters (a) and constants by upper case italic
letters (A). Set of objects are denoted with curly brackets such
as, n€{1,...,N}. The matrix operators ()7, tr(+), (), ()2,
log(), ||-|| = and || || 2 denote the transpose, trace, inverse, inverse
of the principal square root, matrix logarithm, Frobenius norm
and 2-norm of the argument, respectively. The matrix operators
off(+) and uvec(-) nullify the diagonal elements and vectorize
the upper triangle of the argument, respectively. The symbol °
indicates the Hadamard product. The N x N identity matrix is
denoted by 1.

A. ERP-Based BCI Data

In ERP-based BClIs a continuous stream of discrete sensory
stimuli (symbols) is flashed in turn on a screen. The user is
allowed to select symbols one-by-one by just focusing on them.
In P300 spellers, the symbols are a subset of those found on a
computer keyboard. The symbol the user focuses on for a given
selection is named salient, whereas all other symbols are named
non-salient. Upon flashing, the symbols evoke stereotypical
electrical potential in the brain, lasting up to 1 second [32]. EEG
records are segmented into 1-s epochs, named trials, starting at
the exact moment of the flash. The aim of the BClI is to determine
what stimulus is salient at a given time, that is, what symbol
the user wish to select, using only the ERP responses of the
user. Hence, given a sequence of acquired ERPs, a binary class
problem (salient vs. non-salient) is posed.

B. Preprocessing

EEG signals are filtered by a second-order Butterworth filter
(1-16 Hz) featuring linear phase response. Trials are extracted by
segmenting EEG data into 1-s epochs. Those featuring excessive
artefacts are excluded from the analysis by applying a data-
driven amplitude-thresholding procedure. No further artefact
rejection nor artefact correction procedure has been used so as
to mimic the real-world usage of BClIs.

C. Encoding ERP Trials

In order to encode ERP trial we follow the well-established
Riemannian approach [24], [26], [30], [33], [34], [35]. Let
mée{l,...,M} be the index of M domains (i.e., subjects and/or
sessions) and [€{1,...,L,,} be the index of L,, available ERP
trials for the mth domain. Therefore, let X,,,;ERM" * T be the
EEG data of a trial, with N,,, and T,,, the number of channels
and the number of time samples for the mth domain, respectively.
First, for each domain a prototype trial (mean) for salient ERP
trials is estimated by using the weighted least-square estimation
of the salient ERP detailed in [32]. We retain the first D = N,,,/2
principal components, denoted as Y,,, ERP * T of the prototype
trial of each domain. Then, the so-called super-trials [35] are
created as X/,,,; = [Xz;llYﬁ]T.

Next, the covariance matrices of all trials are estimated using
the linear Ledoit and Wolf shrinkage estimator [36]. The form
of the covariance matrices of super-trials reads

T [xmlxg

X/le (1)

ml — YmXT

ml

X, YT
Y, YT |

from which we see that the second diagonal block, YmY,Tn, is
the same for all trials of the given domain and therefore does not
hold relevant discriminant information.

Following [23], [34], all regularized covariance matrices for
a given domain, denoted C,,,;, are recentered around the identity
using parallel transport and lifted onto the tangent space therein

[33], such as
S = log (G,,”CiG,. ). @)

where G, is the Riemannian mean of the set {C,,,...,C,,},
estimated using the gradient descent algorithm GM-GD given
in [37].

D. Feature Vectors and Surrogate Feature Vectors

In order to obtain feature vectors, the symmetric matrices S,,;
are vectorized such as

V' i = uvec (S o H)

where H is a matrix holding 1 on the diagonal elements and /2
elsewhere. The normalization enforced by H ensures that the
2-norm of feature vectors v/,,; is equal to the Frobenius norm
of S,,,; [33], that is, they are such that |[V/,,;||5 = ||Simi|| #-

In order to equalize the norm of the tangent vectors across
domains, all tangent vectors are normalized so as to have unit
mean norm for each domain, that is

Lo, -t
Vil = V/ml <le Z ||V/ml|2> .
=1

Furthermore, since the YmY,Tn block in (1) do not hold any
discriminant information, its elements are removed from v,,;,
after the vectorization of S,,,;. Hence, the number of elements
of vectors v,,;is E,, = (N2 + N,, +2DN,,)/2. Notice that
while it is not clear whether the removed elements pertain only
to the YmYZT block after non-linear transformation (2), our
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tests indicate that keeping these elements does not improve the
classification performance.

As for the group learning method, we propose to align these
feature vectors, whereas the alignment operation itself is es-
timated on surrogate feature vectors. These are obtained for
each domain separately by bootstrapping average estimations
of v,,,; for each class separately, and then normalize them so as
to have a global unitary mean norm within each domain. In this
work, such bootstraps are obtained for each class by averaging A
vectors V,,,; randomly drawn (with replacement) from the same
class. E,, bootstraps are stacked horizontally to form matrices
T, ERE™* Em for each domainme& {1, ..., M} and each classes
ke{l,...,K}, separately. Surrogate feature vectors are used to
ensure that the number of vectors is the same within the same
class for all domains. Since we are drawing the same number of
bootstraps for all classes, in this work the dimension of the T,
matrices is equal across classes, but this is not a requirement of
the group learning algorithm. Notice also that bootstrapping is
not a hardcore necessity to form surrogate feature vectors T,,z;
other methods to generate them from feature vectors v,,,; may
be used.

The bootstraps are then whitened by finding M matrices
{W1,..., Wy} such that

> (TwrThy)

k

wo W,, =1p, forallm e {1,..., M},

where P is the pre-whitening dimension, chosen to be equal
for all domains. Finally, we compute pre-whitened cross outer
products

Rijr = W/ Ty T, W;, Vi#je{l,...,M},
ke{l,...,K}.

E. Group Learning

The general idea to achieve group learning is to find M linear
transformation {Uq,...,Uy;} such that all full-rank matrices
UZ-TRij 1 U are as diagonal as possible under appropriate con-
straints on {Uy, ..., Uy }. For M = 2 with a single class (K = 1)
and under the constraint of orthogonality, U; and U are given
in deterministic form as the matrices holding in columns the left
and right singular vectors of Rj5. This is known as maximum
covariance analysis (MCA) [38], the normalized version of
which is the better-known canonical correlation analysis. The
MCA is the essence of the Tangent Space Alignment (TSA)
method [26]. Thus, our proposition can be understood as a
generalization of TSA to M > 2 subjects.

Group learning can indeed be seen as a generaliza-
tion of MCA to the much more general (and useful) case
(M >2,K > 1), whichis the case of concern here. Another way to
seeitis as a special case of the joint blind source separation prob-
lem, which allows us to readily exploit the extensive treatment
this problem has received by the signal processing community
(e.g., [39], [40], [41], [42]). In particular, in this work we adopt
the cyclic approximate joint diagonalization (AJD) gradient
descend optimization scheme proposed in [41]. Once found
the U,,, matrices, the alignment matrices B,,, are obtained as
B,, = W, U, for all m&{1,...,M}. Then, the feature vectors

of each domain, regardless of their class, are aligned by means
of the transformation

Zm] < le Vol (3)

F. Optimization Scheme

Asitis typical in AJD algorithms, the estimation of alignment
matrices B, is factorized in two stages: a pre-whitening stage
(Section II-D) and an optimization stage. The optimization
problem is formulated as

M
argmin > Y [of F(UTR:;U,)| )

i UM k i?ﬁjzl

with appropriate constraints on the U,,, matrices.

Following [41], a possible strategy for solving (4) is to cycli-
cally solve it for each matrix U,,, (each domain), holding the
others fixed, until convergence. The cost function to be solved
for each domain separately reads then

. off : of f
argmin (\IIUI_‘UM) , with \I/UilU\(z‘}
Ui[U\g

=233 " llof F(Qi)lI7 )

kg

where for convenience we have posed Q;ji = U,L»TR,»]»;c
U; and Uy, = {Upn|m=1,...,M,m #i}. The off-
diagonal elements of the Q;;; matrices are given by

of f _ \ptotal—diag __ g,total _ gy diag
U;[Uyy — U0y T UiUygy \IIUHU\M’ ©)
where the toral and diagonal parts are
total _ QT
Vi, =5 R 2 (Q:+Q%, ) and
. 2 )
diag o T . ]
\IIUi\U\m = 2%:%;%: (ui(p)R’LJkuJ(P)) )

respectively. In (7) and everywhere hereafter, u;(,,) and w;( ) are
the pth column vector of U; and Uj;, respectively. We constraint
the norm of the column vectors of U;, such that

(I)JJZJ\IU\H}’ subject to uiT(p)Mi(P)ui(p) =L VWp=1...,P,
®)
where matrices M; ) are defined as
T RT
Mgy => Y (Rijkuﬂp) uj(p)Rijk)~ ©)

ko j#i

In the AJD literature, constraint (9) is known as the intrinsic
constraints [43].

As shown in [38], [41], the solution for the u;,) vectors of
each matrix Uj is the principal generalized eigenvector of matrix
M;(p) in the metric of M;. We do not find such eigenvectors
explicitly, rather, we limit ourselves to a single power iteration
per update step, followed by a normalization enforcing the
constraint. This yields the simple updating rule:

Fori=1,..., M,p=1,...,Pdo
{uim = M M) uigy) e
Wi(p) <= Wi(p) (uiT(p)Mi(p)ui(p))
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As a computation shortcut, in the update rule we do not need
to compute the inverse of M;; instead we proceed equivalently
by computing its Cholesky decomposition and solving two
triangular system of equations. Notice that the updating rule
is applied cyclically on all U,,, matrices.

Following [42], we initialize each matrix U,, by

M
U, = II, where SVD Z Z Ry, | = IE=V7
k j#i=1

in order to hasten convergence. We name this smart initializa-
tion. Upon convergence of all matrices U,,, we normalize all
their columns such as

~1/2
Ui(n) (uﬂn) Z (Rijr) ui(n)) U;(n)
P

ne{l,...,N}
i£jed{l,...,.M}
and we obtain the M alignment matrices as B,,, = W,,U,,,.
The pseudo-code is given in Algorithm 1. We name this
alignment algorithm GALIA (Group Alignment Algorithm). For
further details on the optimization scheme, cost function and
initialization procedure, the reader is referred to [38], [39], [40],
[41]. Notice that the bootstrapping size (A) and the pre-whitening
dimension (P) are the only hyper-parameters of the algorithm.
An efficient implementation of GALIA is provided in a GitHub
repository [31].

for all

G. Fast Alignment of New Domains

Suppose we have aligned the data of M subjects (and/or
sessions), which is possibly very large, and trained a complex
classifier on them. Then suppose that we want to apply this
mighty classifier to a new subject (or new session) that was
not available when we constructed the model. As we have
stated the group learning problem, the M + 1 domains must
be re-aligned altogether, running again the group alignment
algorithm. Fortunately, this is not strictly necessary, as we can
align the new subject (or session) to the existing model in a
much faster way. The problem can be posed this way: given M
pre-computed alignment matrices U,,,, we want to find a matrix
U, for the new domain so as to maximize the cross outer-product
between the new (pre-whitened) domain and all (pre-whitened)
existing domains. That is to say, we force the new domain to
adapt itself to the group, while the group is left untouched. The
optimization problem is formulated then as

M
argmin ZZ ||0ff(U£ijkUj)Hi“' (10)

U UL, Un} 5 521

The functional in (10) has the exact same form of the one in
(5). As we have seen, the solution for each of the P columns
of U, is given by the principal generalized eigenvector of
matrix M) = Zm(Rmmum(p)u%( p)Rfm) in the metric of
M, = Zp M, (p)-

In contrast to Algorithm 1, where (5) is one of M nested cost
functions, here we only need to solve (10), therefore here we
explicitly compute the P generalized eigenvalues. Thus, once

Algorithm 1: GALIA (Group ALIgnment Algorithm).

Input: T, me{l,..,M} andk €{l,...K}
subspace dimension P << E
Output: B, =W, U, Vme{l,..,M}
Begin:
1 W {Z(TWT;,( )}W =1, Vme{l,.,M}

k

for all i=1 to M do

| Ry =W T,T,W, Vizje{l.. M}
end for
Initialize all matrices Up:

M
5 U, =I, where SVD(Y Y R,,)=IIEZV Vm

k m=#j=1
6  repeat
7 for all m=1to M do
M

_ T T

8 M, = ; ‘zl(Rm/kuj(muj(p)Rm/‘k) vp
J#Em=
9 Zi:le( » = LI (Cholesky decomposition)
10 for all p=1to P do
11 solve Lf =M, ,u,,  and L'g=f
pA

12 update u,, < g(gTMm(p)g)
13 end for
14 end for

15 until convergence of all U, matrices.

Normalize all columns of matrices Up:
)

A
16 pell,...P}
;) < [uir(p)zk:(R'f" )ui(l’)j Wiip) v

i#je{l,..M}

we pre-whiten the surrogated feature vectors of the new domain
we find U, by a deterministic solution and we can construct
matrix B,. We then align the feature vectors of the new domain
using the same projection (3) namely,

T
Zyl < Bm Vi

and apply to them the pre-computed machine learning model as
it is. Note that group learning operates by cyclically optimizing
the functional in (5). In each of these functionals matrix U; is
optimized given all the others. It is easy to see that as the number
of domains goes to infinity, the influence of a single domain
vanishes. This implies that the fast alignment is asymptotically
equivalent to group learning. In practice, this means that group
learning models trained on large databases can be expected to
yield excellent results on any unseen target data.

H. Description of Data

We tested the proposed algorithm on six P300 databases
including 333 sessions recorded from 177 subjects. The main
characteristics of the databases are given in Table I. For details
on the databases and for the experimental procedure, the reader

Authorized licensed use limited to: Abdullah GUI Univ (KAYSERI ABDULLAH GUL UNIVERSITESI). Downloaded on February 01,2024 at 11:46:03 UTC from IEEE Xplore. Restrictions apply.



ALTINDIS et al.: TRANSFER LEARNING FOR P300 BRAIN-COMPUTER INTERFACES BY JOINT ALIGNMENT OF FEATURE VECTORS

4701

TABLE |
MAIN CHARACTERISTICS OF THE BCI DATABASES USED IN THIS STUDY

Databases Subjgcts Num. of Channel  Sampling
(Sessions) Channels Type Rate

bi2013a 22(1) 16 Ag/AgCl 128 Hz
bi2014a 64(1) 16 Gold 512 Hz
bi2014b 31(3) 31 Ag/AgCl 512 Hz
bi2015a 42(3) 31 Ag/AgCl 512 Hz
BNCI2014008 3(1) 8 Ag/AgCl 256 Hz
BNCI2015003 10(2) 8 Ag/AgCl 256 Hz

is referred to [44], [45], [46], [47], [48], [49]. All six databases
are publicly available on the MOABB framework [50].

I. Pipelines

Each recorded session defines a separate domain, in which
we have divided the available tangent vectors v,,,; into train-test
splits with random shuffling. The sizes of the training splits
are arranged such that they feature the same percentage of
trials (starting from 20% up to 90%, with 10% increment) of
all available trials from each class for the given domain. The
remaining trials are retained as test splits. This allows to test
the classification performance of the group learning algorithm
for different amounts of available training data. The splitting
procedure is repeated five times; the reported accuracies are the
average of those five folds.

All computations were carried out using the Julia program-
ming language (release v1.7.3) on a computer equipped with
Windows 10 OS, an Intel 19-10900 K @3.7 GHz CPU and 64 GB
of RAM. For classification, the linear support vector machine
(LinearSVC) of the scikit-learn (version 1.2.2) Python library
was exported to Julia.

Since the classes are unbalanced, balanced accuracy is em-
ployed as a performance index. Apart from the class weights
parameter which is set to balanced, the default values are used
for the parameters of the LinearSVC classifier.

Importantly, the train-test splits are always identical in the
comparisons of pipelines. For the group learning and fast align-
ment, only one classifier is trained using data from all sessions
of all subjects, whereas in the subject-specific case M classifiers
are trained, each one using only the training data of the sub-
ject/session under test. Exactly the same training data is used
for training the subject-specific classifiers, to align the group
learning model and to train the group learning/fast alignment
model, yielding a fair comparison of the three methods. The
step-by-step summary of group learning and subject-specific
train-test (subject-wise learning) pipelines are shown in Fig. 2.
Fast alignment is detailed in Section II-G.

[ll. RESULTS

In order to compare the decoding performances of the group
learning, fast alignment and subject-wise learning pipelines, we
consider subject-by-subject classification accuracies.

Subject-Wise Learning

Group Learning

Pre-processing

Encoding ERP Trials

Tangent Space Mapping

Estimation of

M subjects Alignment
-« |M models ) Matrices (U,,)
M subjects
Y VY single model

[ Train/Test Classifier

Fig. 2. Pipeline steps of subject-wise train-test learning and group
learning summarized as a flowchart. Notice that not only that group
learning pipeline has a few extra steps before cross-validation the clas-
sifier, but also it uses single classifier for all domains.

A. Hyper-Parameters and Computational Cost

Our first analysis addresses the choice of the best pre-
whitening dimension (P) and bootstrapping size (A). We have
tested the group learning pipeline with six different pre-
whitening dimension values P € {4, 8, 16, 24, 32, 48} for
the whitening matrices W,,. As for the bootstrapping size
(A) of the surrogate features, we tested four different values
A€ {1,2,10,25}. When A = 1, surrogate features are created
with randomly sampled (with replacement) feature vectors di-
rectly. For A>1, the surrogate features are estimated by taking
the mean of A randomly selected feature vectors. A grid search
for the hyper-parameters of GALIA are thereby created.

In Fig. 3, the average classification changes of all split sizes
obtained with the group learning pipeline is shown. Line plots for
each A value are shown along ascendingly ordered pre-whitening
dimensions for all bootstrapping sizes and for each database
separately. It can be seen that for the smaller bootstrapping size
(A =1or A = 2) the group learning yields lower classifica-
tion performance, suggesting that choosing a higher bootstrap
size better retains distinctive features of the classes. Also, the
classification performance of the group learning becomes less
sensitive to pre-whitening dimension as the bootstrapping size
increases. Given a sufficient value of A, the average classification
change is nearly flat across all pre-whitening dimensions and for
all databases.

As we have described in Section II-F, the dimensions of the
U,,, matrices are defined by pre-whitening dimension. Con-
sequently, the computational cost of GALIA (Algorithm 1)
depends on the choice of P. Fig. 4 shows the computational cost
of GALIA in terms of runtime for each value of P. We should
note that the computational costs shown in Fig. 4 depends not
only on P, but also on the number of subjects (M) composing
the group. Therefore, the nominal runtime of GALIA is higher
for larger databases such as bi2015a and bi2014b. Nevertheless,
the cost of doubling the pre-whitening dimension is nearly 10
times in terms of the runtime of the algorithm, regardless the
group size. In absolute terms, the runtime is modest in our
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Fig. 3. Each plot shows how much in percentage the average classi-

fication accuracy changes when using the group learning model (with
the given hyper-parameters) as compared to the subject-wise train-test
model for each database. The horizontal dotted black line indicates no
change (0%).

Database
BNCI2015003 (20)
-« BNCI2014008 (8)
— bi2015a (126)
= bi2014b (93)
— bi2014a (64)
— bi2013a (22)

4 8 16 24 32
Pre-Whitening Dimension (P)

Fig. 4. Average runtime (s) to run the group alignment algorithm ver-
sus P. The average runtime axis (y-axis) is displayed on a logarithmic
scale. The total number of subjects/sessions of each database reported
in parenthesis.

Julia implementation as it is comprised in between 10 and 1000
seconds for P = 16, depending on the group size.

As illustrated in this section, the classification performance
of group learning does not require separate fine tuning of
hyper-parameters A and P for each database we have used.
Instead, a suboptimal hyper-parameter configuration with low
computational cost and generalizing well across all databases
regardless of their recording sensor type, number of sensors and
number of subjects can be used for all. Consequently, in this
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Fig. 5. Scatter plots comparing individual-subject accuracies of group

learning versus subject-wise learning pipelines for each database.

study we set the bootstrapping size to A = 25 and pre-whitening
dimension to P = 16 as the hyper-parameters of GALIA.

B. Comparison of Group Learning vs Subject-Wise
Learning

In Fig. 5, group learning versus subject-wise learning classi-
fication accuracies of each subject are presented. The train and
test splits have equal numerosity in each class (50%, 50%). It
can be seen that for the vast majority of subjects group learning
yields higher classification accuracy as compared to subject-
wise learning. If we take a closer look at bi2014b database,
only one third of the subjects display subject-wise classification
accuracy that is equal or higher than 60%. Nevertheless, group
learning improves the classification accuracy of the two thirds of
the subjects by 1-5%, yielding 1.4% improvement on average.
Conversely, in BNCI2015003, bi2013a, bi2014a and bi2015a
databases, subject-wise classification accuracies are higher than
60% for the vast majority of subjects. On average, classification
performances of these databases are improved by 2.7%, 4.2%,
2.81% and 2.93% respectively, as shown in Table II. Wilcoxon
signed-rank tests (Table III) reveal that group learning signifi-
cantly improves the classification performance of all databases
except BNCI2014008 (p < 0.001) in almost all cases. This is
a clear evidence of positive learning achieved by GALIA, es-
pecially for those databases (BNCI2015003, bi2013a, bi2014a,
bi2015a) displaying high subject-specific accuracy.
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TABLE Il
AVERAGE CLASSIFICATION ACCURACIES OF EACH DATABASE

. Grou, Fast
Databases SW IE(?Z )rn ne Leamigg Alignment
(%) (%)
bi2013a 76.10+0.30 80.30+0.30 80.34+0.30
bi2014a 68.48+0.11 71.29+0.13 71.28+0.13
bi2014b 60.31+0.38 61.69+0.43 61.74+0.47
bi2015a 67.81£0.14 70.74+0.15 70.59+0.22
BNCI2014008 75.93+0.60 74.66+0.66 74.22+0.66
BNCI2015003 67.64+0.61 70.34+0.71 69.03+0.69

Classification accuracies averaged over all train-test split sizes for each
database and corresponding standard errors.

TABLE Il
WILCOXON SIGNED-RANK TEST P-VALUES COMPARING THE AVERAGE
ACCURACY OF GROUP LEARNING (GL) AND SUBJECT-WISE LEARNING (SW)

Training Split Size

Databases

30 40 50 60 70 80 90
bi2013a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
bi2014a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
bi2014b 0.946 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.046
bi2015a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

BNCI2014008 0.008 0.770 0.844 0.926 0.992 1.000 1.000 0.973
BNCI2015003 0.004 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.285

Significant results after correction by the Bonferroni method (GL>SW) at the a=0.05
level are printed in bold.

In addition to the subject-by-subject comparison, we present
the average classification accuracy of both pipelines with respect
to increasing training data size in Fig. 6. It can be seen that in all
databases the average classification accuracy of group learning
matches -if not surpasses- the average classification accuracy
of subject-wise learning, regardless the train-test split size. As
the training data increases, group learning yields significantly
higher classification accuracy than subject-wise learning for all
databases except for the BNCI2014008 database.

C. Robustness to Negative Learning of GALIA

In the above analysis, none of the subjects are excluded from
group learning. However, most previous Riemannian transfer
learning methods were shown to be sensitive to the choice of
the source domains [25]. In order to verify whether GALIA
also displays such behavior, we exclude subjects that have less
than 60% subject-wise learning classification accuracy. Next, the
group learning pipeline is run with exactly the same parameters
on the remaining subjects. In Fig. 7, we compare the average
classification accuracies of group learning for each database us-
ing all retained subjects before and after excluding low-scoring
subjects. Considering that the BNCI2014008 database has no
subjects scoring below 60% and that the bi2013a database has
only one subject scoring barely lower than 60%, these two
databases are excluded from this analysis. As for the remaining
databases, the average classification accuracy does not display
significant differences according to the Wilcoxon signed-rank
test (p-value not shown). This analysis stresses the robustness of
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TABLE IV
WILCOXON SIGNED-RANK TEST P-VALUES COMPARING THE AVERAGE
ACCURACY OF GROUP LEARNING (GL) AND FAST ALIGNMENT (FA)

Training Split Size

Databases
20 30 40 50 60 70 80 90
bi2013a 0.194 0.960 0.947 0.555 0.358 0.524 0.228 0.564
bi2014a 0.504 0.336 0.421 0.372 0.613 0.130 0.376 0.160
bi2014b 0915 0.869 0.978 0.975 0.355 0.198 0.424 0.757
bi2015a 0.989 0.927 1.000 0.553 0319 0.697 0.705 0.775
BNCI2014008 0.422 0.191 0.004 0.055 0.680 0.098 0.020 0.074
BNCI2015003 0.806 0.215 0.507 0.715 0.378 0.595 0.273 0.778

Significant results after correction by the Bonferroni method (GL>SW) at the =0.05
level are printed in bold.

GALIA against the inclusion in the group model of low-scoring
subjects, and suggests that it does not require pre-selection of
subjects to be included in the group learning in order to avoid
negative learning. This is a distinctive advantage over previous
attempts, similar to what has been noticed in [26].

D. Fast Alignment

To reiterate briefly, GALIA applies to a set of sub-
jects/sessions, which are treated simultaneously as source and
target domains. If the size of the group changes, all of the
alignment matrices need to be recalculated again. Considering
the long-run aim of the group learning (that is to create an MLM
that can be applied on virtually any unseen data), it is undesirable
to start over the estimation of alignment matrices every time a
new target subject has to be treated when we need to apply the
model on an unseen subject.

Here we present a leave-one-out (LOO) analysis in which an
unseen subjectis aligned to the set of subjects without re-running
GALIA from scratch. In each turn, one subject/session is rele-
gated from the group whereas the remaining subjects/sessions
are used to train GALIA. The relegated subject/session is
adapted to the group with fast alignment using its training data
as described in Section II-G. Then, the classifier trained on the
group is used to classify the data of the newly aligned subject.
Notice that in this analysis the classifier has never seen any of the
trials of the target data, effectively achieving a many-to-one do-
main adaptation mode of operation. In Fig. 8, subject-by-subject
comparisons of fast alignment, group learning and subject-wise
learning are shown when 50% training split size is used. It can be
seen that fast alignment of a new subject yields approximately
the same classification performance as compared to the situation
where the subject is included in the group model. We repeat
this analysis for all training split sizes and compute p-values
using the Wilcoxon signed-rank test (Table I'V). For all tests the
null hypothesis cannot be rejected, suggesting that the average
classification accuracy achieved by fast alignment is equivalent
to the one achieved by the group learning pipeline, even with a
small amount of training trials.

IV. DISCUSSION

In this article, we have expanded the many-to-many transfer
learning method in [30] by introducing a smart initialization
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Fig. 8. Subject-by-subject classification accuracies of subject-wise
learning, group learning and fast alignment for all databases. Subjects
are sorted based on their subject-wise learning accuracies. The hori-
zontal dotted black line indicates chance level (50%).

method to hasten the convergence rate of the group alignment
algorithm (GALIA) and by showing how to choose optimal
hyper-parameters of GALIA generalizing well across databases.
We have also introduced the fast alignment method (many-to-
one) to align a new (unseen) domain with the formerly aligned
group of domains without re-running GALIA and re-training or
updating the classifier. Finally, we have extensively tested the
group alignment and fast alignment method on six publicly avail-
able P300 databases comprising 333 sessions from 177 subjects.

Granting that the conventional subject-specific train-test
pipeline is the golden standard for the purpose of classification,
we showed that the group learning method outperformed the
golden standard on all databases except BNCI2014008. The
peculiarity of this database is that it is the only one in which
the recordings were taken from clinical patients (Amyotrophic
lateral sclerosis). Since GALIA seeks linear transformation
of the feature vectors to align the data, the negative learning
observed in this database may be explained by the fact that a
linear transformation does not suffice to align these clinical
data. Further studies are needed in order to test this hypothesis
and to find a solution.

In order to ascertain whether the inter-domain aligment
achieved by GALIA is the essential ingridient in order to achieve
the results we report, we have performed an ablation study on
the bi2013a and bi2015a databases. This is achieved replacing
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TABLE V
RUNTIME OF SUBJECT-WISE LEARNING, GROUP LEARNING
AND FAST ALIGNMENT

Databases . SW . GL. ‘Fast
Pipeline Pipeline Alignment
bi2013a 8.04 +62.49 +0.82
bi2014a 127.26 +301.03 +2.13
bi2014b 125.23 +599.15 +2.71
bi2015a 190.77 +726.67 +2.41
BNCI2014008 26.21 +18.89 +0.74
BNCI2015003 14.74 +71.77 +0.86

Subject-wise learning pipeline runtimes are given in seconds. The
runtime values of group learning and fast alignment are in comparison
to subject-wise learning.

the matrices U,,, the core of our alignment method, with the
identity matrix and performed the cross-validation exactly is
the same way otherwise. This procedure effectively disables the
alignment, keeping equal all other aspects of the test and amount
to a “naive” group learning consisting in just pooling the data
of all subjects in order to train a group classifier. The ablation
of GALIA reduced the classification accuracy averaged over all
train-test split sizes to below 60% for both databases, well below
the accuracy achieved by either group learning or subject-wise
learning (compare these scores to Table IT). We conclude in favor
of the essentiality of our alignment procedure in our pipelines.

As compared to the previous Riemannian domain adaptation
methods acting in either the manifold or in the tangent space
[21], [23], [24], [25], [26], [27], [28], group learning stands out
for being the first many-to-many domain adaptation method.
Favorably, there is no need to search for the optimal source
domains in order to prevent negative learning unlike [23], [24],
[27], [28], since the group learning is shown here to be robust
against inclusion of low-performing subjects. Unlike the con-
ventional one-to-one domain adaptation or its cascaded many-
to-one versions that usually employ voting strategies (majority
or weighted) on multiple classifiers each being trained with a
different source domain [23], [24], [26], [27], [28], in group
learning a single classifier is trained and tested with the aligned
data of all domains. Hence, the data of many domains are truly
forged in together for training a single classifier.

Remarkably, the classification performance of our fast align-
ment method is comparable to the one achieved by group learn-
ing, that is, the classifier works as well without seeing the target
data at all. Nonetheless, labeled trials are needed in order to
align the target data. A promising line of research consists in
making the fast alignment method fully unsupervised.

As seen in Table V, the alignment matrix of a new domain can
be computed in at most three seconds on a regular desktop PC.
For any practical purpose this implies that many-to-one domain
adaptation can be performed online.

Our results suggest that a single MLM can be trained with
the massive amount of data that belongs to the group of aligned
domains thanks to the fast alignment method. Once trained, the
MLM can serve for the classification of any new domain simply
by aligning its feature vectors with the feature vectors of the
MLM, without any further training of the classifier. This may
be used as a pre-processing step in deep neural network (DNN)
methods such as [51] to tackle domain adaptation on massive

amounts of data, which is what a DNN needs. An even more
intriguing possibility would be to design a specific DNN layer
to perform group data alignment along the lines of GALIA.

This study has several limitations: we did not apply group
learning for cross-database domain adaptation due to the in-
congruence among databases caused by sensor types and num-
bers. An adaptation of the dimensionality transcending method
proposed in [52] is currently under study in order to align
incongruent EEG data. This would allow the creation of univer-
sal MLM based on GALIA fast alignment, that is, pre-trained
classifiers that can be used on any target domain data, regardless
the number and position of electrodes. Besides, the possible
non-linearity of the data will be considered for enhancing the
alignment of the domains. Finally, we have tested group learning
and fast alignment only on P300 BCI data; future studies are
needed to test our proposition on other BCI paradigms, such as
motor-imagery and SSVEP.
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