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ABSTRACT 

OPTICAL SCATTERING BASED RANDOM FOREST 
ASSISTED PARTICLE DETECTION AND CLASSIFICATION 

Sinan GENÇ 
Ph.D. in Electrical and Computer Engineering 

Advisor: Assoc. Prof. Kutay İÇÖZ 
Co-Advisor: Assist. Prof. Talha ERDEM 

July 2023 
 

Microplastics, tiny plastic particles with sizes smaller than 5 mm., are often found 

in oceans, rivers, lakes, and atmosphere due to plastic pollution. Microplastics releasing 

toxic chemicals threaten the environment and harm the aquatic life and humans. 

Especially, the accumulation of microplastics can have detrimental effects on the food 

chain as a result of larger organisms consuming smaller organisms. 

Detecting the microplastics is crucial but also challenging. Over the years,  

researchers have developed different detection methods. One of the standard methods is 

using spectroscopy tools such as Fourier transform infrared spectroscopy (FTIR) and 

Raman spectroscopy. These techniques can identify the chemical composition of 

microplastics, which can help determine their sources and potential impacts. Another 

method is the use of microscopy, which allows for the visualization and counting of 

microplastics in samples. However, these techniques require costly infrastructure, and 

these instruments being large in size significantly limits the mobility.  

As a remedy to the cost and mobility problems, in this thesis, we propose and 

demonstrate a low-cost, portable system to detect size, concentration, and refractive index 

of microplastics. Our system comprises of low-cost and low-weight components which 

are utilized for recording the scattering patterns of microplastics in aqueous media. We 

demonstrate successful predictions of the size and refractive index of microparticles at a 

given wavelength using a Random Forest Algorithm which relates the measured 

scattering pattern with the Mie theory. We further employ the refractive index information 

at various wavelengths for determining the material type of microplastics. 

 We believe that our proposed system enabling an easy, fast, low-cost, and on-site 

detection of microplastics will be a beneficial tool for the fight against microplastics in 

the environment.   

 

Keywords: scattering, optics, sensing, microparticle, machine learning. 
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ÖZET 

OPTİK SAÇILMA TEMELLİ RASTGELE ORMAN DESTEKLİ 
PARÇACIK TESPİTİ VE SINIFLANDIRILMASI 

Sinan GENÇ 
 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Danışman: Doç. Dr. Kutay İÇÖZ 
İkinci Danışman: Dr. Öğr. Üyesi Talha ERDEM 

Haziran 2023 
 

5 mm'den küçük boyutlara sahip küçük plastik parçacıklar olan mikroplastikler, 

plastik kirliliği nedeniyle genellikle okyanuslarda, nehirlerde, göllerde ve atmosferde 

bulunur. Zehirli kimyasallar salan mikroplastikler çevreyi tehdit etmekte, su canlılarına 

ve insanlara zarar vermektedir. Özellikle yayılmaları ve daha büyük organizmaların daha 

küçük organizmaları tüketmesi sonucunda besin zinciri üzerinde zararlı olabilirler. 

Mikroplastikleri tespit etmek çok önemli ama aynı zamanda zordur. Yıllar boyunca, 

araştırmacılar farklı tespit yöntemleri geliştirmişlerdir. Standart yöntemlerden biri, 

Fourier dönüşümü kızılötesi spektroskopisi (FTIR) ve Raman spektroskopisi gibi 

spektroskopi araçlarını kullanmaktır. Bu teknikler, mikroplastiklerin kaynaklarını ve 

potansiyel etkilerini belirlemeye yardımcı olabilecek kimyasal bileşimini tanımlayabilir. 

Diğer bir yöntem ise numunelerdeki mikroplastiklerin görselleştirilmesine ve sayılmasına 

izin veren mikroskopi kullanımıdır. Ancak bu teknikler maliyetli altyapı gerektirir ve bu 

enstrümanların boyutlarının büyük olması taşınabilirliği önemli ölçüde sınırlar. 

Maliyet ve taşınabilirlik sorunlarına bir çözüm olarak, bu tezde, mikroplastiklerin 

boyutunu, konsantrasyonunu ve kırılma indeksini tespit etmek için düşük maliyetli, 

taşınabilir bir sistem öneriyor ve sunuyoruz. Sistemimiz, mikroplastiklerin sulu 

ortamdaki saçılma modellerini kaydetmek için düşük maliyetli ve düşük ağırlıklı 

bileşenlerden oluşur. Ölçülen saçılma modelini Mie teorisi ile ilişkilendiren bir Rastgele 

Orman Algoritması kullanarak, belirli bir dalga boyunda mikropartiküllerin boyutuna ve 

kırılma indisine ilişkin başarılı tahminler gösteriyoruz. Ayrıca, mikroplastiklerin 

malzemesini belirlemek için çeşitli dalga boylarındaki kırılma indislerini de kullanıyoruz. 

  Mikroplastiklerin kolay, hızlı, düşük maliyetli ve yerinde tespit edilmesini 

sağlayan önerdiğimiz sistemimizin, çevredeki mikroplastiklerle mücadelede faydalı bir 

araç olacağına inanıyoruz. 

 

Anahtar kelimeler: saçılma, optik, algılama, mikro-parçacık, makina öğrenmesi.  
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Chapter 1

Introduction

1.1 Microplastic Pollution

Microplastics are tiny pieces of plastics smaller than 5 mm in size. They come from 

various sources, such as broken-down plastic waste, microbeads from personal care 

products, synthetic fibers from textiles, and through fragmentation of larger plastic debris

[1–3]. Microplastics pose a significant threat to marine and freshwater ecosystems as they 

are frequently ingested by aquatic life and can accumulate in the food chain, ultimately 

reaching humans [4–9]. As given in Figure 1.1, micrometer-sized living beings in the 

oceans have plastics in their body. Other life forms, which are at higher places in the food 

chain, consume them leading the micropollutants eventually to reach the human body. 

Figure 1.1 (a) A zooplankton (2-20 μm) [10] (This image was reproduced with 
permission of Dr. Richard Kirby), and (b) a water flea (200+ μm) [11] with 
microplastics in their body.

Plastics from automobile tires, industry, and other resources increased the amount

of those pollutants in addition to this aquatic connection [12–16]. Recent scientific studies 

have demonstrated the presence of these tiny particles in the bodies, blood, milk, and flesh 

of farm animals, as well as in food products, including honey, sugar, salt, and seafood.

Another study indicated that micro/nanosized submerged plastics rise to the surface 

of the water resources and mix with the air due to evaporation [17]. Rains return those 

microplastics in the air to earth and make them in contact with land. Thus, interaction 

with the same pollutants again and again becomes inevitable. In addition to the food chain, 
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inhaling microplastics is another dangerous mechanism for human health. The danger of 

breathing in microplastics grows with decreasing their sizes [18]. As shown in Figure 1.2 

demonstrating a sample cycle of microplastic pollution, pollutants from daily activities 

reach the water sources, seas, and oceans. Mechanical, biological, or natural processes 

make them smaller and complete the cycle with seafood, atmosphere, or direct water 

consumption.  

 
Figure 1.2 A sample microplastic pollution cycle example [19]. 

The environmental impacts of microplastics are still not completely understood, but 

they have been linked to health problems in marine life, such as reproductive issues, 

behavioral changes, and death. In addition, microplastics can also have economic impacts 

on the fishing and tourism industries, as the presence of plastics in water can reduce fish 

populations and lead to beach closures [20]. 

The issue of microplastics has gained attention in recent years due to the increasing 

amount of plastic waste produced globally [21–24]. Plastic is cheap, versatile, and 

durable, but it is also non-biodegradable, and as a result, it remains in the environment 

for centuries. To protect the health and environment, it is crucial to reduce the use of 

plastics and increase awareness on this global issue.  

Recent years have seen an increase in research on microplastic pollution, with 

numerous studies highlighting the extent of the problem. In 2018, a study estimated that 

microplastics were present in more than 90% of bottled water, with an average of 325 

particles per liter [25]. Another study published in 2020 estimated that up to 14 million 

metric tons of microplastics were deposited in the world's oceans yearly, with the majority 

originating from Asia [26]. Additionally, a study published in 2023 found that 

microplastics were present in more than 90% of the freshwater samples collected from 
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the Amazon and its tributaries [27]. These findings highlight the urgent need to address 

the root causes of microplastic pollution and prevent further harm to our environment and 

health.  

 
Figure 1.3 Sample map for microplastics and their detected locations around the 
world (This image was reproduced with permission of planetcare.org) [28]. 

As microplastics are small, it is difficult to remove them from the environment once 

they have been released, and current recycling efforts are ineffective in eliminating them. 

In Figure 1.3, some of the microplastics and their locations are presented; as can be 

understood, they are in everywhere. Therefore, the best way to prevent microplastics is 

to eliminate them before dissipation. Some measures to address the problem include 

introducing legislation to ban microbeads in personal care products, promoting 

sustainable alternatives, and increasing investment in research to better understand the 

impacts of microplastics on the environment and human health. 

1.2 Detection of Microplastics 

As microplastics continue to pose a significant problem due to their evasive nature 

and ineffective recycling techniques, the need for proactive measures to prevent their 

release grows. Efforts are being made to implement practical solutions in response to the 

widespread distribution of microplastics. The application of optical scattering techniques 

for detecting microplastics is among them. This novel technique employs light scattering 

to identify and quantify microplastic particles within a sample. It capitalizes on their 
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unique ability to scatter light at certain angles depending on the size and type of 

microparticles. By utilizing this innovative method, researchers can obtain valuable 

insights into the prevalence and distribution of microplastics, which will ultimately aid in 

developing effective strategies to combat their environmental impact and protect the 

ecosystem and human health. 

Microplastic detection by optical scattering is a technique that uses light scattering 

to identify and quantify microplastic particles in a sample. The method relies on the fact 

that microplastics are usually small enough to scatter light at a particular angle, 

distinguishing them from other particles in the sample. 

To detect microplastics by optical scattering, a sample is first prepared by filtering 

it through a fine mesh or membrane to remove larger particles. The filtered sample is then 

passed through a laser beam or other light source at a specific angle to the sample. As the 

light passes through the sample, it interacts with any microplastic particles present, 

causing them to scatter light at a particular angle. A detector is positioned to capture this 

scattered light, which can then be analyzed to identify and quantify the microplastics in 

the sample. 

One advantage of this technique is that it is non-destructive and non-invasive, 

meaning that the sample can be preserved for further analysis. Additionally, it can be 

performed relatively quickly and requires minimal sample preparation. 

However, microplastic detection by optical scattering possess some limitations. For 

example, it may not be able to detect very small microplastics or those that have refractive 

indices similar to water leading to a transparent or translucent appearance. In addition, 

other particles in the sample may also scatter light, making it challenging to distinguish 

microplastics from other particles. Therefore, it is often used in combination with other 

analytical techniques, such as microscopy or spectroscopy, to provide a more complete 

picture of the microplastics present in a sample. 

Several optical techniques can detect microplastics in various media such as 

sediment, soil, and air. Within the framework of this thesis, optical techniques can be used 

to determine microplastics in liquids, such as water, by either visualizing the 

microplastics directly or indirectly detecting them through their interaction with light. 

Some of the most commonly used optical techniques for determining microplastics are 

shortly defined as follows: 
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Microscopy: Microscopy techniques, such as brightfield, darkfield, and phase 

contrast microscopy, can be used to visualize microplastics in liquid samples directly 

[29].  

Fluorescence microscopy: This technique involves labeling microplastics with a 

fluorescent dye and then visualizing them under a microscope with a UV light source 

[30]. The microplastics appear as bright fluorescent particles against a dark background, 

making them easy to detect and quantify. 

Digital holographic microscopy: Digital holographic microscopy involves 

recording interference patterns generated by a laser beam that has passed through a 

sample [31]. This technique can detect and characterize microplastics based on their 3D 

morphology and optical properties. 

Fourier-transform infrared (FTIR) spectroscopy: FTIR spectroscopy measures a 

sample's absorption or transmission of infrared light [32]. Different types of plastic have 

unique infrared spectra, which can be used to identify and quantify microplastics. 

Flow cytometry: Flow cytometry can quantify and size particles in a liquid sample 

[33]. Microplastics can be labeled with a fluorescent dye and then analyzed by flow 

cytometry to determine their concentration and size distribution. 

Infrared spectroscopy: Infrared spectroscopy can identify and quantify 

microplastics in liquid samples by measuring their characteristic absorption or 

transmission of infrared light [34]. 

Raman spectroscopy: Raman spectroscopy is a non-destructive technique involving 

a laser on a sample and measuring the scattered light [35]. Each type of plastic has a 

unique Raman spectrum, which can be used to identify and quantify different types of 

microplastics. 

Surface plasmon resonance imaging: Surface plasmon resonance imaging can 

detect and quantify microplastics in liquid samples based on their interaction with a 

metallic surface [36]. The presence of microplastics in the liquid sample causes changes 

in the refractive index of the surrounding medium, which can be detected by surface 

plasmon resonance imaging. 

Hyperspectral imaging: Hyperspectral imaging involves collecting images at 

multiple wavelengths across the electromagnetic spectrum, allowing for the identification 

and characterization of microplastics based on their spectral signatures [37]. 

Overall, optical techniques provide powerful tools for detecting and characterizing 

microplastics in various environmental samples and can generate essential data for 
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monitoring and mitigating microplastic pollution. However, these systems are usually 

bulky and costly, making it inaccessible and difficult for on-site use. As an alternative to 

the existing techniques, here we propose and demonstrate a simple, cost-effective, and 

fast-response technique to determine particle size, refractive index, and concentration of 

microparticles in water. Our system includes several low-power lasers, a sample holder, 

screen and a Raspberry Pi card equipped with a camera. By recording the scattering 

patterns of the laser light and subsequently relating it with the Mie theory with the help 

of Random Forest Algorithm, we successfully determined the concentration, type, and 

size of the particles.  

1.3 Contributions and Structure of Thesis

In literature, there are studies determining the size of microparticles regardless of 

the material type [35,38–41]. Although it is easier to classify particles of various sizes,

the situation would be tricky if the particles were identical in every aspect except the 

materials they are made of. In this thesis, in addition to the particle size, concentration,

and wavelength of incident light, the materials of particles are also examined, and 

classification by random forest algorithm is presented. Distinguishing the particle will 

open a new window to classify microplastic pollution and its hazard level. Furthermore, 

it would be possible to track the path of microplastics starting from the source. 

In the first experiments, as presented in Figure 1.4 by unprofessional photos taken 

using a mobile phone camera, it was observed that a low-cost setup could show different 

scattering patterns for particles of various sizes, refractive index, concentration, and 

wavelength of incident lights. 

Figure 1.4 Mobile phone shootings showing different scattering patterns for red (a), 
green (b), and blue (c) laser light, meaning that the proposed low-cost setup would
provide information for classification.
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After having promising data from the first observation, we analyzed the effects of 

particle size, refractive index, concentration, and wavelength of incident light on 

scattering patterns for samples consisting of melamine and polystyrene particles. 

Mixing the samples given in previous parts with a known percentage and 

investigating the mixtures’ scattering patterns are further steps of this study. Having two 

different microplastics in one sample affects the scattering patterns due to different 

refractive indices or sizes or concentrations of those microparticles. In this part, the 

relation between the individual scattering data of these particles and their combinations 

will be presented. 

If a water sample contains two different sizes of microplastics, their behavior and 

interactions can be more complex than the samples composed of same-sized particles. 

The coexistence of multiple microplastic sizes can have various implications for their 

dispersion, settling, and potential impacts on the environment [42] Larger particles would 

have a tendency to settle fast compared to the small ones and they would hit the small 

ones. This would have a change in settlement behavior of small particles in the mixture. 

Although particles with bigger sizes would be easy to filter or eliminate by membranes, 

if there are smaller ones in the same sample, they may continue to threaten the 

environment. 

Some key considerations when two different sizes of microplastics are present in a 

sample: 

Settling and Suspension: Larger microplastics are generally more likely to settle out 

of the water column due to their greater mass and sedimentation rates. On the other hand, 

smaller microplastics may remain suspended in the water for more extended periods. This 

difference in behavior can lead to spatial and temporal variations in microplastic 

distribution. 

Aggregation: Microplastics of different sizes may have different surface properties 

and charges, which can influence their tendency to aggregate with each other or other 

particles in the water. Aggregation can affect the overall size and buoyancy of the 

microplastic particles. 

Transport: Microplastics of different sizes may be transported differently by water 

currents. For example, larger microplastics may be more affected by currents closer to the 

water surface, while smaller ones could be dispersed more broadly in the water column. 
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Sampling and Analysis: Multiple microplastic sizes can complicate sampling and 

analysis procedures. Researchers may need specialized techniques to distinguish and 

quantify the different sizes accurately. 

Ecological Impacts: Different sizes of microplastics may pose different risks to 

aquatic organisms. Some species might readily ingest specific size ranges, leading to 

varied environmental impacts. 

Researchers conduct studies considering size distribution and concentration data to 

comprehensively understand the effects of multiple microplastic sizes in a water sample. 

Analyzing samples through microscopy, spectroscopy, or imaging can provide valuable 

insights into the behavior and potential impacts of different microplastic sizes in aquatic 

environments. 

It is crucial to continue researching and monitoring microplastics in water and water 

related environments i.e., marine life, to understand their behavior and potential 

environmental and human health consequences better. Determining the concentration of 

two different microplastics of varying sizes in an aqueous sample requires careful 

laboratory analysis. Several methods are commonly used to measure microplastic 

concentrations, each with advantages and limitations. A general outline of steps to 

determine the concentration of two different microplastics at different sizes [43–45]: 

Sample Collection: Collect water samples from the target location using appropriate 

sampling techniques and equipment. Ensure that the samples are handled carefully to 

avoid contamination. 

Sample Preparation: Depending on the analysis method, you may need to 

concentrate the microplastics from the water sample. This can be done through filtration, 

centrifugation, or density separation methods. 

Microplastic Extraction: Extract the microplastics from the concentrated sample 

using suitable chemical or physical methods. Typical approaches involve using chemical 

solutions to digest organic matter or floatation in saline solutions. 

Microscopy: Use microscopy to identify and count the microplastics visually. For 

this, you'll need to prepare slides or filters with the extracted microplastics and use a 

microscope to examine and identify them. Different stains or dyes may be used to enhance 

the visibility and differentiation of microplastics. 

Particle Sizing: Measure the size of individual microplastic particles using image 

analysis software or other particle sizing techniques. This step is essential to differentiate 

two types of microplastics present in the sample. 
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Quantification: Count and quantify the number of microplastics of each size 

category. The concentration can be expressed as the number of microplastics per unit 

volume (e.g., particles per liter) or per unit weight of sediment (e.g., particles per gram). 

Chemical Analysis (Optional): Depending on the research objectives, one should 

characterize the composition of the microplastics (e.g., polymer type) using Fourier-

transform infrared spectroscopy (FTIR) or Raman spectroscopy. 

Quality Control: Implement quality control measures throughout the analysis to 

ensure the accuracy and reliability of the results. This may involve using blank controls 

to check for contamination and repeating the analysis for validation. 

Choosing appropriate methods and conducting the analysis precisely is essential, as 

microplastics can be challenging to distinguish from natural particles or artifacts during 

microscopy. Researchers often use multiple techniques and replicate the analysis to 

ensure robust results. 

The selection of specific methods and protocols can vary depending on the research 

objectives, available resources, and the level of sensitivity required for detection. 

Consulting scientific literature and established protocols is crucial when conducting such 

analyses. 

Using scattering techniques to determine the concentration of different microplastic 

sizes in a water sample is innovative. Scattering refers to the interaction of light with 

particles, and it has been widely used in various fields, including environmental science 

and particle analysis [46–48]. However, applying scattering for microplastic analysis 

comes with specific challenges and considerations: 

Scattering Theory: Scattering measurements can provide valuable information 

about the size, shape, and optical properties of particles, including microplastics. 

However, interpreting the scattering data to determine the concentration of specific 

microplastic sizes requires calibration and validation against known standards or well-

established models. 

Polydispersity: In natural samples, microplastics are often polydisperse, meaning 

that they come in a range of sizes rather than a single size. Scattering techniques need to 

account for this polydispersity to accurately assess the presence and concentration of 

different microplastic size classes. 

Sample Complexity: Water samples contain various other particles and dissolved 

substances that can also contribute to scattering signals. Careful sample preparation and 

data analysis are necessary to isolate the scattering signals from microplastics. 
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Scattering Geometry: The scattering properties of microplastics depend on the angle 

and wavelength of incident light and the scattering angle. Determining the optimal 

scattering geometry for accurate measurement is critical. 

Instrumentation: Scattering analysis requires specialized instruments, such as laser 

diffraction analyzers or dynamic light scattering (DLS) devices, which may only be 

available in some laboratories. 

Sensitivity and Detection Limit: The sensitivity of the scattering technique must be 

sufficient to detect the relatively small microplastic particles in environmental samples. 

Additionally, the detection limit should be carefully determined to avoid false negatives. 

Validation: As with any analytical method, validation of the scattering approach 

against reference methods (e.g., microscopy) and known microplastic standards is crucial 

to ensure accuracy and reliability. 

While scattering techniques offer the potential for non-destructive and rapid 

analysis, they may still need to be more widely adopted for microplastic study as other 

more established methods like microscopy and spectroscopy. Researchers continuously 

explore and develop innovative approaches to enhance microplastic detection and 

characterization. 

In this thesis, the theory of scattering, derivation of equations, and proposed system 

are given in Chapter 2. Then, Chapter 3 explains the experimental setup, samples, image 

processing, and machine learning steps. Chapter 4 includes the effect of parameters, i.e., 

concentration, particle size, particle refractive index, and wavelength of incident light, on 

scattering. Machine learning integration and results are given in Chapter 5. The thesis 

finishes with Chapter 6, conclusions, prospects, and societal and sustainable 

contributions.  
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Chapter 2 

Background 

2.1 How to Measure Scattering? 

Scattering theory is a fundamental concept in physics that describes the behavior of 

waves and particles when they interact with a potential or an obstacle. It provides a 

mathematical framework to calculate the probability of a particle being scattered in a 

particular direction, as well as the phase shift of the scattered wave. It has applications in 

various fields, including nuclear physics, solid-state physics, astrophysics, and even 

medical imaging. In this context, understanding scattering theory is essential for anyone 

interested in exploring the behavior of waves and particles at the microscopic level. 

There are several types of scattering, each characterized by the nature of the incident 

wave and the target or scatterer involved. The most common types of scattering include: 

Rayleigh Scattering: This type of scattering occurs when electromagnetic radiation, 

such as visible light or radio waves, interacts with particles much smaller than the 

wavelength of the radiation [49]. Rayleigh scattering is responsible for the blue color of 

the sky, as well as the reddening of the sun at sunset. 

Mie Scattering: Mie scattering occurs when electromagnetic radiation interacts with 

particles comparable in size to the wavelength of the radiation [50]. This type of scattering 

is responsible for the white color of clouds, as well as the colors of certain gemstones. 

Figure 2.1 Optical scattering intensity levels at different angles dependent on 
particle size. 
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As presented in Figure 2.1, forward scattering becomes dominant when particle size 

increases [51]. Scattered light at lower degrees gets closer to zero-degree, making a 

brighter and smaller spot on the screen. 

Compton Scattering: Compton scattering occurs when high-energy photons, such 

as X-rays or gamma rays, collide with charged particles, such as electrons [52]. During 

this process, the photon loses energy and momentum while experiencing changes in the 

propagation direction. 

Rutherford Scattering: Rutherford scattering occurs when charged particles, such 

as alpha particles, interact with the nucleus of an atom [53]. During this process, the 

trajectory of the charged particle is deflected due to the electrostatic repulsion between 

the two charged particles. 

Elastic Scattering: Elastic scattering occurs when the energy and momentum of the 

incident particle are conserved during the scattering process [54]. This type of scattering 

is characterized by a change in the direction of the incident particle without any change 

in its energy or wavelength. 

Inelastic Scattering: Inelastic scattering occurs when the energy and momentum of 

the incident particle are not conserved during the scattering process [55]. This type of 

scattering is characterized by a change in energy, wavelength, or both.  

Scattering theory can be used to detect and characterize microplastics in water by 

analyzing how light scatters off the particles. When light passes through a medium, such 

as water, it interacts with particles in the medium, causing it to scatter in different 

directions. The scattered light can be measured and analyzed to determine the size and 

concentration of the particles in the medium. Scattering theory can be used in several 

ways to detect microplastics in water: 

Dynamic Light Scattering (DLS): DLS is a technique that measures the intensity 

and time dependence of scattered light from particles in a liquid to determine their size 

distribution [56]. Their size distribution can be determined by analyzing the scattered light 

from microplastics as a function of time by relating these measurements to Brownian 

motion.  

Static Light Scattering (SLS): SLS is a technique that measures the intensity of 

scattered light from a sample of known concentration and compares it to a standard curve 

to determine the concentration of the particles in the sample [57]. This technique can be 

used to quantify the concentration of microplastics in water. 
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Multi-Angle Light Scattering (MALS): MALS is a technique that measures the 

intensity of scattered light from a sample at different angles to determine the size 

distribution and concentration of the particles in the sample [58]. This technique can 

determine the size and concentration of microplastics in water. 

In this study, after investigation of settlement and having the same scattering angles 

for different concentrations, we assume that the movement of particles does not affect 

experiments. Therefore, minor effects of DLS can be ignored, and the system can be 

considered as an SLS concept.  

2.2 Derivation of Mie Theory 

The development of Mie theory is a significant milestone in the understanding of 

light scattering by particles. Mie scattering theory is a theoretical framework that 

describes the scattering of electromagnetic radiation by particles comparable in size to 

the wavelength of the radiation. This type of scattering is named after the German 

physicist Gustav Mie, who first developed the theory in 1908. The Mie theory is an 

extension of Rayleigh scattering theory, which is valid for particles much smaller than 

the wavelength of the radiation. It is particularly relevant in the study of atmospheric and 

oceanic optics, as well as in the field of materials science. 

Mie theory provided a rigorous theoretical framework for calculating the scattering 

and absorption of light by spherical particles of different sizes and refractive indices, 

irrespective of the size of the particles compared to the wavelength of incident light. 

Before Mie's work, a more straightforward scattering theory, known as the Lorenz-

Mie theory, was developed independently by Hendrik Lorentz and Gustav Mie's 

colleague, Arnold Sommerfeld [50,59,60]. This theory addressed the scattering of 

electromagnetic waves by a dielectric sphere and provided solutions for the case of 

Rayleigh scattering (when the particle size is much smaller than the wavelength) and 

geometrical optics (when the particle size is much larger than the wavelength). However, 

the Lorenz-Mie theory lacks a complete solution for particles of intermediate sizes. 

Gustav Mie, inspired by the work of Lorenz and Sommerfeld, expanded the 

theoretical framework and found exact solutions for the scattering of light by spherical 

particles of any size and refractive index. His approach used spherical harmonics and 

Bessel functions to solve Maxwell's equations for light scattering from a sphere 

[49,60,61]. The resulting solution, now known as Mie theory, provided a complete 
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description of light scattering by particles with sizes comparable to the wavelength of 

light. 

Mie's seminal work, "Beiträge zur Optik trüber Medien, speziell kolloidaler 

Metallösungen" (Contributions to the optics of turbid media, specifically colloidal metal 

solutions), was published in 1908 [62,63]. In this work, Mie presented the complete 

mathematical formalism and derived explicit expressions for the scattering and absorption 

cross-sections, phase functions, and extinction coefficients of spherical particles. 

Initially, Mie's theory received little attention in the scientific community due to the 

complexity of mathematical solutions. Moreover, the theoretical calculations were 

laborious, and the lack of computational tools in that era hindered its immediate practical 

applications. As a result, the full significance of Mie theory was not immediately 

recognized. 

Mie's theory remained largely overlooked until the 1950s, when researchers started 

recognizing its potential significance for various fields, including atmospheric physics, 

astronomy, and materials science [62–64]. With the advent of computers and numerical 

methods, it became feasible to calculate Mie scattering for particles of different sizes and 

refractive indices, making it a powerful tool for experimental data interpretation and 

analysis. 

As the use of Mie theory became more widespread, it was integrated with 

experimental techniques to characterize particles in various applications. For instance, it 

found application in particle sizing and characterization of aerosols, droplets, colloids, 

and biological particles [65–67]. 

Over time, modifications and extensions to Mie's theory were developed to account 

for different particle shapes, such as spheroids and cylinders, and to include additional 

factors like multiple scattering effects and particle ensembles in complex media. 

Today, Mie theory continues to be a fundamental tool for understanding light 

scattering by particles. It remains as a crucial component of modern light scattering 

techniques used in diverse fields, including atmospheric science, remote sensing, 

environmental monitoring, and materials characterization. Its enduring relevance speaks 

to the profound impact of Gustav Mie's groundbreaking work on light scattering theory. 

Specifically, Mie scattering is a theoretical model that describes light scattering by 

spherical particles, such as dust, water droplets, and biological cells [68–71]. While this 

theory is a powerful tool for understanding light scattering in many physical and 
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biological systems, there are several limitations to the model that should be considered 

[29,72]: 

Size and shape: Mie scattering only applies to spherical particles with a uniform 

refractive index.  

Size parameter: Mie scattering is most accurate for particles whose size is much 

larger than the wavelength of light being scattered. It may not be a good approximation 

for particles smaller than the wavelength of light or larger than several wavelengths. 

Homogeneity: Mie scattering assumes that the medium in which the particles are 

suspended is homogeneous and isotropic. It may not accurately describe the scattering 

behavior if the medium is not homogeneous or if there are gradients in the refractive index 

or density. 

Multiple scattering: Mie scattering assumes that the scattered light only undergoes 

a single scattering event. In reality, light can experience multiple scattering events, which 

can cause deviations from the Mie scattering predictions. 

In Mie scattering theory, the scattered light is not uniformly distributed in all 

directions as opposed to Rayleigh scattering. Instead, the scattered light is concentrated 

in several directions, known as Mie resonances. These resonances are determined by the 

scattering particle's size and refractive index and the incident radiation's wavelength [60]. 

The theory has applications in a wide range of fields, including meteorology, remote 

sensing, and the design of optical devices. 

This part gives the detailed derivation of Mie theory equations [49,50,60,73,74]to 

provide a complete understanding of the theory. Spherical coordinates of point P will be 

denoted as ( ,,) with the usual meaning of the symbols. The vector OP which starts 

from the center of the sphere and goes through the radius and has the rectangular 

components (,, ) or (, , )  is denoted by r.  

The scalar wave equation, 

∆ +  = 0 (2.1) 

where is complex refractive index ( =   +  and the imaginary part is ignored) 

of the particle, is separable in these coordinates and has elementary solutions of the 

following type: 

 =



 
()(). (2.2) 
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Here,  and  are integers, ( ≥  ≥ 0), the first factor may be either a cosine or a 

sine; the second factor is an associated Legendre polynomial; the third factor may be 

spherical Bessel function defined by 

() = 


2
/() (2.3) 

in terms of ordinary Bessel functions. The general solution of the scalar wave equation is 

a linear combination of such elementary solutions. 

By virtue of formulae ∇ =  and ∇ = −, the field vectors E and H in 

a homogeneous medium satisfy the vector wave equation. 

∆ +  = 0. (2.4) 

Elementary solutions of this equation may be found from the following theorem. If 

 satisfies the scalar wave equation, the vectors  and  defined by 

 = curl(), (2.5) 

 = curl, (2.6) 

satisfy the vector wave equation and are, moreover, related by 

 = curl. (2.7) 

A simple substitution shows that, if  and  are two solutions of the scalar wave 

equation and ,, and are the derived vector fields, the Maxwell equations 

∇ =  and ∇ = − are satisfied by   

 =  +  
(2.8) 

 = (− + ) 
(2.9) 

The full components of  and  are 

 = 0,          =
()


+ , (2.10) 
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 =


()

()


,         =





()


, (2.11) 

 = −




()


,       =



()

()


 (2.12) 

Starting with Maxwell’s equations, an incident plane wave of electromagnetic 

radiation with a known wavelength and polarization interacts with a spherical particle. 

The incident wave (of amplitude 1) is described by Eqs. 2.13-2.14. 

 = 
 

 

(2.13) 

 = 
 

 

(2.14) 

where  and  are unit vectors along the x- and y-axes,  is the propagation constant 

(= wave number) in vacuum and  is the frequency. Assume that the particle experiences 

an electric field due to the incident wave, which causes it to scatter radiation. A collection 

of outgoing spherical waves with various scattering angles and polarization components 

represents the scattered wave. By selecting  and  as the Eqs. 2.15-2.16, the same fields 

are expressed using the same format. 

 = (−)




2 + 1

( + 1)

()() 

(2.15) 

 = (−)




2 + 1

( + 1)

()() 

(2.16) 

where  is the spherical Bessel function derived from the Bessel function of the first 

kind, /. The next step is applying the proper boundary conditions to the spherical 

particle's surface to maintain the continuity of the electric and magnetic fields. These 

conditions include that the electric and magnetic fields' tangential components are equal 

at the particle's surface. 

On deriving the tangential field components, the following functions of the scattering 

angle, which are Legendre polynomials, appear: 

() =
1



() =

()


 (2.17) 
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() =




() = .() − (())/ (2.18) 

The boundary conditions of  × ( −) = 0and  × ( − ) = 0 are used 

to find the undetermined coefficients, where  is normal to the boundary surface. The 

field components  and  contain the expressions  and  ()/. The 

components  and  contain  and  ()/. 

These four expressions must have equal values at either side of the boundary 

surface,  = , where  is the radius of the sphere. The equations are simplified by 

defining a new set of functions that differs from spherical Bessel functions by an 

additional factor, . The Ricatti-Bessel functions, Ψ, and  are defined by the half-integer-

order Bessel function of the first kind as in Eq. 2.19 and Eq. 2.20, respectively, where 

Ψ() = () = (/2)//() (2.19) 

() = ℎ
()() = (/2)//

() () = Ψ() + χ() (2.20) 

χ() = −() = −(/2)//() (2.21) 

/() is the half-integer-order Hankel function of the second kind and X() 

is defined by half-integer-order Bessel function of second kind (/()) as presented 

in Eq. 2.21. 

The argument,  =  = (2π)/λ. Multiple components are formed from the 

scattered wave. Electric or magnetic dipole, electric or magnetic quadrupole, and other 

types of electromagnetic radiation scattering are all represented by distinct multipole 

terms. 

[]: Ψ() − () = Ψ() (2.22) 


1



()


: Ψ′() − 



() = Ψ


, (2.23) 

[]: Ψ() − () = Ψ, (2.24) 


()


: Ψ′() − 



() = Ψ


. (2.25) 

By taking into account the interactions between the incident and scattered waves, 

scattering coefficients for the multipole expansion are calculated. This entails resolving 
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an equation system that fulfills the boundary conditions. On eliminating  from the first 

pair and  from the second pair of equations, the results are: 

  

 =
Ψ′Ψ() − ΨΨ′()

Ψ′() − Ψ′()
 (2.26) 

 =
Ψ′Ψ() − ΨΨ′()

Ψ′() − Ψ′()
 (2.27) 

where  is the refractive index of the medium. For  and , the Eq. 2.28, is found 

as common numerator with the same respective denominators. 

ψ′()() − ψ()

() =  (2.28) 

The scattered wave 

 = −









2 + 1

( + 1)

() (2.29) 

 = −









2 + 1

( + 1)

() (2.30) 

The resulting field components can be written at once in the form:  

 =  −



(), (2.31) 

− =  −



(), (2.32) 

where () and () are angular intensity functions as: 

() = 
2 + 1

( + 1)





{() + ()}, (2.33) 

() = 
2 + 1

( + 1)





{() + ()}. (2.34) 
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Differential scattering cross-sections are defined as given in Eq. 2.35 and Eq. 2.36. 

′ =


4
|()| 

(2.35) 

′ =


4
|()| 

(2.36) 

where the subscription  refers to vertically polarized incident light and vertically 

polarized scattered light with respect to incident scattering plane and as similar HH refers 

to horizontally polarized incident light and horizontally polarized scattered light. The 

other versions, VH and HV, have significantly smaller contributions that are generally 

ignored [61,73,74]. 

Scattering cross-sections are determined for various scattering processes, such as 

the total scattering cross-section, the absorption cross-section, and the scattering phase 

function. These numbers reveal the radiation's polarization, angular dispersion, and 

intensity. One can examine the scattering behavior for various particle sizes, refractive 

indices, and incident wave qualities after determining the scattering coefficients and cross 

sections. This analysis aids in understanding the optical characteristics and scattering 

patterns of the spherical particles [61,73,74]. 

2.3 Proposed System and Developments 

Considering the consistent conditions of the current devices, such as huge device 

dimensions, high costs, maintenance requirements, and alignment issues, we need 

portable, low-cost, small setups due to rapidly increasing global microplastic problems. 

As stated in the introduction chapter, it is urgently needed to take precautions at the origin 

of those pollutants. Once it is possible to detect and classify those particles, it would be 

easier to define their source and define global measures to decrease the level of 

microplastic pollution.  

In addition to micro size, with minor adjustments, it is possible to detect nano-size 

particles with the same setup. A thin lens to focus the light on a much smaller area and 

look for just a couple of particles instead of high concentrations and zoom the images 

taken at the laboratory would open another window to research on nano plastics.  
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Furthermore, once the appropriate solvents, concentrations, and incident light are 

provided, it would be possible to investigate different types of particles. This point will 

be stated again as future prospects part of this thesis.  

In Figure 2.2, the illustration of the experimental setup is presented. Directing a 

laser beam onto samples in a cuvette through an iris and neutral density filter is the part 

before scattering occurs. When light hits the particles in the cuvette, it scatters, and the 

pattern falls onto the screen behind. Having particles at different sizes, refractive indices, 

and concentrations and using different wavelength of incident lights results in different 

scattering patterns. Thus, by a cost-effective setup, unique scattering patterns are 

acquired.  

 
Figure 2.2 Illustration of the experimental setup, (a) light source, (b) iris, (c) neutral 
density filter, (d) cuvette holder and cuvette, and (e) graded white screen, (inset) 
azimuthal and scattering angles. 

Once the raw images are collected from the setup (Figure 2.3(a)), we crop them and 

obtain the upper right quartile as in Figure 2.3(b). This is possible because of spherical 

particles that scatter light symmetrically, so we work on this quarter only to decrease 
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computational cost. Next, we convert the image into grayscale (Figure 2.3(c)). 

Comparison of red, green, and blue images is possible when we analyze them in the gray 

version. Then, we draw azimuthal lines from the center through the outer rings to get 

scattering information. Again, symmetry gives each line the same pixel values on it. To 

decrease noise and error, we take the average values on that azimuthal line (Figure 2.3(d)), 

and the scattering information is ready to plot as given in Figure 2.3(e). 

 
Figure 2.3 Representation of image processing flow from the raw image to the 
scattering pattern. 
 

The peaks on that scattering line represent bright interference rings, and the gaps 

are destructive combinations. Having different samples mean having different patterns 

and different scattering lines. After all those steps, different sets of peak angles are aimed 

to use as random forest algorithm inputs. 
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Chapter 3

Experimental Work

3.1 Sample Preparation

Investigating the impact of material type (particle's refractive index) and particle 

size is possible using commercially available microparticles made of two different 

materials, melamine (Me) and polystyrene (PS), at diameters of 8 μm and 10 μm. In order 

to examine the relationship between particle number and scattering behavior, we also 

generated samples at various concentrations. 

Commercially available 8 μm ± 100 nm-sized melamine resin (Me8) (95523-Sigma 

Aldrich), 8 μm ± 97 nm-sized Polystyrene (PS8) (84192-Sigma Aldrich) and 10 μm ±

110 nm-sized Polystyrene (PS10) (72986-Sigma Aldrich) microspheres, were used in the 

experiments to test the match between the predictions of Mie theory that we calculated 

numerically and the experimental results. Microscope images of Me and PS spheres are

given in Figure 3.1.

Figure 3.1 40x-zoomed microscope images of (a) Me8, (b) PS8, and (c) PS10
particles. Scale bar: 50 μμm.

Samples were prepared at the concentrations from 0.05 fM up to 3.00 fM by adding 

them into ultra-pure water using a micropipette and kept in vials, Figure 3.2. The samples 

were shaken using a vortex before the experiments to make the solution much more 

homogeneous and by hand just before the measurements one more time. 
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Figure 3.2 Samples prepared at different concentrations. 

In our experiments, the safe time limit was about 5 minutes. The sinking of the 

particles deeper in the cuvette and around 5% decrease in scattering intensity was 

observed after 5 minutes. Our measurement time for each sample was much shorter than 

this limit. In addition, 0.05 - 3.00 fM range corresponds to 3x104 – 180x104 particles/mL, 

higher than the values studied in the literature. However, the sizes of the particles reported 

in the literature are about 10-100 times bigger, significantly increasing the scattering 

cross-section. Considering this size difference, we believe that it is reasonable to have 

0.05 fM - 3.00 fM concentration range in our experiments for the particle sizes we are 

interested in [75]. 

There is an uncertainty in the literature regarding the refractive index of Melamine 

particles [76–78]. Thus, we studied the range given in the literature, 1.530-1.922, for the 

red wavelength range. The most satisfying match with the Mie theory and experiments 

was obtained as 1.79 at 656.3 nm. We used refractive indices of 1.89 and 1.96 for 514.9 

nm and 403.8 nm, respectively. 

3.2 Experimental Setup 

For the measurements, at room temperature (22 ºC), the laser power was kept 

between 150 - 170 μW for collimated blue, green, and red lasers emitting light at 403.8 

nm, 514.9 nm, and 656.3 nm, respectively (CPS405, CPS520, and CPS650F-

THORLABS).  The beam was directed through an iris to squeeze the beam radius. Just 

after the iris, a neutral density filter was used to adjust the laser power to the same level 

during the experiments. A cuvette holder was 3D printed to keep the cuvette in the 

optimum orientation. Finally, a graded white screen was placed to have the scattering 

pattern, as presented in Figure 3.3. 
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Figure 3.3 Experimental setup, (a) light source, (b) iris, (c) neutral density filter, (d) 
cuvette holder and cuvette, (e) graded white screen, and (f) camera module.

Subsequently, each sample was placed into cuvettes, and the scattering patterns of 

the laser light at different wavelengths from these particles fell on a screen set 6.5 cm 

apart from the cuvette. 200 images of these scattering patterns were taken in a dark 

environment by a CMOS camera (Raspberry Pi Focus Adjustable Camera Module-

2592x1944 pixels), -100 ms shutter speed and 20 ms exposure time- controlled by 

Raspberry Pi 4 - 4GB RAM. In total, 1800 images are recorded for processing.

3.3 Image Processing

Recorded images required following image processing steps to obtain some digital 

data to be used in machine learning. For each sample, 200 images were taken, and 

processing individually was not possible due to the high level of noise. 

Figure 3.4 (a) Raw scattering image of Me8 particles excited by a green laser, (b) 
cropped image, (c) gray-scale image, (d) data lines on scattering image, (e) average 
scattering behavior of 86 lines (5º:1º:90º) on 1.50 fM 8 μm Me particles. 
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The images of the scattering patterns (Figure 3.4(a)) were analyzed numerically. To 

minimize noise, the average of 200 images was calculated for each sample’s scattering 

pattern. Next, as illustrated in Figure 3.4(b-c), all the images were cropped and converted 

to grayscale. To decrease the computational cost, 86 lines were defined with 1º azimuthal 

angle increments between 5º and 90º starting from the center towards the outer regions 

on the upper-right quartile of the images as given in Figure 3.4(d), (Figure 3.4(d), presents 

only 10º azimuthal increment for better visualization). As the next step, the average pixel 

data on all those 81 lines was taken to decrease the noise level on measurements. Finally, 

azimuthal angular scattering intensity was obtained, as presented in Figure 3.4(e). 

However, it was still noisy to identify peak angles. Therefore 2nd-degree polynomial was 

fitted to the experimental data around each peak because fitting a polynomial with an 

exact high degree, i.e., 25th, was not an appropriate match for every scattering data point. 

We assumed that fitting a second-degree polynomial would provide consistent 

methodology during the analysis. Therefore, using an angle range from the left and right 

side of each peak, we fit a second-degree polynomial and used the angle of the peak point 

as experimental peak angles. 

3.4 Random Forest Algorithm  

Random Forest is a popular machine-learning algorithm for classification and 

regression tasks. It is an ensemble learning method that creates a set of decision trees and 

combines their predictions to make a final prediction [79–81]. 

 
Figure 3.5 Structure of random forest algorithm [82]. 
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The algorithm works by randomly selecting a subset of the data and a subset of the 

features for each tree in the forest. Then, a decision tree is built using these subsets of 

data and features. The process is repeated multiple times, resulting in a forest of decision 

trees, as presented in Figure 3.5.When predicting a new data point, each tree in the forest 

independently makes a prediction, and the final prediction is made by taking the majority 

vote of all the trees in the forest. 

Random Forest has several advantages over a single decision tree. It is less prone 

to overfitting, as the individual trees in the forest are trained on different subsets of the 

data and features. It can handle high-dimensional data and is relatively easy to use, as it 

requires a few hyperparameters to be tuned. 

Given the inherent numerous scatterings of the spheres in liquid, the random forest 

algorithm offers the opportunity to categorize the measured scattering data, which would 

not be a simple operation to manage theoretically. Random forest was utilized in this 

investigation because of its straightforward design and repeatable outcomes. The 

correspondence between experimental findings and numerical solutions, explained in 

detail in the following chapters, provided the opportunity to use numerical solutions for 

further analysis. This match made it possible to apply random forest easily for data 

preparation. This numerical solution methodology produced the data set, including the 

incidence wavelength, particle size, material type, and bright ring angles used to run the 

algorithm. A test set of data was created from 20% of all measurements. The remaining 

part was used to train the random forest algorithm.  

The inputs for classifying material types and particle sizes were wavelength of 

incident light and bright ring angles. The concentration and scattering intensities were not 

required for this stage because it was discovered during the image analysis that the peaks 

were at the same angle for a specific material type and size. However, we are aware that 

as sphere concentration in samples grew, the total scattering intensity also had to rise. 

Overall, Random Forest is a robust and widely used algorithm in machine learning 

that can be used for various tasks, such as classification, regression, and feature selection. 
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Chapter 4 

Effects of Concentration, Particle Size, 
Material, and Wavelength of Incident 
Light 
 

There are parameters affecting scattering during the investigation of scatterers. The 

concentration of particles, particle size, refractive index, material that particles are made 

of, and wavelength of incident light. In this chapter, the effects of those parameters will 

be investigated, and their relevance to this study will be discussed. Experimental and 

theoretical results will be given. For theoretical results, equations were embedded in a 

MATLAB code, which is given in Appendix A. 

4.1 Effect of the Sample Concentration on Scattering 

The intensity and pattern of Mie scattering can be affected by the concentration of 

the scattering particles. At low concentrations, Mie scattering is typically linearly 

proportional to the concentration of the scattering particles. This means that if the 

concentration of the scattering particles is doubled, the intensity of the scattered light will 

also double. However, the relationship between Mie scattering and particle concentration 

at high concentrations becomes more complex. 

At high concentrations, the particles can interact with each other, leading to a 

phenomenon known as multiple scattering. Multiple scattering can cause the scattered 

light to be redirected and interfered with, resulting in a more complex scattering pattern. 

In extreme cases, the numerous scatterings can lead to a phenomenon known as optical 

turbidity, where the scattered light is so intense that it can obscure the light source and 

reduce the visibility of the scattering particles. 
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Figure 4.1 Scattering images of Me8 particles by red, green, and blue lasers with 
increasing concentration.
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In Figure 4.1, it is presented that the scattered light intensity has a direct relation 

with number of the particles in samples which is called concentration. The effects of 

concentration on Mie scattering can range from a linear increase in scattering intensity at 

low concentrations to complex multiple scattering and optical turbidity at high 

concentrations.

It was explained in Chapter 1 that forward scattering is dominant in Mie scattering. 

Considering the equations in Chapter 2, when the number of particles increases, the 

scattered light at close to zero angles joins the zero-degree scattering, and forward 

scattering increases the intensity. Therefore, increasing the concentration is expected to 

result in brighter and wider centers on images. In Figure 4.2, scattering of (a, b, c) Me8, 

(d, e, f) PS8, and (g, h, i) PS10 particles are presented. As expected, scattering intensity 

gets higher with increasing concentration from 0.05 fM to 3.00 fM. In this figure, (a, d, 

g), (b, e, h), and (c, f, i) represents red, green, and blue light, respectively.

Figure 4.2 Scattering intensity vs. concentration change for Me8 (a, b, c), PS8 (d, e,
f), and PS10 (g, h, i) materials by red (a, d, g), green (b, e, h), and blue (c, f, i) lasers.

In addition to the concentration, the settlement of the particles is also important. As 

discussed in previous chapters, particles are shaken by vortex before experiments and by 

hand just before the measurements. However, due to gravity, particles move towards the 
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bottom of the cuvettes during the photoshoot. If those particles go down fast, there will 

be less than the targeted concentration, leading to less scattering intensity. Less scattering 

intensity may have two meanings. First, particles move down too fast, and we lose 

information; second, the sample concentration is less than targeted. To investigate this 

issue, instead of 200 images per sample, 800 images were taken consecutively. Grouping 

them as 100-image packages and plotting their scattering information on the same graph 

with the closest higher and lower concentration samples would give us information about 

the reliability of our measurement. In Figure 4.3, gray-scale images belonging to an 

average of 100 consecutive images of the same sample. As is not possible to conclude 

from raw images directly, so we performed image processing steps and obtained 

scattering lines for those image packages. 

Figure 4.3 Scattering patterns for 2.00 fM PS8 particles for consecutive 100 images.
(a) 1-100th, (b) 101-200th, (c) 201-300th, (d) 301-400th, (e) 401-500th, (f) 501-600th, (g) 
601-700th, and (h) 701-800th.

Figure 4.4 Scattering intensity change by time for PS8 particles excited by a green 
laser. 
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As given in Figure 4.4, even the last package of 100-image (701-800), meaning that 

the lowest scattering intensity among the groups has higher scattering intensity than the 

closest lower one, 1.25 fM. Therefore, settlement is not an issue in our measurements.

Scattering intensity is important while determining the concentration of particles. 

The area under scattering lines gives information about how much light is scattered, 

which is directly related to the concentration. We calculated the areas under scattering 

lines for three different measurements and plotted that data. Then, fitting a curve as a 

calibration curve provided information about the amount of scattered light scattered vs 

concentration. By using this curve, it is possible to obtain concentration information of a 

sample by using the amount of scattered light. After that point, it is just an image 

processing step to calculate the value for an unknown concentration to define its value. 

Figure 4.5 Total scattering intensity vs concentration change for Me8 (a, b, c), PS8 
(d, e, f) and PS10 (g, h, i) materials by red, green, and blue lasers.

As presented in Figure 4.5, there are different calibration curves for different 

particle sizes, wavelength of incident light, and refractive index. (a, b, c) represents Me8, 
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(d, e, f) represents PS8 and (g, h, i) represents PS10 particles. Three columns in figure 

present red, green, and blue light, respectively. It is known that scattering is dependent on 

all those parameters. If there are enough different particles and lasers, a general equation 

can be generated depending on particle size, refractive index, concentration, power, and 

wavelength of incident light.

To sum up, after the experiments, we observed that, as expected, forward scattering 

gets dominant with increasing concentration. In addition, the same sample scatters at the 

same peak angles, interference rings, and this provides an opportunity to use those 

interference ring angles specifically for that material identification. In our concentration 

range, because the lines go saturation, it shows that we already reached the limit of our 

setup to determine the concentration of the samples. 

4.2 Effect of Particle Size on Scattering

In Mie scattering, the scattered light depends strongly on the particle size and the particle's 

refractive index. As presented in Figure 4.6, for bigger particles, peaks of scattered light 

moves through the zero angle and make the forward scattering dominant. Although figure 

represents only first four peak angles, it can be estimated that for bigger particles, there 

are more peak points than smaller particles. 

Figure 4.6 Angular distribution of the first four scattering intensity peaks to the 
particle size as calculated using Mie theory. The particle size was varied between 5-
100 μm in water and 514.9 nm incident light beam in MATLAB, (inset) experimental 
image showing peaks (greater than 5º) for 8 μm.

The size of the particle determines the angle and intensity of the scattered light. In 

general, smaller particles scatter light more in the forward direction, while larger particles 
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scatter light more in the backward direction. This is because larger particles diffract light 

more, causing it to scatter in multiple directions. 

 
Figure 4.7 Total scattering intensity vs. particle size change for Me8 particles by 
green laser. 

In the same medium (water) and using the same wavelength of the incident light, 

the effect of particle size was investigated to study how angular scattering changes based 

on numerical calculations. In Figure 4.7, the peaks of the scattering angles as a function 

of particle size were presented for the green light (at a wavelength of 514.9 nm) and water 

(n=1.3344). The particle diameter increases from 5 to 100 μm with a step size of 1 μm. 

For a given wavelength of light, there is a characteristic size of particle that scatters the 

most light in the forward direction, called the Mie scattering peak. The Mie scattering 

peak is shifted to smaller angles for shorter wavelengths of light. 

In laboratory experiments, to be able to monitor the effect of particle size, PS8 and 

PS10 particles were used. 8 and 10 μm size of those particles provided information about 

particle size parameters when other parameters, i.e., wavelength of incident light, particle 

refractive index, and concentration, were constant. As expected, forward scattering 

became dominant when the size of Polystyrene particles increased. More peaks at the 

same range of scattering angle (5- 21 degrees) present that the scattered light at small 

angles got closer even combined with zero-degree scattering. Thus, as given in Figure 

4.8, 10 μm-size PS particles have a brighter spot at the center and a brighter interference 

ring at the same range of images.  
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Figure 4.8 Scattering patterns of PS8 (a, c, e) and PS10 (b, d, f) particles at 1.50 fM 
concentration to monitor particle size effect by 656.3 nm, 514.9 nm, and 403.8 nm 
lasers.

In summary, the particle size significantly affects Mie scattering, with smaller 

particles scattering more light in the forward direction. In comparison, larger particles 

scatter more light in the backward direction. The Mie scattering peak is shifted to smaller 

sizes for shorter wavelengths of light.

4.3 Effect of Particle Refractive Index on Scattering 

The refractive index of particles affects the scattering pattern because it determines 

the phase shift of the scattered wave relative to the incident wave. This phase shift is 

caused by the change in the speed of light as it passes from one medium (air) to another 

(the particle).

In Figure 4.9, the relation between refractive index of the particle and scattered light 

intensity is investigated. In (a, c, e), the transition of scattered light intensity and (b, d, e) 

the peak angles are presented. As expected, while red laser (a, b) has wide but low number 
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of peaks, the blue (e, f) has many but narrower peaks. Also, increasing the refractive index 

of the particle creates more peaks but decreases the intensity of each peak of scattered 

light. 

Figure 4.9 Scattering intensities vs. particle refractive index for red, green, and blue 
lasers (a, c, e), locations of first four peak angles vs. particle refractive index for red, 
green, and blue lasers (b, d, f).

In the laboratory, Me8 and PS8 particles were used to investigate the effect of 

particle refractive index. This is one of the key points of this study -it is worth repeating-

there is a lack of study in terms of the same size and shape but material of particle in the 

literature. Theoretically, if a particle has a higher refractive index value than those with a 

lower refractive index, it scatters the light with wider angles. Therefore, fewer bright 
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interference rings are observed at the same distance from the center of an image. As 

presented in Figure 4.10, the left column (Me8 with lower refractive index) has more 

rings than the right one (PS8 with higher refractive index). It should not be forgotten to 

compare the refractive indices at proper wavelengths due to dispersion. 

Figure 4.10 Scattering patterns of Me8 (a, c, e) and PS8 (b, d, f) particles at 1.50 fM 
concentration to monitor refractive index effect by 656.3 nm, 514.9 nm, and 403.8 
nm lasers.

In summary, the refractive index of particles plays a crucial role in Mie scattering 

by influencing the scattering angle and polarization of the scattered light.

4.4 Effect of Incident Light’s Wavelength on Scattering 

The scattered radiation depends on the particles' size, shape, and refractive index, 

as well as the incident wavelength of the radiation. The size parameter, defined as the 

ratio of the particle radius to the wavelength of incident light, determines the scattering 
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behavior of Mie scattering. As the size parameter increases, the scattering pattern changes 

from forward to backward scattering.

Generally, the scattering strongly depends on the wavelength of incident light for 

small particles (size parameter << 1). When the size of the spherical particle is comparable 

to the wavelength of the incident radiation, the scattered light undergoes constructive and 

destructive interference, leading to complex scattering patterns. This phenomenon is 

known as resonance scattering. The resonance wavelength, at which the scattering is the 

strongest, depends on the size and refractive index of the particle.

Figure 4.11 Calculated angular distribution of the scattering cross-section of 8 μm-
sized particles in water for three different wavelength of incident lights. The 
triangles represent the locations of the scattering peaks.

As the wavelength of incident light increases, the scattering becomes less sensitive 

to the size of the particle, and the scattering pattern becomes more uniform as presented 

in Figure 4.11. This is because the effect of resonance scattering diminishes as the particle 

size becomes small compared to the wavelength of the incident radiation. In this case, the 

scattering pattern becomes more similar to Rayleigh scattering, which occurs when the 

size of the particle is much smaller than the wavelength of the incident radiation.

It is the starting point of this study in the laboratory. We were expecting that 

different incident lights (lasers) needed to provide different scattering patterns, and it had 

to be observable. In addition, different sizes of the same particle, and different particles 

at the same size were aimed to result in different images. All those expectations occurred 

successfully. We could observe those different patterns using a cost-effective setup of a 

few hundred euros. In addition, three different sample sets and measurements at different 

times provided consistent results. 
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Figure 4.12 Scattering patterns of Me8 (a,b,c), PS8 (e,f,g), and PS10 (i,j,k) particles 
at 1.50 fM concentration and their scattering data to monitor wavelength of incident 
light effect by 656.3 nm (d), 514.9 nm (h), and 403.8 nm (l) lasers.

In Figure 4.12, it can be seen that for Me8 particles (a, b, c) we see a smaller number 

of peaks than PS8 particles (e, f, g) where Me8 has higher refractive index than PS8. Also, 

PS10 (i, j, k) have narrower peaks and higher intensities than PS8 (e, f, g) as a result of 

bigger size. All those patterns show the consistency between theoretical expectations and 

experimental results.

In summary, the wavelength of incident light affects Mie scattering by determining 

the resonance wavelength, which is the wavelength at which scattering is the strongest. 

As the wavelength increases, the scattering becomes less sensitive to the size of the 

particle, and the scattering pattern becomes more uniform.

4.5 Analysis of Mixture of Particles in One Sample

As a further step, melamine and polystyrene particles were mixed at known

concentrations to investigate and characterize multiparticle samples. This provides a 

closer approach to real-life cases. 

Me8-PS8, Me8-PS10, and PS8-PS10 pairs were mixed at a 1:1 ratio for 0.50 fM, 

1.00 fM, and 1.50 fM concentrations. In total, nine combinations for each wavelength of 
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incident light were investigated for each pair. In addition, UPW measurements were done 

to observe the light scattering in a particle-free environment. The aim was to reveal the 

relationship between the individual scattering of two samples and their combination. 

In this part of the study, we experienced several challenges. First, some of the 

particles stuck to each other and created a bigger form which caused a zero-angle 

dominant scattering and less intensity at wider angles. This was an expected result 

because, as explained in part 4.2, forward scattering gets dominant for bigger particles, 

and a lower light intensity is observed at wider angles compared to the smaller particles’ 

scattering, as presented in Figure 4.13.

Figure 4.13 Scattering of Me8 and PS8 particles at 1:1 ratio for 0.50 fM Me8 with 
0.50 fM PS8, 1.00 fM PS8, and 1.50 fM PS8 concentrations by blue light. 

Another problem was revealing the relation between individual scatterings and the 

combination. Even though there were only two different types of particles regarding the 

size or material type, the scattering of the mixture could not be related to the individual 

scattering information as given in Figure 4.14, a mixture of two particles (a) with different 

sizes, (b) same size but composed of different materials.
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Figure 4.14 Scattering of (a) PS8 and PS10 particles at 1:1 ratio for 1.50 fM PS8 with 
1.50 fM PS10, (b) Me8 and PS8 particles at 1:1 ratio for 1.50 fM Me8 with 1.50 fM 
PS8 by green light.

This behavior may occur because of the size distribution, homogeneity, or multiple 

scattering. Here, as we assume, if we have particle size distribution at a broader range,

more than two different size values, instead of bright peak angles, we will observe a 

cloudy pattern with scattered light but no peaks.

At this point, compared to the particle-free, UPW scattering patterns, we observe a 

clear difference where we can talk about the existence of the microplastics in a sample. 

However, we cannot characterize this with a low-cost setup, as presented in Figure 4.15.

There may be need for more detectors, lenses to change focus etc. 

Figure 4.15 Scattering of Me8 and PS10 particles mixture at 1:1 ratio for 1.50 fM 
Me8 with 1.50 fM PS10 and ultra-pure water (UPW) by red light.
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Chapter 5 

Machine Learning Integration 
 

Previous chapters showed that the equations to calculate scattering is difficult and 

complex for hand calculations. Thus, they were embedded in numerical solvers. However, 

for rapid analysis and ease of use, integration of machine learning into the setup would 

dramatically increase the performance of this study.  

Using the equations, peak angles (bright interference ring angles) are obtained from 

the theory. In real-life applications, instead of the inputs we use to get those peak angles, 

we have the output, the pattern of scattering. So, reverse engineering is needed for the 

theoretical calculations. In this study, we aimed to show the match between theory and 

experimental results limited by two materials, Me and PS. Furthermore, only 8 and 10 

μm-sized particles were used to prepare samples for investigation. There will be much 

more options in real-life applications.  

In Figure 5.1, it is presented that the match between theory and experimental results 

is satisfying—slight differences between those results provided the opportunity to create 

a dataset for further developments.  
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Figure 5.1 Differences between Me8 (a), PS8 (b), and P10 (c) particles at 1.50 fM 
concentration to monitor consistency between experiments and theory by 656.3 nm, 
514.9 nm, and 403.8 nm lasers.

To check the consistency of experimental results at different times (at least 3 

months), we prepared sample sets and got scattering images. Once those experiments 

were completed, we calculated standard deviations between them and got their average 

to decrease experimental error and use as the final experimental results. Then, mean 

absolute percentage error and root mean square errors were calculated between the theory 
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(MATLAB) and experimental results, as shown in Table 5.1. Statistical t-tests showed 

that there is no meaningful difference between those data.  

Table 5.1 Matching of theoretical and three experimental peak angles (P1, P2, P3, 
P4) with standard deviation and error calculations for red (R), green (G), and blue 
(B) lasers. 

Theory 
Experiment            

(170 μW) 
Experiment         

(150 μW) 
Experiment        

(160 μW) 

R G B R G B R G B R G B 

M
e8

 

P1 7.2 5.7 7.8 7.6 5.9 NA 7.4 5.7 NA 7.4 5.7 NA 

P2 12.2 9.6 10.1 12.8 9.8 10.2 12.7 9.7 10.1 12.8 9.9 10.2 

P3 18.5 15.8 13.6 19.7 16.0 13.6 19.5 15.9 14.0 19.8 16.0 13.7 

P4 NA 20.8 18.6 NA 20.6 18.2 NA 20.6 17.9 NA 20.5 18.1 

P
S

8 

P1 7.5 6.0 7.8 6.7 5.8 7.5 7.2 5.7 7.6 7.3 5.9 7.7 

P2 13.6 11.9 12.4 13.9 12.1 12.2 14.0 11.9 12.5 13.6 11.8 12.5 

P3 20.6 16.8 16.2 20.7 16.9 16.0 20.6 16.7 16.1 20.5 16.8 16.0 

P4 NA NA 19.7 NA NA 19.6 NA NA 19.7 NA NA 19.5 

P
S

10
 

P1 6.4 10.0 6.0 6.6 10.2 6.0 6.6 10.1 5.7 6.5 10.2 5.9 

P2 13.4 13.8 8.6 13.5 12.5 8.3 13.6 12.9 8.4 13.5 13.2 8.4 

P3 17.8 17.5 12.5 17.9 16.3 11.8 18.1 16.6 11.9 18.0 16.6 12.0 

P4 NA NA 15.5 NA NA 15.6 NA NA 15.4 NA NA 15.3 

 
STD AVEG MAPE RMSE 

R G B R G B R G B R G B 

M
e8

 

P1 0.12 0.12 NA 7.47 5.77 NA 3.70 1.17 NA 0.28 0.12 NA 

P2 0.06 0.10 0.06 12.77 9.80 10.17 4.64 2.08 0.66 0.57 0.22 0.08 

P3 0.15 0.06 0.21 19.67 15.97 13.77 6.31 1.05 1.23 1.17 0.17 0.24 

P4 NA 0.06 0.15 NA 20.57 18.07 NA 1.12 2.87 NA 0.24 0.55 

P
S

8 

P1 0.32 0.10 0.10 7.07 5.80 7.60 5.78 3.33 2.56 0.51 0.22 0.22 

P2 0.21 0.15 0.17 13.83 11.93 12.40 1.72 0.28 0.00 0.29 0.13 0.14 

P3 0.10 0.10 0.06 20.60 16.80 16.03 0.00 0.00 1.03 0.08 0.08 0.17 

P4 NA NA 0.10 NA NA 19.60 NA NA 0.51 NA NA 0.13 

P
S

10
 

P1 0.06 0.06 0.15 6.57 10.17 5.87 2.60 1.67 2.22 0.17 0.17 0.18 

P2 0.06 0.35 0.06 13.53 12.87 8.37 1.00 6.76 2.71 0.14 0.98 0.24 

P3 0.10 0.17 0.10 18.00 16.50 11.90 1.12 5.71 4.80 0.22 1.01 0.61 

P4 NA NA 0.15 NA NA 15.43 NA NA 0.43 NA NA 0.14 
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5.1 Dataset Creation 

After showing the appropriate match between the lab results and theoretical 

calculations, we created a dataset on MATLAB, and the code for it is given in Appendix 

B. Using nested for loops of scattering parameters, i.e., particle size, refractive index of 

the particles and medium, wavelength of incident light, a dataset was created on 

MATLAB. Considering the limitations of the setup and the literature, we defined 

appropriate ranges for particle size and refractive indices. For wavelength of incident 

light, we used the same ones, 656.3 nm, 514.9 nm, and 403.8 nm, as the ones we have in 

the laboratory. Starting from 5 μm to 13 μm with 0.5 μm increments for particle diameter 

and from 1.3 to 2.2 with 0.01 increments of refractive index were the ranges of this nested 

for loop operation. In total, 4641 lines were obtained, including peak angle values (P1, 

P2, P3, P4) for each combination of loop parameters. A few lines from the dataset are 

presented in Table 5.2. 

 
Table 5.2 A few sample lines of the dataset created on MATLAB to be used in the 
Random Forest Algorithm.  

Inc. Wl. 
(nm) 

Particle 
Size 

Particle  
Ref. Index 

Medium  
Ref. Index 

P1 P2 P3 P4 

403.8 5 2.18 1.3388 7.4 12.6 21.4 0.0 
403.8 5 2.19 1.3388 7.4 12.4 21.0 0.0 
403.8 5 2.20 1.3388 7.2 12.0 19.7 0.0 
403.8 5.5 1.30 1.3388 7.4 12.2 16.7 21.4 
403.8 5.5 1.31 1.3388 7.5 12.2 16.8 21.4 
403.8 5.5 1.32 1.3388 7.8 12.4 16.8 21.4 

 

Then, we trained two different models, Model 1 for particle size and Model 2 for 

particle refractive index. We used randomly selected 80% of this primary dataset after 

adjustments to give it as training data to the model. 20 iterations with 100 trees were used 

in the model, as commonly done in literature [80]. Once the training had been completed, 

the remaining part, 20%, was used to test the performance of the model. It is worth saying 

that, until this step, it was all done using the data created on MATLAB by theoretical 

calculations.   

5.2 Model-1 Particle Size 

Modifications were needed on the dataset for each model. For Model 1, particle size 

estimation, refractive index data were not given as input. Only wavelength of incident 
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light, the refractive index of the medium (consistent with incident light), and the first four 

peak angles were used as the input. So, 6 numbers were the input for a line from the 

dataset, and as seventh, particle size was added, as presented in Appendix C.

After 20 iterations and accuracy calculation for each iteration, the average accuracy 

was calculated for the final accuracy of the model with test data from the primary dataset. 

Figure 5.2 Histogram of the differences between actual and estimated particle size
for randomly selected 20% of the dataset.

As presented in Figure 5.2, most of the test results have an error of less than 0.5 μm 

compared to actual values. The correlation between actual and estimated results is 0.95. 

Thus, we can say that we trained a successful model to predict particle size from 

wavelength of incident light, the refractive index of the medium, and the first four bright 

interference rings of scattering. 

Although obtaining promising results by test data created on MATLAB, the critical

point is to have the same performance from experimental results as test data. Prediction 

of particle size will be meaningful if the model successfully determines it. Therefore, we 

used laboratory results as new test data for Model 1. As given in Table 5.3, among 9 test 

data, 3 particles by three incident lights, the highest error is 1.5 μm for PS8 by red light. 

Besides, we only have a 0.5 μm difference between theory and prediction. T-tests also 

showed no significant difference between those two data types, theory, and prediction. 

Skewness and kurtosis values for actual data, 0.05 and -1.191, respectively, are 

acceptable. The same parameters, skewness and kurtosis values, for test data are 0.026 

and -1.144, which are also adequate for applying an independent sample t-test. Levene’s 

test for equality of variances’ significance value (0.741) demonstrates that the 

homogeneity of variances condition is met for this data. Assuming equal variances 

between actual and predicted data for Model 1, the result of the independent sample T-
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test in 95% confidence interval shows no statistically significant difference between mean 

values of actual and predicted data (t=-0.033, df= 1854, p>0.05).

Table 5.3 Actual and predicted values of particle sizes for experimental results as 
test data for Model 1.

Red (656.3 nm) Green (514.9 nm) Blue (403.8 nm)
Me8 PS8 PS10 Me8 PS8 PS10 Me8 PS8 PS10

Actual 8 μm 8 μm 10 μm 8 μm 8 μm 10 μm 8 μm 8 μm 10 μm
Predicted 8 μm 6.5 μm 10 μm 8 μm 8 μm 10 μm 8 μm 8 μm 9.5 μm

In summary, our random forest algorithm integrated setup was able to define 

particle size. We proved that it is possible to do classifications and estimations with a 

cost-effective, simple, and portable device. 

5.3 Model-2 Particle Refractive Index

As modifications on a primary dataset for Model 2, particle refractive index 

estimation and particle size data were not given as input. Only wavelength of incident 

light, the refractive index of the medium (consistent with incident light), and the first four 

peak angles were used as the input. So, 6 numbers were the input for a line from the 

dataset, and as seventh, particle refractive index was added, as presented in Appendix D.

After 20 iterations and the accuracy calculation for each iteration, the average 

accuracy was calculated for the final accuracy of the model with test data from the 

primary dataset.

Figure 5.3 Histogram of the differences between actual and estimated particle 
refractive index for randomly selected 20% of the dataset.

As presented in Figure 5.3, most of the test results have an error of less than 0.5 

compared to actual values. The correlation between actual and estimated results is 0.748. 
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Thus, we trained a successful model to predict particle refractive index from wavelength 

of incident light, the refractive index of the medium, and the first four bright interference 

rings of scattering.  

Although obtaining promising results by test data created on MATLAB, the 

important point is having the same performance from experimental results as test data. 

Prediction of particle refractive index will be meaningful if the model successfully 

determines it. In addition, this is one of the critical points of this study, considering the 

estimation of refractive indices of same-sized spheres. Therefore, we used laboratory 

results as new test data for Model 2. As given in Table 5.4, among 9 test data, 3 particles 

by three incident lights, the highest error is about 0.13 for PS8 by red light. Other than 

that, it can be clearly seen that Me8 parameters were estimated identically. PS10 has a 

better prediction than PS8. T-tests also showed no significant difference between those 

two data types, theory, and prediction.  

 
Table 5.4 Actual and predicted values of Me8, PS8, and PS10 particle refractive 
indices by 403.8 nm, 514.9 nm, and 656.3 nm lasers. 

 Red (656.3 nm) Green (514.9 nm) Blue (403.8 nm) 
 Me8 PS8 PS10 Me8 PS8 PS10 Me8 PS8 PS10 
Actual 1.79 1.589 1.589 1.89 1.601 1.601 1.96 1.617 1.617 
Predicted 1.79 1.72 1.61 1.89 1.60 1.60 1.96 1.56 1.66 

 

Having appropriate skewness and kurtosis values for Model 2 provided an opportunity to 

apply an independent sample t-test for this model. Levene’s test for equality of variances’ 

significance value (0.711) demonstrates that the homogeneity of variances condition is 

met for this data. Assuming equal variance between actual and predicted data for Model 

2, the result of the independent sample T-test in 95% confidence interval shows no 

statistically significant difference between mean values of actual and predicted data (t=-

0.202, df= 1854, p>0.05). 
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Chapter 6 

Conclusions and Future Prospects 
 

6.1 Conclusions 

As stated in the first chapter, the number of microplastics has been increasing 

dramatically each year due to the careless use of those pollutants' primary and secondary 

sources. It is not surprising to encounter those particles everywhere. The natural cycle, 

including water resources, environment, and land we live on, led them to distribute easily. 

It is difficult to collect and get rid of them once they accumulate, so it is crucial to take 

precautions at the source. Understanding the material type would help to define the source 

or track those particles through its center. In addition, there is uncertainty regarding the 

number of particles made of different materials. A sample may include fewer numbers 

but more dangerous materials or vice versa. After Egypt, Turkey is the second country 

releasing the highest amount of microplastic pollutants to the Mediterranean Sea. 

However, the level of danger in that list has yet to be discovered. The last country in this 

ranking meaning that it releases the lowest amount, may deliver particles that are more 

dangerous due to material type with longer lifetime to disappear. Therefore, it is vital to 

distinguish those particles based on their material type in addition to detecting their size 

and concentrations.  

Light scattering is one of the methods employed to detect and identify 

microparticles. By just using Snell’s Law, using the angle of reflected light,  it is possible 

to have information about particle size. However, a detailed investigation is needed for 

particle-specific properties in particular materials. Using the refractive index of the 

particles, which depends on the material itself, scattering patterns can be investigated to 

acquire more detailed information. This study aimed to use a cost-effective and mobile 

setup that can record and analyze scattering patterns to classify materials based on their 

refractive index, size, and concentration.  
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In the first experiments, it was observed that different materials at different sizes 

and concentrations give different results when they are irradiated with the laser light at 

different wavelengths. As expected, an increment in particle size or concentrations makes 

the forward scattering dominant. In addition, an increment in particle refractive index 

causes the light to scatter more, resulting in wider scattering angles on scattering patterns. 

After analysis of those first experiments, it was observed that the angles of the bright 

interference rings on scattering patterns are particle size, refractive index, and wavelength 

of incident light specific. However, the change in concentration of a sample did not affect 

the bright ring angles but the intensity. As expected, the higher number of particles, 

scatterers, in a sample scattered the light more, and the same but brighter patterns were 

obtained.  

After those observations, experiments using melamine and polystyrene 

microparticles with 8 and 10 μm sizes were conducted using lasers at three different 

wavelength of incident lights. All scattering patterns were collected at ten different 

concentrations, from 0.05 fM to 3.00 fM. After image processing, Me8 and PS8 results 

were used to analyze material type. As observed, the higher the refractive index of the 

particle, actually the absolute difference from the refractive index of the medium, resulted 

in wider scattering angles, as predicted by the theory. In another investigation, the results 

of PS8 and PS10 particles were used to observe the effect of particle size. The Mie theory 

states that the forward scattering becomes dominant when particle size increases. 

Regarding that, as expected Mie resonances, bright ring angles, gathered around zero-

degree. Increasing the particle size made the scattering intensity stronger at zero degrees 

revealing itself as a wider bright spot at the center.  

After successfully recording the scattering patterns, we aimed to gather information 

on particle size and refractive index. For this purpose, we first wrote a code using the Mie 

scattering equations and compared the theoretical results of the same parameters with the 

experimental results. Having minor differences provided the opportunity to create a 

library based on Mie theory and integrate machine learning into the process for fast and 

accurate analysis of scattering patterns. At this point, nested-for-loops were used for 

appropriate ranges of particle refractive index, size, and wavelength of incident light. A 

dataset was created for all combinations. In the first step, 80% of the dataset was randomly 

selected to train two models, one for particle size and the other for refractive index. The 

remaining portion, 20%, was applied as test data, and the results were satisfying. The 
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correlation between actual and estimated results was 0.95 and 0.75 for particle size and 

refractive index, respectively.  

Further investigations were needed to show that the system would also work for 

real-life applications so that laboratory results were used for the second test data set. The 

average difference between estimated and actual particle size was 0.23 μm. Out of nine, 

seven different particle sizes were calculated identically, and the maximum difference 

was 1.5 μm which belonged to the scattering of the red laser light by PS8 particles.  

Regarding the refractive index, which was more challenging to train the model due 

to having divergence. The refractive index changes with the wavelength of incident light. 

In addition, different resonance sets at different particle sizes had to give the same particle 

refractive index value because of a change only in particle size not the material or 

wavelength of incident light. However, particle size was not used as an input of the 

algorithm. This made the process complex to learn for the algorithm. However, especially 

Me8 parameters were calculated successfully. The average difference for the refractive 

index turned out to be 0.015. The highest difference was 0.13 for PS8 particles when the 

red laser was employed.  

In conclusion, the systems successfully distinguished particle size and refractive 

index for particle classification. Integrating a random forest algorithm, which is easy and 

appropriate for this problem, provided fast characterization of scattering patterns 

regarding particles’ physical properties. Having a device that is portable, cost-effective, 

durable, and easy to use would provide an opportunity for further developments regarding 

the research that has been done in this field. Furthermore, the shape of the scatterers or 

the detection range can be modified with minor adjustments, i.e., adding lenses or 

additional cameras.  

6.2 Societal Impact and Contribution to Global 

Sustainability 

The societal impact of microplastics is significant. The increasing amount of 

microplastics in our environment has raised public awareness of the plastic pollution 

problem and has led to calls for action from consumers, businesses, and governments. 

People are becoming more conscious of plastic use and actively seeking alternative 

solutions. Furthermore, companies are also changing their practices and developing 
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sustainable packaging alternatives. However, the problem of microplastics requires a 

global effort to mitigate its impact.  

The issue of microplastics is closely linked to the United Nations' Sustainable 

Development Goals (SDGs). SDG 14, Life Below Water, specifically aims to conserve 

and sustainably use the oceans, seas, and marine resources for sustainable development. 

Microplastics have been identified as a significant threat to marine ecosystems, and 

addressing the issue is crucial to achieving SDG 14. 

Furthermore, microplastics also have implications for other SDGs. For example, 

SDG 12, Responsible Consumption and Production, emphasizes the need for sustainable 

consumption and production patterns to minimize waste generation and reduce the 

negative impacts of consumption on the environment. Addressing microplastics requires 

a shift towards sustainable consumption and production patterns that prioritize reducing 

plastic use and promoting proper waste management practices. Moreover, microplastics 

can affect human health, which is addressed by SDG 3, Good Health and Well-being. It 

is essential to address the issue of microplastics to protect both marine and human health. 

In conclusion, addressing the issue of microplastics is crucial in achieving multiple 

SDGs. It requires a global effort to reduce plastic use, promote sustainable consumption 

and production patterns, and develop effective waste management systems. By addressing 

the issue of microplastics, we can promote a more sustainable and healthy future for our 

planet and its inhabitants. Governments and organizations must work together to address 

this issue and develop policies and initiatives to reduce plastic use and improve waste 

management systems. Working together can create a more sustainable future for our 

planet. 

6.3 Future Prospects 

In this study, the setup can be used for different samples, i.e., DNAs, bacteria, cells, 

metallic particles, etc. A thin lens may be needed to focus light on a much smaller area to 

investigate nano-size particles. In addition, by using appropriate solvents, solid samples 

can be diluted and examined after some filtering and basic preprocessing steps.  

Microplastics are expected to continue to be a major concern as plastic production 

and consumption continue to increase globally. However, there are also promising 

prospects for addressing the issue and detecting environmental microplastics. To address 

the issue, there is growing awareness among consumers, businesses, and governments 
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about the negative impacts of microplastics on the environment and human health. This 

has led to a push for reducing plastic use and improving waste management systems. 

Additionally, ongoing research on sustainable alternatives to plastic and innovative 

technologies for capturing and removing microplastics from the environment exists. 

There have been advancements in analytical methods for identifying and 

quantifying microplastics in different environmental samples. These include Raman 

spectroscopy, Fourier-transform infrared spectroscopy, and pyrolysis-gas 

chromatography-mass spectrometry. Furthermore, there is ongoing research into 

developing more efficient and cost-effective methods for detecting microplastics, such as 

biosensors and microfluidic devices. 

Overall, the microplastics issue and detection prospects are both challenging and 

promising. Addressing the issue will require a concerted effort from individuals, 

businesses, and governments to reduce plastic use, improve waste management systems, 

and invest in sustainable alternatives. At the same time, ongoing research into detection 

technologies will be crucial in identifying the extent of the problem and developing 

effective mitigation strategies. 
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APPENDIX A 

Code for Scattering 

d=8e-6;          %sphere diameter 
m_sph=1.79;      %sphere refractive index  
m_env=1.331;     %medium refractive index 
l_vac=656.3e-9;   %wavelength in vacuum 
 
%H20:  1.3310R, 1.3344G, 1.3388B 
%ME:   1.79-R, 1.89-G, 1.96-B 
%PS:   1.589-R, 1.601-G, 1.617-B 
 
 
%%%%%%%%% CALCULATIONS START AFTER HERE 
%%%%%%%%%%%%%%%% 
a=d/2;          
k=2*pi/(l_vac/m_env);    
x=k*a;%DWH eq.1              
m=m_sph/m_env;     
 
M=ceil(x + 4*(x^(1/3) + 2)); 
n=1:M; 
 
fpsi=sqrt(pi*x/2)*besselj(n+0.5,x); %eq 4.9 %DWH eq.29 
dfb=0.5*(besselj(n-0.5,x)-besselj(n+1.5,x)); 
dfpsi=0.5*sqrt((pi/2)/x)*besselj(n+0.5,x)+sqrt(pi*x/2)*dfb; 
 
fpsim=sqrt(pi*(m*x)/2)*besselj(n+0.5,m*x); 
fdbm=0.5*(besselj(n-0.5,m*x)-besselj(n+1.5,m*x)); 
fdpsim=0.5*sqrt((pi/2)/(m*x))*besselj(n+0.5,m*x)+sqrt(pi*(m*x)/2)*fdbm; 
 
fxsi=sqrt(pi*x/2)*besselh(n+0.5,x); %eq 4.10 %DWH eq.30 
fdh=0.5*(besselh(n-0.5,x)-besselh(n+1.5,x)); 
fdxsi=0.5*sqrt((pi/2)/x)*besselh(n+0.5,x)+sqrt(pi*x/2)*fdh; 
 
an=(fpsi.*fdpsim-m*fpsim.*dfpsi)./(fxsi.*fdpsim-m*fpsim.*fdxsi); %eq 4.56 %DWH 
eq.26 
bn=(m*fpsi.*fdpsim-fpsim.*dfpsi)./(m*fxsi.*fdpsim-fpsim.*fdxsi); %eq 4.57 %DWH 
eq.27 
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text=(l_vac/m_env)^2/(2*pi)*sum((2*n+1).*real(an+bn)); %total ext cs %eq 4.62 
%DWH eq.32  
tscat=(l_vac/m_env)^2/(2*pi)*sum((2*n+1).*(abs(an).^2+abs(bn).^2)); %total scat cs 
%eq 4.61 %DWH eq.33 
tabsorp=text-tscat; %total abs cs 
 
theta=0:0.1:25; 
fpi=zeros(length(n),length(theta)); 
ftau=zeros(length(n),length(theta)); 
mu=cosd(theta); 
 
%calculated by the info given between eq.4.47 and 4.48 
%fpi(0)=0; 
%fpi(1)=1; 
fpi(1,:)=1; 
fpi(2,:)=3*mu; 
ftau(1,:)=mu; 
ftau(2,:)=6*mu.^2 - 3; 
 
for n2=3:M 
    fpi(n2,:)=(2*n2-1)/(n2-1)*mu.*fpi(n2-1,:)-n2/(n2-1).*fpi(n2-2,:); %eq 4.47 
    ftau(n2,:)=n2*mu.*fpi(n2,:)-(n2+1)*fpi(n2-1,:); %eq 4.48 
end 
 
En=(2*n+1)./(n.*(n+1)); %DWH eq.22 
aif0=abs(En.*an*fpi+En.*bn*ftau).^2; %DWH eq.22 
aif90=abs(En.*an*ftau+En.*bn*fpi).^2; %DWH eq.23 
 
m_air=1; 
dscat0=(l_vac/m_env)^2/(4*pi^2)*aif0; % diff scat cs (parallel) %DWH eq.19 
dscat90=(l_vac/m_env)^2/(4*pi^2)*aif90; % diff scat cs (perpendicular) %DWH eq.20 
dscat=(dscat0+dscat90)/2; % diff scat cs (unpolarized) %DWH eq.21 
 
theta2=asind(sind(theta)*m_env/m_air); 
 
plim=find(theta2(:)>=5&theta2(:)<=21); %between 5-21 degree 
[aa,bb]=findpeaks(dscat(plim));  
peaks=round(theta2(bb+plim(1)),1); %calculation of peak angle 
 
plot(theta2(plim),dscat(plim)./max(dscat(plim)),'LineWidth',2,'Color','r','LineStyle','-'); 
%title('Unpolarised');  
xlabel('Scattering Angle ( ^\circ )','FontSize',16) 
ylabel('Differential scattering cross section (A.U.)','FontSize',16) 
xlim([theta2(plim(1)) theta2(plim(end))]); hold on 
xlim([5 22]) 
ylim([0 1]) 
 
lmb=char(hex2dec('039B')); 
fprintf(['Peaks at;\n' 'Diameter(um): ', num2str(d*1e+6), '\n' ... 
         lmb '(nm): ' num2str(l_vac*1e+9) '\n' ... 
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         'n_sphere: ', num2str(m_sph), [', and \n' ... 
         'n_medium: '], num2str(m_env) ' = [',num2str(peaks) ']\n']) %?? 
 

OUTPUT: 

Peaks at; 

Diameter(um): 8 

Λ(nm): 656.3 

n_sphere: 1.79, and  

n_medium: 1.331 = [7.2         12.2         18.5] 

 

 

Figure A.1 Theoretical result of angular scattering of Me8 particles by 656.3 nm 
laser. 
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APPENDIX B 

Code for Dataset Creation 

clear 
clc 
 
line=0; 
wl=[656.3 514.9 403.8]; 
rad=5:0.5:13; 
nparticle=1.3:0.01:2.2; 
nmed=[1.331 1.3344 1.3388]; 
 
%H20:  1.3310R, 1.3344G, 1.3388B 
%ME:   1.79-R, 1.89-G, 1.96-B 
%PS:   1.589-R, 1.601-G, 1.617-B 
 
for i1=1:length(wl) 
for i2=1:length(rad) 
for i3=1:length(nparticle) 
 
    line=line+1; 
     
    [a(line,:),theta,theta2]=mie(wl(i1),rad(i2),nparticle(i3),nmed(i1)); 
     
    dta(line,1)=wl(i1); 
    dta(line,2)=rad(i2); 
    dta(line,3)=nparticle(i3); 
    dta(line,4)=nmed(i1); 
     
 
end 
end 
end 
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APPENDIX C 

Sample dataset for Model 1 

Table C.1 Sample lines from dataset adjusted for training for Model 1. 
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d
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m
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1 403.8 1.3388 8.2 13.4 18.5 0.0 5 

2 403.8 1.3388 8.4 13.6 18.5 0.0 5 

3 403.8 1.3388 8.6 13.6 18.5 0.0 5 

4 403.8 1.3388 8.6 13.6 18.5 0.0 5 

5 403.8 1.3388 8.6 13.6 18.5 0.0 5 

6 403.8 1.3388 8.6 13.6 18.3 0.0 5 

… … … … … … … … 

1545 403.8 1.3388 6.6 8.2 10.1 13.3 13 

1546 403.8 1.3388 6.6 8.4 12.0 15.2 13 

1547 403.8 1.3388 6.7 8.3 10.6 11.4 13 

1548 514.9 1.3344 10.7 17.3 0.0 0.0 5 

1549 514.9 1.3344 10.8 17.5 0.0 0.0 5 

1550 514.9 1.3344 11.0 17.5 0.0 0.0 5 

… … … … … … … … 

3092 514.9 1.3344 6.1 8.2 10.8 15.2 13 

3093 514.9 1.3344 6.1 8.3 10.6 14.8 13 

3094 514.9 1.3344 6.0 8.4 10.2 13.0 13 

3095 656.3 1.331 13.9 0.0 0.0 0.0 5 

3096 656.3 1.331 14.0 0.0 0.0 0.0 5 

3097 656.3 1.331 14.0 0.0 0.0 0.0 5 

… … … … … … … … 

4636 656.3 1.331 7.7 10.4 14.3 19.2 13 

4637 656.3 1.331 7.9 10.1 13.6 18.8 13 

4638 656.3 1.331 7.7 13.2 17.4 0.0 13 

4639 656.3 1.331 7.6 11.1 16.6 21.5 13 

4640 656.3 1.331 7.6 10.7 16.1 20.2 13 

4641 656.3 1.331 7.7 10.5 14.3 19.5 13 
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APPENDIX D 

Sample dataset for Model 2 

Table D.1 Sample lines from dataset adjusted for training for Model 2. 

 

In
ci

d
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w

l 
(n
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n
_m

ed
 

p
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p
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p
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p
4 

n
_p

ar
t 

(
m
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1 403.8 1.3388 8.2 13.4 18.5 0.0 1.30 

2 403.8 1.3388 8.4 13.6 18.5 0.0 1.31 

3 403.8 1.3388 8.6 13.6 18.5 0.0 1.32 

4 403.8 1.3388 8.6 13.6 18.5 0.0 1.33 

5 403.8 1.3388 8.6 13.6 18.5 0.0 1.34 

6 403.8 1.3388 8.6 13.6 18.3 0.0 1.35 

… … … … … … … … 

1545 403.8 1.3388 6.6 8.2 10.1 13.3 2.18 

1546 403.8 1.3388 6.6 8.4 12.0 15.2 2.19 

1547 403.8 1.3388 6.7 8.3 10.6 11.4 2.20 

1548 514.9 1.3344 10.7 17.3 0.0 0.0 1.30 

1549 514.9 1.3344 10.8 17.5 0.0 0.0 1.31 

1550 514.9 1.3344 11.0 17.5 0.0 0.0 1.32 

… … … … … … … … 

3092 514.9 1.3344 6.1 8.2 10.8 15.2 2.18 

3093 514.9 1.3344 6.1 8.3 10.6 14.8 2.19 

3094 514.9 1.3344 6.0 8.4 10.2 13.0 2.20 

3095 656.3 1.331 13.9 0.0 0.0 0.0 1.30 

3096 656.3 1.331 14.0 0.0 0.0 0.0 1.31 

3097 656.3 1.331 14.0 0.0 0.0 0.0 1.32 

… … … … … … … … 

4636 656.3 1.331 7.7 10.4 14.3 19.2 2.15 

4637 656.3 1.331 7.9 10.1 13.6 18.8 2.16 

4638 656.3 1.331 7.7 13.2 17.4 0.0 2.17 

4639 656.3 1.331 7.6 11.1 16.6 21.5 2.18 

4640 656.3 1.331 7.6 10.7 16.1 20.2 2.19 

4641 656.3 1.331 7.7 10.5 14.3 19.5 2.20 
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APPENDIX E 

Code for Random Forest algorithm 

clear  
close all 
warning off 
data=readtable('lib_np.xlsx'); 
%data2=readtable('lab_np.xlsx'); %use when lab results will be tested 
prm='np'; %model type 
 
for i=1:20 
i 
cv = cvpartition(size(data,1),'HoldOut',0.2); %%20 of data is separated for testing 
idx = cv.test; 
dataTrain=data(~idx,:); 
dataTest=data(idx,:); 
%dataTest=data2; %use when lab results will be tested 
testing=dataTest(1:end,1:end-1); 
model1=fitensemble(dataTrain,prm,'Bag',100,'Tree','Type','classification'); 
prediction1=predict(model1,testing); 
ms1(i)=(sum(prediction1==table2array(dataTest(:,end)))/size(dataTest,1))*100; 
 
end 
 
accuracy=sum(ms1)/i; 
sdev=std(ms1); 
 
 
fprintf(['Mean of testing ' prm ' values:' num2str(mean(dataTest{:,7})) '\n']); 
fprintf(['Mean of predicted ' prm ' values:' num2str(mean(prediction1)) '\n']); 

 

 

 

  



67 
 

CURRICULUM VITAE 

2007 – 2012 B.Sc., Electrical and Electronics Engineering,  
Sakarya University, Sakarya, TURKEY 

2015 – 2016 M.Sc., Electrical and Computer Engineering,  
Abdullah Gül University, Kayseri, TURKEY 

2017 – 2023 Ph.D., Electrical and Computer Engineering,  
Abdullah Gül University, Kayseri, TURKEY 

 

SELECTED PUBLICATIONS AND PRESENTATIONS 

J1) S. Genc, T. Erdem, K. Icoz*, “Size, Material Type and Concentration Estimation for 

Micro-Particles in Liquid Samples”, (June 2023 - Submitted) 

J2) S. Genc, K. Icoz, T. Erdem*, “Numerical Analysis for Size, Refractive Index, and 

Wavelength Dependence of Optical Scattering by Microplastics and Experimental 

Verification”, Royal Society Open Science, (July 2023) 

J3) S. Genc, M. Uguz, O. Yilmaz, E. Mutlugun*, “Rec.2100 Color Gamut Revelation 

Using Spectrally Ultra-Narrow Emitters”, Optical Engineering, (Nov. 2017) 

C1) S. Genc, K. Icoz, T. Erdem, “Machine Learning Based Classification of 

Microparticles Using Optical Scattering Simulations”, 16th Nanoscience and 

Nanotechnology Conference (NANOTR), Ankara, Turkey. (Sept. 2022) 

C2) S. Genc, K. Icoz, T. Erdem, “Machine Learning Assisted Particle Size and Type 

Classification Using Wavelength-Dependent Scattering Patterns”, International 

Conference on Optics and Photonics 2021 (OPTO2021), Wroclaw, Poland. (July 2021) 

 

 






