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ABSTRACT

OPTICAL SCATTERING BASED RANDOM FOREST
ASSISTED PARTICLE DETECTION AND CLASSIFICATION

Sinan GENC
Ph.D. in Electrical and Computer Engineering
Advisor: Assoc. Prof. Kutay ICOZ
Co-Advisor: Assist. Prof. Talha ERDEM
July 2023

Microplastics, tiny plastic particles with sizes smaller than 5 mm., are often found
in oceans, rivers, lakes, and atmosphere due to plastic pollution. Microplastics releasing
toxic chemicals threaten the environment and harm the aquatic life and humans.
Especially, the accumulation of microplastics can have detrimental effects on the food
chain as a result of larger organisms consuming smaller organisms.

Detecting the microplastics is crucial but also challenging. Over the years,
researchers have developed different detection methods. One of the standard methods is
using spectroscopy tools such as Fourier transform infrared spectroscopy (FTIR) and
Raman spectroscopy. These techniques can identify the chemical composition of
microplastics, which can help determine their sources and potential impacts. Another
method is the use of microscopy, which allows for the visualization and counting of
microplastics in samples. However, these techniques require costly infrastructure, and
these instruments being large in size significantly limits the mobility.

As a remedy to the cost and mobility problems, in this thesis, we propose and
demonstrate a low-cost, portable system to detect size, concentration, and refractive index
of microplastics. Our system comprises of low-cost and low-weight components which
are utilized for recording the scattering patterns of microplastics in aqueous media. We
demonstrate successful predictions of the size and refractive index of microparticles at a
given wavelength using a Random Forest Algorithm which relates the measured
scattering pattern with the Mie theory. We further employ the refractive index information
at various wavelengths for determining the material type of microplastics.

We believe that our proposed system enabling an easy, fast, low-cost, and on-site
detection of microplastics will be a beneficial tool for the fight against microplastics in

the environment.

Keywords: scattering, optics, sensing, microparticle, machine learning.



OZET

OPTIK SACILMA TEMELLI RASTGELE ORMAN DESTEKLI
PARCACIK TESPITi VE SINIFLANDIRILMASI

Sinan GENC
Elektrik ve Bilgisayar Mithendisligi Anabilim Dali Doktora
‘ Danisman: Dog. Dr."Kutay 1COZ
Ikinci Danigman: Dr. Ogr. Uyesi Talha ERDEM
Haziran 2023

5 mm'den kiigiik boyutlara sahip kiigiik plastik parcaciklar olan mikroplastikler,
plastik kirliligi nedeniyle genellikle okyanuslarda, nehirlerde, gbllerde ve atmosferde
bulunur. Zehirli kimyasallar salan mikroplastikler ¢evreyi tehdit etmekte, su canlilarina
ve insanlara zarar vermektedir. Ozellikle yayilmalar1 ve daha biiyiik organizmalarin daha
kiigiik organizmalar tiiketmesi sonucunda besin zinciri tizerinde zararli olabilirler.

Mikroplastikleri tespit etmek ¢ok 6nemli ama ayni zamanda zordur. Yillar boyunca,
arastirmacilar farkli tespit yontemleri gelistirmislerdir. Standart yontemlerden biri,
Fourier doniisimi kizilotesi spektroskopisi (FTIR) ve Raman spektroskopisi gibi
spektroskopi araglarini kullanmaktir. Bu teknikler, mikroplastiklerin kaynaklarini ve
potansiyel etkilerini belirlemeye yardime1 olabilecek kimyasal bilesimini tanimlayabilir.
Diger bir yontem ise numunelerdeki mikroplastiklerin gorsellestirilmesine ve sayilmasina
izin veren mikroskopi kullanimidir. Ancak bu teknikler maliyetli altyap: gerektirir ve bu
enstriimanlarin boyutlarinin biiyiik olmasi taginabilirligi 6nemli 6l¢iide sinirlar.

Maliyet ve tasinabilirlik sorunlarina bir ¢6ziim olarak, bu tezde, mikroplastiklerin
boyutunu, konsantrasyonunu ve kirilma indeksini tespit etmek i¢in diisilk maliyetli,
tagmabilir bir sistem Oneriyor ve sunuyoruz. Sistemimiz, mikroplastiklerin sulu
ortamdaki sac¢ilma modellerini kaydetmek i¢in diisiik maliyetli ve diisiik agirlikli
bilesenlerden olusur. Olgiilen sagilma modelini Mie teorisi ile iliskilendiren bir Rastgele
Orman Algoritmas1 kullanarak, belirli bir dalga boyunda mikropartikiillerin boyutuna ve
kirilma indisine iliskin basarili tahminler gosteriyoruz. Ayrica, mikroplastiklerin
malzemesini belirlemek i¢in ¢esitli dalga boylarindaki kirilma indislerini de kullaniyoruz.

Mikroplastiklerin kolay, hizl, diisiik maliyetli ve yerinde tespit edilmesini
saglayan onerdigimiz sistemimizin, ¢evredeki mikroplastiklerle miicadelede faydali bir

arag¢ olacagina inaniyoruz.

Anahtar kelimeler: sagilma, optik, algilama, mikro-par¢acik, makina 6grenmesi.
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Chapter 1

Introduction

1.1 Microplastic Pollution

Microplastics are tiny pieces of plastics smaller than 5 mm in size. They come from
various sources, such as broken-down plastic waste, microbeads from personal care
products, synthetic fibers from textiles, and through fragmentation of larger plastic debris
[1-3]. Microplastics pose a significant threat to marine and freshwater ecosystems as they
are frequently ingested by aquatic life and can accumulate in the food chain, ultimately
reaching humans [4-9]. As given in Figure 1.1, micrometer-sized living beings in the
oceans have plastics in their body. Other life forms, which are at higher places in the food

chain, consume them leading the micropollutants eventually to reach the human body.

Figure 1.1 (a) A zooplankton (2-20 um) [10] (This image was reproduced with
permission of Dr. Richard Kirby), and (b) a water flea (200+ pm) [11] with
microplastics in their body.

Plastics from automobile tires, industry, and other resources increased the amount
of those pollutants in addition to this aquatic connection [ 12—16]. Recent scientific studies
have demonstrated the presence of these tiny particles in the bodies, blood, milk, and flesh
of farm animals, as well as in food products, including honey, sugar, salt, and seafood.

Another study indicated that micro/nanosized submerged plastics rise to the surface
of the water resources and mix with the air due to evaporation [17]. Rains return those
microplastics in the air to earth and make them in contact with land. Thus, interaction

with the same pollutants again and again becomes inevitable. In addition to the food chain,



inhaling microplastics is another dangerous mechanism for human health. The danger of
breathing in microplastics grows with decreasing their sizes [18]. As shown in Figure 1.2
demonstrating a sample cycle of microplastic pollution, pollutants from daily activities
reach the water sources, seas, and oceans. Mechanical, biological, or natural processes
make them smaller and complete the cycle with seafood, atmosphere, or direct water
consumption.
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Figure 1.2 A sample microplastic pollution cycle example [19].

The environmental impacts of microplastics are still not completely understood, but
they have been linked to health problems in marine life, such as reproductive issues,
behavioral changes, and death. In addition, microplastics can also have economic impacts
on the fishing and tourism industries, as the presence of plastics in water can reduce fish
populations and lead to beach closures [20].

The issue of microplastics has gained attention in recent years due to the increasing
amount of plastic waste produced globally [21-24]. Plastic is cheap, versatile, and
durable, but it is also non-biodegradable, and as a result, it remains in the environment
for centuries. To protect the health and environment, it is crucial to reduce the use of
plastics and increase awareness on this global issue.

Recent years have seen an increase in research on microplastic pollution, with
numerous studies highlighting the extent of the problem. In 2018, a study estimated that
microplastics were present in more than 90% of bottled water, with an average of 325
particles per liter [25]. Another study published in 2020 estimated that up to 14 million
metric tons of microplastics were deposited in the world's oceans yearly, with the majority
originating from Asia [26]. Additionally, a study published in 2023 found that

microplastics were present in more than 90% of the freshwater samples collected from



the Amazon and its tributaries [27]. These findings highlight the urgent need to address
the root causes of microplastic pollution and prevent further harm to our environment and

health.

MICROFIBERS: HERE, THERE, AND EVERYWHERE

[2021]
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Figure 1.3 Sample map for microplastics and their detected locations around the
world (This image was reproduced with permission of planetcare.org) [28].

As microplastics are small, it is difficult to remove them from the environment once
they have been released, and current recycling efforts are ineffective in eliminating them.
In Figure 1.3, some of the microplastics and their locations are presented; as can be
understood, they are in everywhere. Therefore, the best way to prevent microplastics is
to eliminate them before dissipation. Some measures to address the problem include
introducing legislation to ban microbeads in personal care products, promoting
sustainable alternatives, and increasing investment in research to better understand the

impacts of microplastics on the environment and human health.
1.2 Detection of Microplastics

As microplastics continue to pose a significant problem due to their evasive nature
and ineffective recycling techniques, the need for proactive measures to prevent their
release grows. Efforts are being made to implement practical solutions in response to the
widespread distribution of microplastics. The application of optical scattering techniques
for detecting microplastics is among them. This novel technique employs light scattering

to identify and quantify microplastic particles within a sample. It capitalizes on their



unique ability to scatter light at certain angles depending on the size and type of
microparticles. By utilizing this innovative method, researchers can obtain valuable
insights into the prevalence and distribution of microplastics, which will ultimately aid in
developing effective strategies to combat their environmental impact and protect the
ecosystem and human health.

Microplastic detection by optical scattering is a technique that uses light scattering
to identify and quantify microplastic particles in a sample. The method relies on the fact
that microplastics are usually small enough to scatter light at a particular angle,
distinguishing them from other particles in the sample.

To detect microplastics by optical scattering, a sample is first prepared by filtering
it through a fine mesh or membrane to remove larger particles. The filtered sample is then
passed through a laser beam or other light source at a specific angle to the sample. As the
light passes through the sample, it interacts with any microplastic particles present,
causing them to scatter light at a particular angle. A detector is positioned to capture this
scattered light, which can then be analyzed to identify and quantify the microplastics in
the sample.

One advantage of this technique is that it is non-destructive and non-invasive,
meaning that the sample can be preserved for further analysis. Additionally, it can be
performed relatively quickly and requires minimal sample preparation.

However, microplastic detection by optical scattering possess some limitations. For
example, it may not be able to detect very small microplastics or those that have refractive
indices similar to water leading to a transparent or translucent appearance. In addition,
other particles in the sample may also scatter light, making it challenging to distinguish
microplastics from other particles. Therefore, it is often used in combination with other
analytical techniques, such as microscopy or spectroscopy, to provide a more complete
picture of the microplastics present in a sample.

Several optical techniques can detect microplastics in various media such as
sediment, soil, and air. Within the framework of this thesis, optical techniques can be used
to determine microplastics in liquids, such as water, by either visualizing the
microplastics directly or indirectly detecting them through their interaction with light.
Some of the most commonly used optical techniques for determining microplastics are

shortly defined as follows:



Microscopy: Microscopy techniques, such as brightfield, darkfield, and phase
contrast microscopy, can be used to visualize microplastics in liquid samples directly
[29].

Fluorescence microscopy: This technique involves labeling microplastics with a
fluorescent dye and then visualizing them under a microscope with a UV light source
[30]. The microplastics appear as bright fluorescent particles against a dark background,
making them easy to detect and quantify.

Digital holographic microscopy: Digital holographic microscopy involves
recording interference patterns generated by a laser beam that has passed through a
sample [31]. This technique can detect and characterize microplastics based on their 3D
morphology and optical properties.

Fourier-transform infrared (FTIR) spectroscopy: FTIR spectroscopy measures a
sample's absorption or transmission of infrared light [32]. Different types of plastic have
unique infrared spectra, which can be used to identify and quantify microplastics.

Flow cytometry: Flow cytometry can quantify and size particles in a liquid sample
[33]. Microplastics can be labeled with a fluorescent dye and then analyzed by flow
cytometry to determine their concentration and size distribution.

Infrared spectroscopy: Infrared spectroscopy can identify and quantify
microplastics in liquid samples by measuring their characteristic absorption or
transmission of infrared light [34].

Raman spectroscopy: Raman spectroscopy is a non-destructive technique involving
a laser on a sample and measuring the scattered light [35]. Each type of plastic has a
unique Raman spectrum, which can be used to identify and quantify different types of
microplastics.

Surface plasmon resonance imaging: Surface plasmon resonance imaging can
detect and quantify microplastics in liquid samples based on their interaction with a
metallic surface [36]. The presence of microplastics in the liquid sample causes changes
in the refractive index of the surrounding medium, which can be detected by surface
plasmon resonance imaging.

Hyperspectral imaging: Hyperspectral imaging involves collecting images at
multiple wavelengths across the electromagnetic spectrum, allowing for the identification
and characterization of microplastics based on their spectral signatures [37].

Overall, optical techniques provide powerful tools for detecting and characterizing

microplastics in various environmental samples and can generate essential data for



monitoring and mitigating microplastic pollution. However, these systems are usually
bulky and costly, making it inaccessible and difficult for on-site use. As an alternative to
the existing techniques, here we propose and demonstrate a simple, cost-effective, and
fast-response technique to determine particle size, refractive index, and concentration of
microparticles in water. Our system includes several low-power lasers, a sample holder,
screen and a Raspberry Pi card equipped with a camera. By recording the scattering
patterns of the laser light and subsequently relating it with the Mie theory with the help
of Random Forest Algorithm, we successfully determined the concentration, type, and

size of the particles.
1.3 Contributions and Structure of Thesis

In literature, there are studies determining the size of microparticles regardless of
the material type [35,38—41]. Although it is easier to classify particles of various sizes,
the situation would be tricky if the particles were identical in every aspect except the
materials they are made of. In this thesis, in addition to the particle size, concentration,
and wavelength of incident light, the materials of particles are also examined, and
classification by random forest algorithm is presented. Distinguishing the particle will
open a new window to classify microplastic pollution and its hazard level. Furthermore,
it would be possible to track the path of microplastics starting from the source.

In the first experiments, as presented in Figure 1.4 by unprofessional photos taken
using a mobile phone camera, it was observed that a low-cost setup could show different
scattering patterns for particles of various sizes, refractive index, concentration, and

wavelength of incident lights.

C)]

Figure 1.4 Mobile phone shootings showing different scattering patterns for red (a),
green (b), and blue (c¢) laser light, meaning that the proposed low-cost setup would
provide information for classification.



After having promising data from the first observation, we analyzed the effects of
particle size, refractive index, concentration, and wavelength of incident light on
scattering patterns for samples consisting of melamine and polystyrene particles.

Mixing the samples given in previous parts with a known percentage and
investigating the mixtures’ scattering patterns are further steps of this study. Having two
different microplastics in one sample affects the scattering patterns due to different
refractive indices or sizes or concentrations of those microparticles. In this part, the
relation between the individual scattering data of these particles and their combinations
will be presented.

If a water sample contains two different sizes of microplastics, their behavior and
interactions can be more complex than the samples composed of same-sized particles.
The coexistence of multiple microplastic sizes can have various implications for their
dispersion, settling, and potential impacts on the environment [42] Larger particles would
have a tendency to settle fast compared to the small ones and they would hit the small
ones. This would have a change in settlement behavior of small particles in the mixture.
Although particles with bigger sizes would be easy to filter or eliminate by membranes,
if there are smaller ones in the same sample, they may continue to threaten the
environment.

Some key considerations when two different sizes of microplastics are present in a
sample:

Settling and Suspension: Larger microplastics are generally more likely to settle out
of the water column due to their greater mass and sedimentation rates. On the other hand,
smaller microplastics may remain suspended in the water for more extended periods. This
difference in behavior can lead to spatial and temporal variations in microplastic
distribution.

Aggregation: Microplastics of different sizes may have different surface properties
and charges, which can influence their tendency to aggregate with each other or other
particles in the water. Aggregation can affect the overall size and buoyancy of the
microplastic particles.

Transport: Microplastics of different sizes may be transported differently by water
currents. For example, larger microplastics may be more affected by currents closer to the

water surface, while smaller ones could be dispersed more broadly in the water column.



Sampling and Analysis: Multiple microplastic sizes can complicate sampling and
analysis procedures. Researchers may need specialized techniques to distinguish and
quantify the different sizes accurately.

Ecological Impacts: Different sizes of microplastics may pose different risks to
aquatic organisms. Some species might readily ingest specific size ranges, leading to
varied environmental impacts.

Researchers conduct studies considering size distribution and concentration data to
comprehensively understand the effects of multiple microplastic sizes in a water sample.
Analyzing samples through microscopy, spectroscopy, or imaging can provide valuable
insights into the behavior and potential impacts of different microplastic sizes in aquatic
environments.

It is crucial to continue researching and monitoring microplastics in water and water
related environments i.e., marine life, to understand their behavior and potential
environmental and human health consequences better. Determining the concentration of
two different microplastics of varying sizes in an aqueous sample requires careful
laboratory analysis. Several methods are commonly used to measure microplastic
concentrations, each with advantages and limitations. A general outline of steps to
determine the concentration of two different microplastics at different sizes [43—45]:

Sample Collection: Collect water samples from the target location using appropriate
sampling techniques and equipment. Ensure that the samples are handled carefully to
avoid contamination.

Sample Preparation: Depending on the analysis method, you may need to
concentrate the microplastics from the water sample. This can be done through filtration,
centrifugation, or density separation methods.

Microplastic Extraction: Extract the microplastics from the concentrated sample
using suitable chemical or physical methods. Typical approaches involve using chemical
solutions to digest organic matter or floatation in saline solutions.

Microscopy: Use microscopy to identify and count the microplastics visually. For
this, you'll need to prepare slides or filters with the extracted microplastics and use a
microscope to examine and identify them. Different stains or dyes may be used to enhance
the visibility and differentiation of microplastics.

Particle Sizing: Measure the size of individual microplastic particles using image
analysis software or other particle sizing techniques. This step is essential to differentiate

two types of microplastics present in the sample.



Quantification: Count and quantify the number of microplastics of each size
category. The concentration can be expressed as the number of microplastics per unit
volume (e.g., particles per liter) or per unit weight of sediment (e.g., particles per gram).

Chemical Analysis (Optional): Depending on the research objectives, one should
characterize the composition of the microplastics (e.g., polymer type) using Fourier-
transform infrared spectroscopy (FTIR) or Raman spectroscopy.

Quality Control: Implement quality control measures throughout the analysis to
ensure the accuracy and reliability of the results. This may involve using blank controls
to check for contamination and repeating the analysis for validation.

Choosing appropriate methods and conducting the analysis precisely is essential, as
microplastics can be challenging to distinguish from natural particles or artifacts during
microscopy. Researchers often use multiple techniques and replicate the analysis to
ensure robust results.

The selection of specific methods and protocols can vary depending on the research
objectives, available resources, and the level of sensitivity required for detection.
Consulting scientific literature and established protocols is crucial when conducting such
analyses.

Using scattering techniques to determine the concentration of different microplastic
sizes in a water sample is innovative. Scattering refers to the interaction of light with
particles, and it has been widely used in various fields, including environmental science
and particle analysis [46—48]. However, applying scattering for microplastic analysis
comes with specific challenges and considerations:

Scattering Theory: Scattering measurements can provide valuable information
about the size, shape, and optical properties of particles, including microplastics.
However, interpreting the scattering data to determine the concentration of specific
microplastic sizes requires calibration and validation against known standards or well-
established models.

Polydispersity: In natural samples, microplastics are often polydisperse, meaning
that they come in a range of sizes rather than a single size. Scattering techniques need to
account for this polydispersity to accurately assess the presence and concentration of
different microplastic size classes.

Sample Complexity: Water samples contain various other particles and dissolved
substances that can also contribute to scattering signals. Careful sample preparation and

data analysis are necessary to isolate the scattering signals from microplastics.



Scattering Geometry: The scattering properties of microplastics depend on the angle
and wavelength of incident light and the scattering angle. Determining the optimal
scattering geometry for accurate measurement is critical.

Instrumentation: Scattering analysis requires specialized instruments, such as laser
diffraction analyzers or dynamic light scattering (DLS) devices, which may only be
available in some laboratories.

Sensitivity and Detection Limit: The sensitivity of the scattering technique must be
sufficient to detect the relatively small microplastic particles in environmental samples.
Additionally, the detection limit should be carefully determined to avoid false negatives.

Validation: As with any analytical method, validation of the scattering approach
against reference methods (e.g., microscopy) and known microplastic standards is crucial
to ensure accuracy and reliability.

While scattering techniques offer the potential for non-destructive and rapid
analysis, they may still need to be more widely adopted for microplastic study as other
more established methods like microscopy and spectroscopy. Researchers continuously
explore and develop innovative approaches to enhance microplastic detection and
characterization.

In this thesis, the theory of scattering, derivation of equations, and proposed system
are given in Chapter 2. Then, Chapter 3 explains the experimental setup, samples, image
processing, and machine learning steps. Chapter 4 includes the effect of parameters, i.e.,
concentration, particle size, particle refractive index, and wavelength of incident light, on
scattering. Machine learning integration and results are given in Chapter 5. The thesis
finishes with Chapter 6, conclusions, prospects, and societal and sustainable

contributions.
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Chapter 2

Background

2.1 How to Measure Scattering?

Scattering theory is a fundamental concept in physics that describes the behavior of
waves and particles when they interact with a potential or an obstacle. It provides a
mathematical framework to calculate the probability of a particle being scattered in a
particular direction, as well as the phase shift of the scattered wave. It has applications in
various fields, including nuclear physics, solid-state physics, astrophysics, and even
medical imaging. In this context, understanding scattering theory is essential for anyone
interested in exploring the behavior of waves and particles at the microscopic level.

There are several types of scattering, each characterized by the nature of the incident
wave and the target or scatterer involved. The most common types of scattering include:

Rayleigh Scattering: This type of scattering occurs when electromagnetic radiation,
such as visible light or radio waves, interacts with particles much smaller than the
wavelength of the radiation [49]. Rayleigh scattering is responsible for the blue color of
the sky, as well as the reddening of the sun at sunset.

Mie Scattering: Mie scattering occurs when electromagnetic radiation interacts with
particles comparable in size to the wavelength of the radiation [50]. This type of scattering

is responsible for the white color of clouds, as well as the colors of certain gemstones.

Rayleigh Scattering Mie Scattering Scattering larger particles
- Vi\f/'
>
N 7t

Figure 2.1 Optical scattering intensity levels at different angles dependent on
particle size.

"> Direction of incident light



As presented in Figure 2.1, forward scattering becomes dominant when particle size
increases [51]. Scattered light at lower degrees gets closer to zero-degree, making a
brighter and smaller spot on the screen.

Compton Scattering: Compton scattering occurs when high-energy photons, such
as X-rays or gamma rays, collide with charged particles, such as electrons [52]. During
this process, the photon loses energy and momentum while experiencing changes in the
propagation direction.

Rutherford Scattering: Rutherford scattering occurs when charged particles, such
as alpha particles, interact with the nucleus of an atom [53]. During this process, the
trajectory of the charged particle is deflected due to the electrostatic repulsion between
the two charged particles.

Elastic Scattering: Elastic scattering occurs when the energy and momentum of the
incident particle are conserved during the scattering process [54]. This type of scattering
is characterized by a change in the direction of the incident particle without any change
in its energy or wavelength.

Inelastic Scattering: Inelastic scattering occurs when the energy and momentum of
the incident particle are not conserved during the scattering process [55]. This type of
scattering is characterized by a change in energy, wavelength, or both.

Scattering theory can be used to detect and characterize microplastics in water by
analyzing how light scatters off the particles. When light passes through a medium, such
as water, it interacts with particles in the medium, causing it to scatter in different
directions. The scattered light can be measured and analyzed to determine the size and
concentration of the particles in the medium. Scattering theory can be used in several
ways to detect microplastics in water:

Dynamic Light Scattering (DLS): DLS is a technique that measures the intensity
and time dependence of scattered light from particles in a liquid to determine their size
distribution [56]. Their size distribution can be determined by analyzing the scattered light
from microplastics as a function of time by relating these measurements to Brownian
motion.

Static Light Scattering (SLS): SLS is a technique that measures the intensity of
scattered light from a sample of known concentration and compares it to a standard curve
to determine the concentration of the particles in the sample [57]. This technique can be

used to quantify the concentration of microplastics in water.

12



Multi-Angle Light Scattering (MALS): MALS is a technique that measures the
intensity of scattered light from a sample at different angles to determine the size
distribution and concentration of the particles in the sample [58]. This technique can
determine the size and concentration of microplastics in water.

In this study, after investigation of settlement and having the same scattering angles
for different concentrations, we assume that the movement of particles does not affect
experiments. Therefore, minor effects of DLS can be ignored, and the system can be

considered as an SLS concept.
2.2 Derivation of Mie Theory

The development of Mie theory is a significant milestone in the understanding of
light scattering by particles. Mie scattering theory is a theoretical framework that
describes the scattering of electromagnetic radiation by particles comparable in size to
the wavelength of the radiation. This type of scattering is named after the German
physicist Gustav Mie, who first developed the theory in 1908. The Mie theory is an
extension of Rayleigh scattering theory, which is valid for particles much smaller than
the wavelength of the radiation. It is particularly relevant in the study of atmospheric and
oceanic optics, as well as in the field of materials science.

Mie theory provided a rigorous theoretical framework for calculating the scattering
and absorption of light by spherical particles of different sizes and refractive indices,
irrespective of the size of the particles compared to the wavelength of incident light.

Before Mie's work, a more straightforward scattering theory, known as the Lorenz-
Mie theory, was developed independently by Hendrik Lorentz and Gustav Mie's
colleague, Arnold Sommerfeld [50,59,60]. This theory addressed the scattering of
electromagnetic waves by a dielectric sphere and provided solutions for the case of
Rayleigh scattering (when the particle size is much smaller than the wavelength) and
geometrical optics (when the particle size is much larger than the wavelength). However,
the Lorenz-Mie theory lacks a complete solution for particles of intermediate sizes.

Gustav Mie, inspired by the work of Lorenz and Sommerfeld, expanded the
theoretical framework and found exact solutions for the scattering of light by spherical
particles of any size and refractive index. His approach used spherical harmonics and
Bessel functions to solve Maxwell's equations for light scattering from a sphere

[49,60,61]. The resulting solution, now known as Mie theory, provided a complete
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description of light scattering by particles with sizes comparable to the wavelength of
light.

Mie's seminal work, "Beitrdge zur Optik triilber Medien, speziell kolloidaler
Metall6sungen" (Contributions to the optics of turbid media, specifically colloidal metal
solutions), was published in 1908 [62,63]. In this work, Mie presented the complete
mathematical formalism and derived explicit expressions for the scattering and absorption
cross-sections, phase functions, and extinction coefficients of spherical particles.

Initially, Mie's theory received little attention in the scientific community due to the
complexity of mathematical solutions. Moreover, the theoretical calculations were
laborious, and the lack of computational tools in that era hindered its immediate practical
applications. As a result, the full significance of Mie theory was not immediately
recognized.

Mie's theory remained largely overlooked until the 1950s, when researchers started
recognizing its potential significance for various fields, including atmospheric physics,
astronomy, and materials science [62—64]. With the advent of computers and numerical
methods, it became feasible to calculate Mie scattering for particles of different sizes and
refractive indices, making it a powerful tool for experimental data interpretation and
analysis.

As the use of Mie theory became more widespread, it was integrated with
experimental techniques to characterize particles in various applications. For instance, it
found application in particle sizing and characterization of aerosols, droplets, colloids,
and biological particles [65—67].

Over time, modifications and extensions to Mie's theory were developed to account
for different particle shapes, such as spheroids and cylinders, and to include additional
factors like multiple scattering effects and particle ensembles in complex media.

Today, Mie theory continues to be a fundamental tool for understanding light
scattering by particles. It remains as a crucial component of modern light scattering
techniques used in diverse fields, including atmospheric science, remote sensing,
environmental monitoring, and materials characterization. Its enduring relevance speaks
to the profound impact of Gustav Mie's groundbreaking work on light scattering theory.

Specifically, Mie scattering is a theoretical model that describes light scattering by
spherical particles, such as dust, water droplets, and biological cells [68—71]. While this

theory is a powerful tool for understanding light scattering in many physical and
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biological systems, there are several limitations to the model that should be considered
[29,72]:

Size and shape: Mie scattering only applies to spherical particles with a uniform
refractive index.

Size parameter: Mie scattering is most accurate for particles whose size is much
larger than the wavelength of light being scattered. It may not be a good approximation
for particles smaller than the wavelength of light or larger than several wavelengths.

Homogeneity: Mie scattering assumes that the medium in which the particles are
suspended is homogeneous and isotropic. It may not accurately describe the scattering
behavior if the medium is not homogeneous or if there are gradients in the refractive index
or density.

Multiple scattering: Mie scattering assumes that the scattered light only undergoes
a single scattering event. In reality, light can experience multiple scattering events, which
can cause deviations from the Mie scattering predictions.

In Mie scattering theory, the scattered light is not uniformly distributed in all
directions as opposed to Rayleigh scattering. Instead, the scattered light is concentrated
in several directions, known as Mie resonances. These resonances are determined by the
scattering particle's size and refractive index and the incident radiation's wavelength [60].
The theory has applications in a wide range of fields, including meteorology, remote
sensing, and the design of optical devices.

This part gives the detailed derivation of Mie theory equations [49,50,60,73,74]to
provide a complete understanding of the theory. Spherical coordinates of point P will be
denoted as ( 7, 8, ¢) with the usual meaning of the symbols. The vector OP which starts
from the center of the sphere and goes through the radius and has the rectangular
components (x,y, z) or (rcosgsinf, rsingsing, rcosf) is denoted by r.

The scalar wave equation,
AY + k*m*P =0 (2.1)

where m is complex refractive index (m = n,4, + ik and the imaginary part is ignored)

of the particle, is separable in these coordinates and has elementary solutions of the

following type:

__cosle
"~ sinlg

Yin } Plcos(0)z, (mkr). (2.2)
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Here, n and [ are integers, (n > [ > 0), the first factor may be either a cosine or a
sine; the second factor is an associated Legendre polynomial; the third factor may be

spherical Bessel function defined by

2a(p) = %znm () (2.3)

in terms of ordinary Bessel functions. The general solution of the scalar wave equation is
a linear combination of such elementary solutions.
By virtue of formulae VH = ikm?E and VE = —ikH, the field vectors E and H in

a homogeneous medium satisfy the vector wave equation.
AA + k*m?A = 0. (2.4)

Elementary solutions of this equation may be found from the following theorem. If

Y satisfies the scalar wave equation, the vectors My, and N, defined by

M, = curl(ry), (2.5)
mkNy, = curlMy, (2.6)

satisfy the vector wave equation and are, moreover, related by
mkMy, = curlNy,. 2.7)

A simple substitution shows that, if u and v are two solutions of the scalar wave
equation and M,,,N,,, M,, and N,are the derived vector fields, the Maxwell equations

VH = ikm?E and VE = —ikH are satisfied by

E= M,+iN,

(2.8)
H=m(—M, +iN,) (2.9)

The full components of My, and N, are
M, =0, mkN, =209 4 m2r2py, (2.10)

ar?
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2
My =—20% kN, =120 2.11)

= Tsin(9) d¢ 8~ v arae’
_ 130y _ 1 2(ry) (2.12)
My = r 90’ mkN, = rsin(8) 9rde

Starting with Maxwell’s equations, an incident plane wave of electromagnetic
radiation with a known wavelength and polarization interacts with a spherical particle.

The incident wave (of amplitude 1) is described by Egs. 2.13-2.14.

E = axe—ikz+iwt (2_13)
H = aye—ikz+iwt (2_14)

where a, and a,, are unit vectors along the x- and y-axes, k is the propagation constant
(= wave number) in vacuum and w is the frequency. Assume that the particle experiences
an electric field due to the incident wave, which causes it to scatter radiation. A collection
of outgoing spherical waves with various scattering angles and polarization components
represents the scattered wave. By selecting u and v as the Eqs. 2.15-2.16, the same fields

are expressed using the same format.

u=e™cose i(_i)nﬂPl(cose)j (kr)
] n(n + 1) n n (2.15)
n=
b= e™sing i(—i)ﬂﬂpl(cose)j (kr)
] nn+1) " " (2.16)
n=

where j, is the spherical Bessel function derived from the Bessel function of the first
kind, J,41/2. The next step is applying the proper boundary conditions to the spherical
particle's surface to maintain the continuity of the electric and magnetic fields. These
conditions include that the electric and magnetic fields' tangential components are equal
at the particle's surface.

On deriving the tangential field components, the following functions of the scattering

angle, which are Legendre polynomials, appear:

dP,(cosB)

2.17
dcos0 ( )

1
1, (cos@) = <inB Pl(cosH) =
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d
7,(cos0) = @P"l (cos@) = cosO.m,(cosO) — sin?0(dm,, (cosh))/dcosd  (2.18)

The boundary conditions of n X (H, — H;) = 0 and n X (E; — E{) = 0 are used
to find the undetermined coefficients, where n is normal to the boundary surface. The
field components Eg and E, contain the expressions v and 0(ru)/n,q,0r. The
components Hy and H,, contain mu and d(rv)/or.

These four expressions must have equal values at either side of the boundary
surface, r = a, where a is the radius of the sphere. The equations are simplified by
defining a new set of functions that differs from spherical Bessel functions by an
additional factor, z. The Ricatti-Bessel functions, ¥, and { are defined by the half-integer-
order Bessel function of the first kind as in Eq. 2.19 and Eq. 2.20, respectively, where

lpn(z) = Zjn(Z) = (7TZ/2)1/2]n+1/2(Z) (219)
0n(2) = zhP (@) = (n2/2)2H ), ,(2) = Wo(2) + ixn(2) (220)
Xn(2) = =20y (2) = —(12/2)Y N1 )2 (2) (2.21)

Hy11/2(2) is the half-integer-order Hankel function of the second kind and X,,(z)
is defined by half-integer-order Bessel function of second kind (N;,44,,(2)) as presented
in Eq. 2.21.

The argument, x = ka = (2nan,,.q)/A. Multiple components are formed from the
scattered wave. Electric or magnetic dipole, electric or magnetic quadrupole, and other
types of electromagnetic radiation scattering are all represented by distinct multipole

terms.

[mu]: lpn (x) - an{n (x) = npartcnlpn (npartx) (2.22)
1 0(ru) ) , ,

[Tl_p ar l: () — and n(x) =cp¥ n(npartx)' (2.23)

wl () = b () = ¥ (parex), (2.24)

[a grrv) : W () = bpd’ (X) = Ny W' (M) (2.25)

By taking into account the interactions between the incident and scattered waves,

scattering coefficients for the multipole expansion are calculated. This entails resolving
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an equation system that fulfills the boundary conditions. On eliminating c,, from the first

pair and d,, from the second pair of equations, the results are:

. nmedlp,n(npartx)an(x) - npartlpn(npartx)qﬂn(x)

n =

b, =

nmedqjln (npartx){n (x) — npartlpn (npartx)zln (x)

npartqﬂn (npartx)lpn (x) - nmedan (npartx)qﬂn (x)

npartqﬂn (npartx) Cn (x) — NmeaPn (npartx) (’n (x)

(2.26)

(2.27)

where 1.4 1s the refractive index of the medium. For ¢, and d,,, the Eq. 2.28, is found

as common numerator with the same respective denominators.
Y ()8 () = U ()¢, (x) =i

The scattered wave

u= ——.e kT +Wt 0o s Z a 2n g ————P(cosH)
kr "n(n+1)

v = —ie —Ikr+wt ging E b ﬂPl(cosﬁ)
kr ] "nn+1) "
n=

The resulting field components can be written at once in the form:

[ I
Eg=H,. ——e *tWtcospS,(0),

|
_ —e‘Lk”‘Wtsinq)Sl(H),

_E(p = H9= o

where S;(0) and S,(0) are angular intensity functions as:

S.(0) = %{annn(cose) + b, t,(cos6)},
S,(0) = n=1%{bnnn(0059) + a,t,(cosh)}.
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Differential scattering cross-sections are defined as given in Eq. 2.35 and Eq. 2.36.

, A2 (2.35)
Oyy = m|51(9)|2

, pE 5 (2.36)
0y = m|52(9)|

where the subscription V'V refers to vertically polarized incident light and vertically
polarized scattered light with respect to incident scattering plane and as similar HH refers
to horizontally polarized incident light and horizontally polarized scattered light. The
other versions, VH and HV, have significantly smaller contributions that are generally
ignored [61,73,74].

Scattering cross-sections are determined for various scattering processes, such as
the total scattering cross-section, the absorption cross-section, and the scattering phase
function. These numbers reveal the radiation's polarization, angular dispersion, and
intensity. One can examine the scattering behavior for various particle sizes, refractive
indices, and incident wave qualities after determining the scattering coefficients and cross
sections. This analysis aids in understanding the optical characteristics and scattering

patterns of the spherical particles [61,73,74].
2.3 Proposed System and Developments

Considering the consistent conditions of the current devices, such as huge device
dimensions, high costs, maintenance requirements, and alignment issues, we need
portable, low-cost, small setups due to rapidly increasing global microplastic problems.
As stated in the introduction chapter, it is urgently needed to take precautions at the origin
of those pollutants. Once it is possible to detect and classify those particles, it would be
easier to define their source and define global measures to decrease the level of
microplastic pollution.

In addition to micro size, with minor adjustments, it is possible to detect nano-size
particles with the same setup. A thin lens to focus the light on a much smaller area and
look for just a couple of particles instead of high concentrations and zoom the images

taken at the laboratory would open another window to research on nano plastics.
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Furthermore, once the appropriate solvents, concentrations, and incident light are
provided, it would be possible to investigate different types of particles. This point will
be stated again as future prospects part of this thesis.

In Figure 2.2, the illustration of the experimental setup is presented. Directing a
laser beam onto samples in a cuvette through an iris and neutral density filter is the part
before scattering occurs. When light hits the particles in the cuvette, it scatters, and the
pattern falls onto the screen behind. Having particles at different sizes, refractive indices,
and concentrations and using different wavelength of incident lights results in different
scattering patterns. Thus, by a cost-effective setup, unique scattering patterns are

acquired.

Azimuthal angle

X

Scattering angle

Figure 2.2 Illustration of the experimental setup, (a) light source, (b) iris, (¢) neutral
density filter, (d) cuvette holder and cuvette, and (e) graded white screen, (inset)
azimuthal and scattering angles.

Once the raw images are collected from the setup (Figure 2.3(a)), we crop them and
obtain the upper right quartile as in Figure 2.3(b). This is possible because of spherical

particles that scatter light symmetrically, so we work on this quarter only to decrease
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computational cost. Next, we convert the image into grayscale (Figure 2.3(c)).
Comparison of red, green, and blue images is possible when we analyze them in the gray
version. Then, we draw azimuthal lines from the center through the outer rings to get
scattering information. Again, symmetry gives each line the same pixel values on it. To

decrease noise and error, we take the average values on that azimuthal line (Figure 2.3(d)),

and the scattering information is ready to plot as given in Figure 2.3(e).

(a) 2 (c) (d) (e)
Raw image Cropped Black/White Azimuthal Angular
from setup image image integration scattering

Figure 2.3 Representation of image processing flow from the raw image to the
scattering pattern.

The peaks on that scattering line represent bright interference rings, and the gaps
are destructive combinations. Having different samples mean having different patterns
and different scattering lines. After all those steps, different sets of peak angles are aimed

to use as random forest algorithm inputs.
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Chapter 3

Experimental Work

3.1 Sample Preparation

Investigating the impact of material type (particle's refractive index) and particle
size is possible using commercially available microparticles made of two different
materials, melamine (Me) and polystyrene (PS), at diameters of 8 pm and 10 um. In order
to examine the relationship between particle number and scattering behavior, we also
generated samples at various concentrations.

Commercially available 8 pm + 100 nm-sized melamine resin (Me8) (95523-Sigma
Aldrich), 8 um £ 97 nm-sized Polystyrene (PS8) (84192-Sigma Aldrich) and 10 pm +
110 nm-sized Polystyrene (PS10) (72986-Sigma Aldrich) microspheres, were used in the
experiments to test the match between the predictions of Mie theory that we calculated
numerically and the experimental results. Microscope images of Me and PS spheres are

given in Figure 3.1.

Figure 3.1 40x-zoomed microscope images of (a) Me8, (b) PS8, and (c) PS10
particles. Scale bar: 50 um.

Samples were prepared at the concentrations from 0.05 fM up to 3.00 fM by adding
them into ultra-pure water using a micropipette and kept in vials, Figure 3.2. The samples
were shaken using a vortex before the experiments to make the solution much more

homogeneous and by hand just before the measurements one more time.
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Figure 3.2 Samples prepared at different concentrations.

In our experiments, the safe time limit was about 5 minutes. The sinking of the
particles deeper in the cuvette and around 5% decrease in scattering intensity was
observed after 5 minutes. Our measurement time for each sample was much shorter than
this limit. In addition, 0.05 - 3.00 fM range corresponds to 3x10* — 180x10* particles/mL,
higher than the values studied in the literature. However, the sizes of the particles reported
in the literature are about 10-100 times bigger, significantly increasing the scattering
cross-section. Considering this size difference, we believe that it is reasonable to have
0.05 fM - 3.00 fM concentration range in our experiments for the particle sizes we are
interested in [75].

There is an uncertainty in the literature regarding the refractive index of Melamine
particles [76—78]. Thus, we studied the range given in the literature, 1.530-1.922, for the
red wavelength range. The most satisfying match with the Mie theory and experiments
was obtained as 1.79 at 656.3 nm. We used refractive indices of 1.89 and 1.96 for 514.9

nm and 403.8 nm, respectively.
3.2 Experimental Setup

For the measurements, at room temperature (22 °C), the laser power was kept
between 150 - 170 uW for collimated blue, green, and red lasers emitting light at 403.8
nm, 514.9 nm, and 656.3 nm, respectively (CPS405, CPS520, and CPS650F-
THORLABS). The beam was directed through an iris to squeeze the beam radius. Just
after the iris, a neutral density filter was used to adjust the laser power to the same level
during the experiments. A cuvette holder was 3D printed to keep the cuvette in the
optimum orientation. Finally, a graded white screen was placed to have the scattering

pattern, as presented in Figure 3.3.
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Figure 3.3 Experimental setup, (a) light source, (b) iris, (¢) neutral density filter, (d)
cuvette holder and cuvette, (e) graded white screen, and (f) camera module.

Subsequently, each sample was placed into cuvettes, and the scattering patterns of
the laser light at different wavelengths from these particles fell on a screen set 6.5 cm
apart from the cuvette. 200 images of these scattering patterns were taken in a dark
environment by a CMOS camera (Raspberry Pi Focus Adjustable Camera Module-
2592x1944 pixels), -100 ms shutter speed and 20 ms exposure time- controlled by
Raspberry Pi 4 - 4GB RAM. In total, 1800 images are recorded for processing.

3.3 Image Processing

Recorded images required following image processing steps to obtain some digital
data to be used in machine learning. For each sample, 200 images were taken, and

processing individually was not possible due to the high level of noise.
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Figure 3.4 (a) Raw scattering image of Me8 particles excited by a green laser, (b)
cropped image, (¢) gray-scale image, (d) data lines on scattering image, (e) average
scattering behavior of 86 lines (5°:1°:90°) on 1.50 fM 8 pm Me particles.
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The images of the scattering patterns (Figure 3.4(a)) were analyzed numerically. To
minimize noise, the average of 200 images was calculated for each sample’s scattering
pattern. Next, as illustrated in Figure 3.4(b-c), all the images were cropped and converted
to grayscale. To decrease the computational cost, 86 lines were defined with 1° azimuthal
angle increments between 5° and 90° starting from the center towards the outer regions
on the upper-right quartile of the images as given in Figure 3.4(d), (Figure 3.4(d), presents
only 10° azimuthal increment for better visualization). As the next step, the average pixel
data on all those 81 lines was taken to decrease the noise level on measurements. Finally,
azimuthal angular scattering intensity was obtained, as presented in Figure 3.4(e).
However, it was still noisy to identify peak angles. Therefore 2nd-degree polynomial was
fitted to the experimental data around each peak because fitting a polynomial with an
exact high degree, i.e., 25", was not an appropriate match for every scattering data point.
We assumed that fitting a second-degree polynomial would provide consistent
methodology during the analysis. Therefore, using an angle range from the left and right
side of each peak, we fit a second-degree polynomial and used the angle of the peak point

as experimental peak angles.
3.4 Random Forest Algorithm

Random Forest is a popular machine-learning algorithm for classification and

regression tasks. It is an ensemble learning method that creates a set of decision trees and

combines their predictions to make a final prediction [79-81].
Data Set

TREE #1 TREE #2 TREE #3 TREE #4
CLASS B CLASS D CLASS C CLASS B

| | | |

FINAL CLASS

Figure 3.5 Structure of random forest algorithm [82].
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The algorithm works by randomly selecting a subset of the data and a subset of the
features for each tree in the forest. Then, a decision tree is built using these subsets of
data and features. The process is repeated multiple times, resulting in a forest of decision
trees, as presented in Figure 3.5.When predicting a new data point, each tree in the forest
independently makes a prediction, and the final prediction is made by taking the majority
vote of all the trees in the forest.

Random Forest has several advantages over a single decision tree. It is less prone
to overfitting, as the individual trees in the forest are trained on different subsets of the
data and features. It can handle high-dimensional data and is relatively easy to use, as it
requires a few hyperparameters to be tuned.

Given the inherent numerous scatterings of the spheres in liquid, the random forest
algorithm offers the opportunity to categorize the measured scattering data, which would
not be a simple operation to manage theoretically. Random forest was utilized in this
investigation because of its straightforward design and repeatable outcomes. The
correspondence between experimental findings and numerical solutions, explained in
detail in the following chapters, provided the opportunity to use numerical solutions for
further analysis. This match made it possible to apply random forest easily for data
preparation. This numerical solution methodology produced the data set, including the
incidence wavelength, particle size, material type, and bright ring angles used to run the
algorithm. A test set of data was created from 20% of all measurements. The remaining
part was used to train the random forest algorithm.

The inputs for classifying material types and particle sizes were wavelength of
incident light and bright ring angles. The concentration and scattering intensities were not

required for this stage because it was discovered during the image analysis that the peaks
were at the same angle for a specific material type and size. However, we are aware that
as sphere concentration in samples grew, the total scattering intensity also had to rise.

Overall, Random Forest is a robust and widely used algorithm in machine learning

that can be used for various tasks, such as classification, regression, and feature selection.
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Chapter 4

Effects of Concentration, Particle Size,
Material, and Wavelength of Incident
Light

There are parameters affecting scattering during the investigation of scatterers. The
concentration of particles, particle size, refractive index, material that particles are made
of, and wavelength of incident light. In this chapter, the effects of those parameters will
be investigated, and their relevance to this study will be discussed. Experimental and
theoretical results will be given. For theoretical results, equations were embedded in a

MATLAB code, which is given in Appendix A.

4.1 Effect of the Sample Concentration on Scattering

The intensity and pattern of Mie scattering can be affected by the concentration of
the scattering particles. At low concentrations, Mie scattering is typically linearly
proportional to the concentration of the scattering particles. This means that if the
concentration of the scattering particles is doubled, the intensity of the scattered light will
also double. However, the relationship between Mie scattering and particle concentration
at high concentrations becomes more complex.

At high concentrations, the particles can interact with each other, leading to a
phenomenon known as multiple scattering. Multiple scattering can cause the scattered
light to be redirected and interfered with, resulting in a more complex scattering pattern.
In extreme cases, the numerous scatterings can lead to a phenomenon known as optical
turbidity, where the scattered light is so intense that it can obscure the light source and

reduce the visibility of the scattering particles.
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Figure 4.1 Scattering images of Me8 particles by red, green, and blue lasers with
increasing concentration.
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In Figure 4.1, it is presented that the scattered light intensity has a direct relation
with number of the particles in samples which is called concentration. The effects of
concentration on Mie scattering can range from a linear increase in scattering intensity at
low concentrations to complex multiple scattering and optical turbidity at high
concentrations.

It was explained in Chapter 1 that forward scattering is dominant in Mie scattering.
Considering the equations in Chapter 2, when the number of particles increases, the
scattered light at close to zero angles joins the zero-degree scattering, and forward
scattering increases the intensity. Therefore, increasing the concentration is expected to
result in brighter and wider centers on images. In Figure 4.2, scattering of (a, b, ¢) MeS,
(d, e, ) PS8, and (g, h, 1) PS10 particles are presented. As expected, scattering intensity
gets higher with increasing concentration from 0.05 fM to 3.00 fM. In this figure, (a, d,
2), (b, e, h), and (c, f, 1) represents red, green, and blue light, respectively.
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Figure 4.2 Scattering intensity vs. concentration change for Me8 (a, b, ¢), PS8 (d, e,
f), and PS10 (g, h, i) materials by red (a, d, g), green (b, e, h), and blue (c, f, i) lasers.

In addition to the concentration, the settlement of the particles is also important. As
discussed in previous chapters, particles are shaken by vortex before experiments and by

hand just before the measurements. However, due to gravity, particles move towards the
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bottom of the cuvettes during the photoshoot. If those particles go down fast, there will
be less than the targeted concentration, leading to less scattering intensity. Less scattering
intensity may have two meanings. First, particles move down too fast, and we lose
information; second, the sample concentration is less than targeted. To investigate this
issue, instead of 200 images per sample, 800 images were taken consecutively. Grouping
them as 100-image packages and plotting their scattering information on the same graph
with the closest higher and lower concentration samples would give us information about
the reliability of our measurement. In Figure 4.3, gray-scale images belonging to an
average of 100 consecutive images of the same sample. As is not possible to conclude
from raw images directly, so we performed image processing steps and obtained

scattering lines for those image packages.

. -
Figure 4.3 Scattering patterns for 2.00 fM.PSS particles for consecutive 100 images.

(a) 1-100%™, (b) 101-200%, (c) 201-300™, (d) 301-400", (e) 401-500, (f) 501-600", (g)
601-700", and (h) 701-800".
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Figure 4.4 Scattering intensity change by time for PS8 particles excited by a green
laser.
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As given in Figure 4.4, even the last package of 100-image (701-800), meaning that

the lowest scattering intensity among the groups has higher scattering intensity than the

closest lower one, 1.25 fM. Therefore, settlement is not an issue in our measurements.

Scattering intensity is important while determining the concentration of particles.

The area under scattering lines gives information about how much light is scattered,

which is directly related to the concentration. We calculated the areas under scattering

lines for three different measurements and plotted that data. Then, fitting a curve as a

calibration curve provided information about the amount of scattered light scattered vs

concentration. By using this curve, it is possible to obtain concentration information of a

sample by using the amount of scattered light. After that point, it is just an image

processing step to calculate the value for an unknown concentration to define its value.
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Figure 4.5 Total scattering intensity vs concentration change for Me8 (a, b, c¢), PS8
(d, e, f) and PS10 (g, h, i) materials by red, green, and blue lasers.

As presented in Figure 4.5, there are different calibration curves for different

particle sizes, wavelength of incident light, and refractive index. (a, b, ¢) represents Me8,
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(d, e, f) represents PS8 and (g, h, i) represents PS10 particles. Three columns in figure
present red, green, and blue light, respectively. It is known that scattering is dependent on
all those parameters. If there are enough different particles and lasers, a general equation
can be generated depending on particle size, refractive index, concentration, power, and
wavelength of incident light.

To sum up, after the experiments, we observed that, as expected, forward scattering
gets dominant with increasing concentration. In addition, the same sample scatters at the
same peak angles, interference rings, and this provides an opportunity to use those
interference ring angles specifically for that material identification. In our concentration
range, because the lines go saturation, it shows that we already reached the limit of our

setup to determine the concentration of the samples.

4.2 Effect of Particle Size on Scattering

In Mie scattering, the scattered light depends strongly on the particle size and the particle's
refractive index. As presented in Figure 4.6, for bigger particles, peaks of scattered light
moves through the zero angle and make the forward scattering dominant. Although figure
represents only first four peak angles, it can be estimated that for bigger particles, there

are more peak points than smaller particles.
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The size of the particle determines the angle and intensity of the scattered light. In

general, smaller particles scatter light more in the forward direction, while larger particles
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scatter light more in the backward direction. This is because larger particles diffract light

more, causing it to scatter in multiple directions.
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Figure 4.7 Total scattering intensity vs. particle size change for Me8 particles by
green laser.

In the same medium (water) and using the same wavelength of the incident light,
the effect of particle size was investigated to study how angular scattering changes based
on numerical calculations. In Figure 4.7, the peaks of the scattering angles as a function
of particle size were presented for the green light (at a wavelength of 514.9 nm) and water
(n=1.3344). The particle diameter increases from 5 to 100 um with a step size of 1 pm.
For a given wavelength of light, there is a characteristic size of particle that scatters the
most light in the forward direction, called the Mie scattering peak. The Mie scattering
peak is shifted to smaller angles for shorter wavelengths of light.

In laboratory experiments, to be able to monitor the effect of particle size, PS8 and
PS10 particles were used. 8 and 10 um size of those particles provided information about
particle size parameters when other parameters, i.e., wavelength of incident light, particle
refractive index, and concentration, were constant. As expected, forward scattering
became dominant when the size of Polystyrene particles increased. More peaks at the
same range of scattering angle (5- 21 degrees) present that the scattered light at small
angles got closer even combined with zero-degree scattering. Thus, as given in Figure
4.8, 10 um-size PS particles have a brighter spot at the center and a brighter interference

ring at the same range of images.
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Figure 4.8 Scattering patterns of PS8 (a, c, e) and PS10 (b, d, f) particles at 1.50 fM
concentration to monitor particle size effect by 656.3 nm, 514.9 nm, and 403.8 nm
lasers.

In summary, the particle size significantly affects Mie scattering, with smaller
particles scattering more light in the forward direction. In comparison, larger particles
scatter more light in the backward direction. The Mie scattering peak is shifted to smaller

sizes for shorter wavelengths of light.
4.3 Effect of Particle Refractive Index on Scattering

The refractive index of particles affects the scattering pattern because it determines
the phase shift of the scattered wave relative to the incident wave. This phase shift is
caused by the change in the speed of light as it passes from one medium (air) to another
(the particle).

In Figure 4.9, the relation between refractive index of the particle and scattered light
intensity is investigated. In (a, c, e), the transition of scattered light intensity and (b, d, e)

the peak angles are presented. As expected, while red laser (a, b) has wide but low number



of peaks, the blue (e, f) has many but narrower peaks. Also, increasing the refractive index
of the particle creates more peaks but decreases the intensity of each peak of scattered

light.
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Figure 4.9 Scattering intensities vs. particle refractive index for red, green, and blue
lasers (a, ¢, e), locations of first four peak angles vs. particle refractive index for red,
green, and blue lasers (b, d, f).

In the laboratory, Me8 and PS8 particles were used to investigate the effect of
particle refractive index. This is one of the key points of this study -it is worth repeating-
there is a lack of study in terms of the same size and shape but material of particle in the
literature. Theoretically, if a particle has a higher refractive index value than those with a

lower refractive index, it scatters the light with wider angles. Therefore, fewer bright
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interference rings are observed at the same distance from the center of an image. As
presented in Figure 4.10, the left column (Me8 with lower refractive index) has more
rings than the right one (PS8 with higher refractive index). It should not be forgotten to

compare the refractive indices at proper wavelengths due to dispersion.

Figure 4.10 Scattering patterns of Me8 (a, c, e) and PS8 (b, d, f) particles at 1.50 fM
concentration to monitor refractive index effect by 656.3 nm, 514.9 nm, and 403.8
nm lasers.

In summary, the refractive index of particles plays a crucial role in Mie scattering

by influencing the scattering angle and polarization of the scattered light.
4.4 Effect of Incident Light’s Wavelength on Scattering

The scattered radiation depends on the particles' size, shape, and refractive index,
as well as the incident wavelength of the radiation. The size parameter, defined as the

ratio of the particle radius to the wavelength of incident light, determines the scattering

37



behavior of Mie scattering. As the size parameter increases, the scattering pattern changes
from forward to backward scattering.

Generally, the scattering strongly depends on the wavelength of incident light for
small particles (size parameter << 1). When the size of the spherical particle is comparable
to the wavelength of the incident radiation, the scattered light undergoes constructive and
destructive interference, leading to complex scattering patterns. This phenomenon is
known as resonance scattering. The resonance wavelength, at which the scattering is the

strongest, depends on the size and refractive index of the particle.
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Figure 4.11 Calculated angular distribution of the scattering cross-section of 8 pm-
sized particles in water for three different wavelength of incident lights. The
triangles represent the locations of the scattering peaks.

As the wavelength of incident light increases, the scattering becomes less sensitive
to the size of the particle, and the scattering pattern becomes more uniform as presented
in Figure 4.11. This is because the effect of resonance scattering diminishes as the particle
size becomes small compared to the wavelength of the incident radiation. In this case, the
scattering pattern becomes more similar to Rayleigh scattering, which occurs when the
size of the particle is much smaller than the wavelength of the incident radiation.

It is the starting point of this study in the laboratory. We were expecting that
different incident lights (lasers) needed to provide different scattering patterns, and it had
to be observable. In addition, different sizes of the same particle, and different particles
at the same size were aimed to result in different images. All those expectations occurred
successfully. We could observe those different patterns using a cost-effective setup of a
few hundred euros. In addition, three different sample sets and measurements at different

times provided consistent results.
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Figure 4.12 Scattering patterns of Me8 (a,b,c), PS8 (e.f,g), and PS10 (i,j,k) particles
at 1.50 fM concentration and their scattering data to monitor wavelength of incident
light effect by 656.3 nm (d), 514.9 nm (h), and 403.8 nm (l) lasers.

In Figure 4.12, it can be seen that for Me8 particles (a, b, ¢) we see a smaller number
of peaks than PS8 particles (e, f, g) where Me8 has higher refractive index than PS8. Also,
PS10 (i, j, k) have narrower peaks and higher intensities than PS8 (e, f, g) as a result of
bigger size. All those patterns show the consistency between theoretical expectations and
experimental results.

In summary, the wavelength of incident light affects Mie scattering by determining
the resonance wavelength, which is the wavelength at which scattering is the strongest.
As the wavelength increases, the scattering becomes less sensitive to the size of the

particle, and the scattering pattern becomes more uniform.
4.5 Analysis of Mixture of Particles in One Sample

As a further step, melamine and polystyrene particles were mixed at known
concentrations to investigate and characterize multiparticle samples. This provides a
closer approach to real-life cases.

Me8-PS8, Me8-PS10, and PS8-PS10 pairs were mixed at a 1:1 ratio for 0.50 fM,

1.00 fM, and 1.50 fM concentrations. In total, nine combinations for each wavelength of
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incident light were investigated for each pair. In addition, UPW measurements were done
to observe the light scattering in a particle-free environment. The aim was to reveal the
relationship between the individual scattering of two samples and their combination.

In this part of the study, we experienced several challenges. First, some of the
particles stuck to each other and created a bigger form which caused a zero-angle
dominant scattering and less intensity at wider angles. This was an expected result
because, as explained in part 4.2, forward scattering gets dominant for bigger particles,
and a lower light intensity is observed at wider angles compared to the smaller particles’

scattering, as presented in Figure 4.13.
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Figure 4.13 Scattering of Me8 and PS8 particles at 1:1 ratio for 0.50 fM Me8 with
0.50 fM PS8, 1.00 fM PS8, and 1.50 fM PS8 concentrations by blue light.

o
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Another problem was revealing the relation between individual scatterings and the
combination. Even though there were only two different types of particles regarding the
size or material type, the scattering of the mixture could not be related to the individual
scattering information as given in Figure 4.14, a mixture of two particles (a) with different

sizes, (b) same size but composed of different materials.
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Figure 4.14 Scattering of (a) PS8 and PS10 particles at 1:1 ratio for 1.50 fM PS8 with
1.50 fM PS10, (b) Me8 and PS8 particles at 1:1 ratio for 1.50 fM Me8 with 1.50 fM
PS8 by green light.

This behavior may occur because of the size distribution, homogeneity, or multiple
scattering. Here, as we assume, if we have particle size distribution at a broader range,
more than two different size values, instead of bright peak angles, we will observe a
cloudy pattern with scattered light but no peaks.

At this point, compared to the particle-free, UPW scattering patterns, we observe a
clear difference where we can talk about the existence of the microplastics in a sample.
However, we cannot characterize this with a low-cost setup, as presented in Figure 4.15.

There may be need for more detectors, lenses to change focus etc.
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Figure 4.15 Scattering of Me8 and PS10 particles mixture at 1:1 ratio for 1.50 fM
Me8 with 1.50 fM PS10 and ultra-pure water (UPW) by red light.
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Chapter 5

Machine Learning Integration

Previous chapters showed that the equations to calculate scattering is difficult and
complex for hand calculations. Thus, they were embedded in numerical solvers. However,
for rapid analysis and ease of use, integration of machine learning into the setup would
dramatically increase the performance of this study.

Using the equations, peak angles (bright interference ring angles) are obtained from
the theory. In real-life applications, instead of the inputs we use to get those peak angles,
we have the output, the pattern of scattering. So, reverse engineering is needed for the
theoretical calculations. In this study, we aimed to show the match between theory and
experimental results limited by two materials, Me and PS. Furthermore, only 8 and 10
um-sized particles were used to prepare samples for investigation. There will be much
more options in real-life applications.

In Figure 5.1, it is presented that the match between theory and experimental results
is satisfying—slight differences between those results provided the opportunity to create

a dataset for further developments.
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Figure 5.1 Differences between Me8 (a), PS8 (b), and P10 (c¢) particles at 1.50 fM
concentration to monitor consistency between experiments and theory by 656.3 nm,
514.9 nm, and 403.8 nm lasers.

To check the consistency of experimental results at different times (at least 3
months), we prepared sample sets and got scattering images. Once those experiments
were completed, we calculated standard deviations between them and got their average
to decrease experimental error and use as the final experimental results. Then, mean

absolute percentage error and root mean square errors were calculated between the theory
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(MATLAB) and experimental results, as shown in Table 5.1. Statistical t-tests showed

that there is no meaningful difference between those data.

Table 5.1 Matching of theoretical and three experimental peak angles (P1, P2, P3,
P4) with standard deviation and error calculations for red (R), green (G), and blue

(B) lasers.

Theory Experiment Experiment Experiment

(170 pW) (150 pW) (160 nW)
R G B R G B R G B R G B
P1| 7.2 5.7 7.8 7.6 59 NA 7.4 57 | NA | 74 57 | NA
o P2] 122 9.6 10.1 12.8 9.8 102 | 12.7 | 9.7 | 10.1 | 128 | 99 | 10.2
= P3| 185 | 158 | 13.6 | 19.7 16.0 13.6 | 19.5 | 159 | 14.0 | 19.8 | 16.0 | 13.7
P4 | NA | 208 | 18.6 | NA 20.6 182 | NA | 206 | 179 | NA | 205 | 18.1
P1| 75 6.0 7.8 6.7 5.8 7.5 7.2 5.7 7.6 7.3 59 7.7
% P2 | 136 | 119 | 124 | 139 12.1 122 | 14.0 | 119 | 12,5 | 13.6 | 11.8 | 12.5
P3| 206 | 168 | 162 | 207 16.9 16.0 | 20.6 | 16.7 | 16.1 | 20.5 | 16.8 | 16.0
P4 | NA NA 19.7 | NA NA 196 | NA | NA | 197 | NA | NA | 195
P1| 64 10.0 6.0 6.6 10.2 6.0 6.6 | 10.1 | 5.7 6.5 | 102 | 59
S |P2| 134 | 1338 8.6 13.5 12.5 8.3 136 | 129 | 84 | 135 | 132 | 84
£ P3| 17.8 | 17.5 | 125 | 179 16.3 11.8 | 18.1 | 16.6 | 11.9 | 18.0 | 16.6 | 12.0
P4 | NA NA 155 | NA NA 156 | NA | NA | 154 | NA | NA | 153

STD AVEG MAPE RMSE
R G B R G B R G B R G B
P1| 0.12 | 0.12 | NA | 747 5.77 NA | 370 | 1.17 | NA | 0.28 | 0.12 | NA
% [P2]0.06 | 010 | 006 | 12.77 | 9.80 | 10.17 | 4.64 | 2.08 | 0.66 | 0.57 | 0.22 | 0.08
= P3| 0.15 | 0.06 | 0.21 | 19.67 | 1597 | 13.77 | 631 | 1.05 | 1.23 | 1.17 | 0.17 | 0.24
P4 | NA | 0.06 | 0.15 | NA | 20.57 | 18.07 | NA | 1.12 | 2.87 | NA | 0.24 | 0.55
P1| 032 | 0.10 | 0.10 | 7.07 580 | 7.60 | 5.78 | 3.33 | 2.56 | 0.51 | 0.22 | 0.22
% P2 | 021 | 0.15 | 0.17 | 13.83 | 11.93 | 1240 | 1.72 | 0.28 | 0.00 | 0.29 | 0.13 | 0.14
~ 1 P3| 010 | 010 | 0.06 | 20.60 | 16.80 | 16.03 | 0.00 | 0.00 | 1.03 | 0.08 | 0.08 | 0.17
P4 | NA NA | 0.10 | NA NA | 1960 | NA | NA | 051 | NA | NA | 0.13
P1 | 006 | 0.06 | 0.15 | 6.57 | 10.17 | 5.87 | 2.60 | 1.67 | 222 | 0.17 | 0.17 | 0.18
S [ P2] 006 | 035 | 006 | 13.53 | 12.87 | 837 | 1.00 | 6.76 | 2.71 | 0.14 | 0.98 | 0.24
£ P3| 0.10 | 0.17 | 0.10 | 18.00 | 16.50 | 11.90 | 1.12 | 5.71 | 480 | 0.22 | 1.01 | 0.61
P4 | NA NA | 0.15 | NA NA | 1543 | NA | NA | 043 | NA | NA | 0.14
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5.1 Dataset Creation

After showing the appropriate match between the lab results and theoretical
calculations, we created a dataset on MATLAB, and the code for it is given in Appendix
B. Using nested for loops of scattering parameters, i.e., particle size, refractive index of
the particles and medium, wavelength of incident light, a dataset was created on
MATLAB. Considering the limitations of the setup and the literature, we defined
appropriate ranges for particle size and refractive indices. For wavelength of incident
light, we used the same ones, 656.3 nm, 514.9 nm, and 403.8 nm, as the ones we have in
the laboratory. Starting from 5 um to 13 um with 0.5 um increments for particle diameter
and from 1.3 to 2.2 with 0.01 increments of refractive index were the ranges of this nested
for loop operation. In total, 4641 lines were obtained, including peak angle values (P1,
P2, P3, P4) for each combination of loop parameters. A few lines from the dataset are

presented in Table 5.2.

Table 5.2 A few sample lines of the dataset created on MATLAB to be used in the
Random Forest Algorithm.

Inc. WL Particle Particle Medium
(nm) Size Ref. Index Ref. Index gt s P4
403.8 5 2.18 1.3388 741126 | 214 | 0.0
403.8 5 2.19 1.3388 741124 ] 21.0 | 0.0
403.8 5 2.20 1.3388 721 12.0 | 19.7 | 0.0
403.8 5.5 1.30 1.3388 74| 122 | 16.7 | 21.4
403.8 5.5 1.31 1.3388 75| 122 | 16.8 | 21.4
403.8 5.5 1.32 1.3388 7.8 | 124 | 168 | 21.4

Then, we trained two different models, Model 1 for particle size and Model 2 for
particle refractive index. We used randomly selected 80% of this primary dataset after
adjustments to give it as training data to the model. 20 iterations with 100 trees were used
in the model, as commonly done in literature [80]. Once the training had been completed,
the remaining part, 20%, was used to test the performance of the model. It is worth saying
that, until this step, it was all done using the data created on MATLAB by theoretical

calculations.
5.2 Model-1 Particle Size

Modifications were needed on the dataset for each model. For Model 1, particle size

estimation, refractive index data were not given as input. Only wavelength of incident
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light, the refractive index of the medium (consistent with incident light), and the first four
peak angles were used as the input. So, 6 numbers were the input for a line from the
dataset, and as seventh, particle size was added, as presented in Appendix C.

After 20 iterations and accuracy calculation for each iteration, the average accuracy

was calculated for the final accuracy of the model with test data from the primary dataset.
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Figure 5.2 Histogram of the differences between actual and estimated particle size
for randomly selected 20% of the dataset.

As presented in Figure 5.2, most of the test results have an error of less than 0.5 pm
compared to actual values. The correlation between actual and estimated results is 0.95.
Thus, we can say that we trained a successful model to predict particle size from
wavelength of incident light, the refractive index of the medium, and the first four bright
interference rings of scattering.

Although obtaining promising results by test data created on MATLAB, the critical
point is to have the same performance from experimental results as test data. Prediction
of particle size will be meaningful if the model successfully determines it. Therefore, we
used laboratory results as new test data for Model 1. As given in Table 5.3, among 9 test
data, 3 particles by three incident lights, the highest error is 1.5 um for PS8 by red light.
Besides, we only have a 0.5 um difference between theory and prediction. T-tests also
showed no significant difference between those two data types, theory, and prediction.
Skewness and kurtosis values for actual data, 0.05 and -1.191, respectively, are
acceptable. The same parameters, skewness and kurtosis values, for test data are 0.026
and -1.144, which are also adequate for applying an independent sample t-test. Levene’s
test for equality of variances’ significance value (0.741) demonstrates that the
homogeneity of variances condition is met for this data. Assuming equal variances

between actual and predicted data for Model 1, the result of the independent sample T-
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test in 95% confidence interval shows no statistically significant difference between mean

values of actual and predicted data (t=-0.033, df= 1854, p>0.05).

Table 5.3 Actual and predicted values of particle sizes for experimental results as
test data for Model 1.

Red (656.3 nm) Green (514.9 nm) Blue (403.8 nm)
Me8 PS8 PS10 Me8 | PS8 PS10 Me8 | PS8 PS10
Actual um | 8 um 10pum | 8um | 8um | 10um | 8um | 8um | 10 um
Predicted | Spum | 6.5um | 10um | 8 um | 8 um | 10um | 8 um | 8 um | 9.5 um

In summary, our random forest algorithm integrated setup was able to define
particle size. We proved that it is possible to do classifications and estimations with a

cost-effective, simple, and portable device.
5.3 Model-2 Particle Refractive Index

As modifications on a primary dataset for Model 2, particle refractive index
estimation and particle size data were not given as input. Only wavelength of incident
light, the refractive index of the medium (consistent with incident light), and the first four
peak angles were used as the input. So, 6 numbers were the input for a line from the
dataset, and as seventh, particle refractive index was added, as presented in Appendix D.

After 20 iterations and the accuracy calculation for each iteration, the average
accuracy was calculated for the final accuracy of the model with test data from the

primary dataset.
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Figure 5.3 Histogram of the differences between actual and estimated particle
refractive index for randomly selected 20% of the dataset.

As presented in Figure 5.3, most of the test results have an error of less than 0.5

compared to actual values. The correlation between actual and estimated results is 0.748.
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Thus, we trained a successful model to predict particle refractive index from wavelength
of incident light, the refractive index of the medium, and the first four bright interference
rings of scattering.

Although obtaining promising results by test data created on MATLAB, the
important point is having the same performance from experimental results as test data.
Prediction of particle refractive index will be meaningful if the model successfully
determines it. In addition, this is one of the critical points of this study, considering the
estimation of refractive indices of same-sized spheres. Therefore, we used laboratory
results as new test data for Model 2. As given in Table 5.4, among 9 test data, 3 particles
by three incident lights, the highest error is about 0.13 for PS8 by red light. Other than
that, it can be clearly seen that Me8 parameters were estimated identically. PS10 has a
better prediction than PS8. T-tests also showed no significant difference between those

two data types, theory, and prediction.

Table 5.4 Actual and predicted values of Me8, PS8, and PS10 particle refractive
indices by 403.8 nm, 514.9 nm, and 656.3 nm lasers.

Red (656.3 nm) Green (514.9 nm) Blue (403.8 nm)
Me8 | PS8 | PS10 | Me8 | PS8 | PS10 | Me8 | PS8 | PS10
Actual 1.79 | 1.589 | 1.589 | 1.89 | 1.601 | 1.601 | 1.96 | 1.617 | 1.617
Predicted | 1.79 | 1.72 | 1.61 1.89 | 1.60 | 1.60 | 1.96 | 1.56 | 1.66

Having appropriate skewness and kurtosis values for Model 2 provided an opportunity to
apply an independent sample t-test for this model. Levene’s test for equality of variances’
significance value (0.711) demonstrates that the homogeneity of variances condition is
met for this data. Assuming equal variance between actual and predicted data for Model
2, the result of the independent sample T-test in 95% confidence interval shows no
statistically significant difference between mean values of actual and predicted data (t=-

0.202, df= 1854, p>0.05).
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Chapter 6

Conclusions and Future Prospects

6.1 Conclusions

As stated in the first chapter, the number of microplastics has been increasing
dramatically each year due to the careless use of those pollutants' primary and secondary
sources. It is not surprising to encounter those particles everywhere. The natural cycle,
including water resources, environment, and land we live on, led them to distribute easily.
It is difficult to collect and get rid of them once they accumulate, so it is crucial to take
precautions at the source. Understanding the material type would help to define the source
or track those particles through its center. In addition, there is uncertainty regarding the
number of particles made of different materials. A sample may include fewer numbers
but more dangerous materials or vice versa. After Egypt, Turkey is the second country
releasing the highest amount of microplastic pollutants to the Mediterranean Sea.
However, the level of danger in that list has yet to be discovered. The last country in this
ranking meaning that it releases the lowest amount, may deliver particles that are more
dangerous due to material type with longer lifetime to disappear. Therefore, it is vital to
distinguish those particles based on their material type in addition to detecting their size
and concentrations.

Light scattering is one of the methods employed to detect and identify
microparticles. By just using Snell’s Law, using the angle of reflected light, it is possible
to have information about particle size. However, a detailed investigation is needed for
particle-specific properties in particular materials. Using the refractive index of the
particles, which depends on the material itself, scattering patterns can be investigated to
acquire more detailed information. This study aimed to use a cost-effective and mobile
setup that can record and analyze scattering patterns to classify materials based on their

refractive index, size, and concentration.
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In the first experiments, it was observed that different materials at different sizes
and concentrations give different results when they are irradiated with the laser light at
different wavelengths. As expected, an increment in particle size or concentrations makes
the forward scattering dominant. In addition, an increment in particle refractive index
causes the light to scatter more, resulting in wider scattering angles on scattering patterns.
After analysis of those first experiments, it was observed that the angles of the bright
interference rings on scattering patterns are particle size, refractive index, and wavelength
of incident light specific. However, the change in concentration of a sample did not affect
the bright ring angles but the intensity. As expected, the higher number of particles,
scatterers, in a sample scattered the light more, and the same but brighter patterns were
obtained.

After those observations, experiments using melamine and polystyrene
microparticles with 8§ and 10 um sizes were conducted using lasers at three different
wavelength of incident lights. All scattering patterns were collected at ten different
concentrations, from 0.05 fM to 3.00 fM. After image processing, Me8 and PS8 results
were used to analyze material type. As observed, the higher the refractive index of the
particle, actually the absolute difference from the refractive index of the medium, resulted
in wider scattering angles, as predicted by the theory. In another investigation, the results
of PS8 and PS10 particles were used to observe the effect of particle size. The Mie theory
states that the forward scattering becomes dominant when particle size increases.
Regarding that, as expected Mie resonances, bright ring angles, gathered around zero-
degree. Increasing the particle size made the scattering intensity stronger at zero degrees
revealing itself as a wider bright spot at the center.

After successfully recording the scattering patterns, we aimed to gather information
on particle size and refractive index. For this purpose, we first wrote a code using the Mie
scattering equations and compared the theoretical results of the same parameters with the
experimental results. Having minor differences provided the opportunity to create a
library based on Mie theory and integrate machine learning into the process for fast and
accurate analysis of scattering patterns. At this point, nested-for-loops were used for
appropriate ranges of particle refractive index, size, and wavelength of incident light. A
dataset was created for all combinations. In the first step, 80% of the dataset was randomly
selected to train two models, one for particle size and the other for refractive index. The

remaining portion, 20%, was applied as test data, and the results were satisfying. The
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correlation between actual and estimated results was 0.95 and 0.75 for particle size and
refractive index, respectively.

Further investigations were needed to show that the system would also work for
real-life applications so that laboratory results were used for the second test data set. The
average difference between estimated and actual particle size was 0.23 um. Out of nine,
seven different particle sizes were calculated identically, and the maximum difference
was 1.5 um which belonged to the scattering of the red laser light by PS8 particles.

Regarding the refractive index, which was more challenging to train the model due
to having divergence. The refractive index changes with the wavelength of incident light.
In addition, different resonance sets at different particle sizes had to give the same particle
refractive index value because of a change only in particle size not the material or
wavelength of incident light. However, particle size was not used as an input of the
algorithm. This made the process complex to learn for the algorithm. However, especially
Me8 parameters were calculated successfully. The average difference for the refractive
index turned out to be 0.015. The highest difference was 0.13 for PS8 particles when the
red laser was employed.

In conclusion, the systems successfully distinguished particle size and refractive
index for particle classification. Integrating a random forest algorithm, which is easy and
appropriate for this problem, provided fast characterization of scattering patterns
regarding particles’ physical properties. Having a device that is portable, cost-effective,
durable, and easy to use would provide an opportunity for further developments regarding
the research that has been done in this field. Furthermore, the shape of the scatterers or
the detection range can be modified with minor adjustments, i.e., adding lenses or

additional cameras.

6.2 Societal Impact and Contribution to Global

Sustainability

The societal impact of microplastics is significant. The increasing amount of
microplastics in our environment has raised public awareness of the plastic pollution
problem and has led to calls for action from consumers, businesses, and governments.
People are becoming more conscious of plastic use and actively seeking alternative

solutions. Furthermore, companies are also changing their practices and developing
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sustainable packaging alternatives. However, the problem of microplastics requires a
global effort to mitigate its impact.

The issue of microplastics is closely linked to the United Nations' Sustainable
Development Goals (SDGs). SDG 14, Life Below Water, specifically aims to conserve
and sustainably use the oceans, seas, and marine resources for sustainable development.
Microplastics have been identified as a significant threat to marine ecosystems, and
addressing the issue is crucial to achieving SDG 14.

Furthermore, microplastics also have implications for other SDGs. For example,
SDG 12, Responsible Consumption and Production, emphasizes the need for sustainable
consumption and production patterns to minimize waste generation and reduce the
negative impacts of consumption on the environment. Addressing microplastics requires
a shift towards sustainable consumption and production patterns that prioritize reducing
plastic use and promoting proper waste management practices. Moreover, microplastics
can affect human health, which is addressed by SDG 3, Good Health and Well-being. It
is essential to address the issue of microplastics to protect both marine and human health.

In conclusion, addressing the issue of microplastics is crucial in achieving multiple
SDGs. It requires a global effort to reduce plastic use, promote sustainable consumption
and production patterns, and develop effective waste management systems. By addressing
the issue of microplastics, we can promote a more sustainable and healthy future for our
planet and its inhabitants. Governments and organizations must work together to address
this issue and develop policies and initiatives to reduce plastic use and improve waste
management systems. Working together can create a more sustainable future for our

planet.
6.3 Future Prospects

In this study, the setup can be used for different samples, i.e., DNAs, bacteria, cells,
metallic particles, etc. A thin lens may be needed to focus light on a much smaller area to
investigate nano-size particles. In addition, by using appropriate solvents, solid samples
can be diluted and examined after some filtering and basic preprocessing steps.

Microplastics are expected to continue to be a major concern as plastic production
and consumption continue to increase globally. However, there are also promising
prospects for addressing the issue and detecting environmental microplastics. To address

the issue, there is growing awareness among consumers, businesses, and governments
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about the negative impacts of microplastics on the environment and human health. This
has led to a push for reducing plastic use and improving waste management systems.
Additionally, ongoing research on sustainable alternatives to plastic and innovative
technologies for capturing and removing microplastics from the environment exists.

There have been advancements in analytical methods for identifying and
quantifying microplastics in different environmental samples. These include Raman
spectroscopy,  Fourier-transform  infrared  spectroscopy, and  pyrolysis-gas
chromatography-mass spectrometry. Furthermore, there is ongoing research into
developing more efficient and cost-effective methods for detecting microplastics, such as
biosensors and microfluidic devices.

Overall, the microplastics issue and detection prospects are both challenging and
promising. Addressing the issue will require a concerted effort from individuals,
businesses, and governments to reduce plastic use, improve waste management systems,
and invest in sustainable alternatives. At the same time, ongoing research into detection
technologies will be crucial in identifying the extent of the problem and developing

effective mitigation strategies.
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APPENDIX A

Code for Scattering

d=8e-6; %sphere diameter
m_sph=1.79;  %sphere refractive index
m_env=1.331; %medium refractive index
1 vac=656.3e-9; %wavelength in vacuum

%H20: 1.3310R, 1.3344G, 1.3388B
%ME: 1.79-R, 1.89-G, 1.96-B
%PS: 1.589-R, 1.601-G, 1.617-B

%%%%%%%%% CALCULATIONS START AFTER HERE
%%6%%%%%%%%0%%%%%%

a=d/2;

k=2*pi/(1 vac/m_env);

x=k*a;%DWH eq.1

m=m_sph/m_env;

M=ceil(x + 4*(x(1/3) + 2));
n=1:M;

fpsi=sqrt(pi*x/2)*besselj(n+0.5,x); %eq 4.9 %DWH eq.29
dfb=0.5*(besselj(n-0.5,x)-besselj(n+1.5,x));
dfpsi=0.5*sqrt((pi/2)/x)*besselj(n+0.5,x)+sqrt(pi*x/2)*dfb;

fpsim=sqrt(pi*(m*x)/2)*besselj(n+0.5,m*x);
fdbm=0.5*(besselj(n-0.5,m*x)-besselj(n+1.5,m*x));
fdpsim=0.5*sqrt((pi/2)/(m*x))*besselj(n+0.5,m*x)+sqrt(pi*(m*x)/2)*fdbm;

fxsi=sqrt(pi*x/2)*besselh(n+0.5,x); %eq 4.10 %DWH eq.30
fdh=0.5*(besselh(n-0.5,x)-besselh(n+1.5,x));
fdxsi=0.5*sqrt((pi/2)/x)*besselh(n+0.5,x)+sqrt(pi*x/2)*fdh;

an=(fpsi.*fdpsim-m*fpsim.*dfpsi)./(fxsi. *fdpsim-m*fpsim.*fdxsi); %eq 4.56 %DWH
€q.26
bn=(m*fpsi.*fdpsim-fpsim.*dfpsi)./(m*fxsi.*fdpsim-fpsim.*fdxsi); Y%eq 4.57 %DWH
eq.27
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text=(1_vac/m_env)"2/(2*pi)*sum((2*n+1).*real(an+bn)); %total ext cs %eq 4.62
%DWH eq.32
tscat=(1_vac/m_env)"2/(2*pi)*sum((2*n+1).*(abs(an).”2+abs(bn)."2)); %total scat cs
%eq 4.61 %DWH eq.33

tabsorp=text-tscat; %total abs cs

theta=0:0.1:25;
fpi=zeros(length(n),length(theta));
ftau=zeros(length(n),length(theta));
mu=cosd(theta);

%calculated by the info given between eq.4.47 and 4.48
%fpi(0)=0;

%fpi(1)=1;

tpi(1,:)=1;

tpi(2,:)=3*mu;

ftau(1,:)=mu;

ftau(2,:)=6*mu.”2 - 3;

for n2=3:M
fpi(n2,:)=(2*n2-1)/(n2-1)*mu.*tpi(n2-1,:)-n2/(n2-1).*fpi(n2-2,:); %eq 4.47
ftau(n2,:)=n2*mu.*fpi(n2,:)-(n2+1)*fpi(n2-1,:); %eq 4.48

end

En=(2*n+1)./(n.*(n+1)); %DWH eq.22
aif0=abs(En.*an*fpi+En.*bn*ftau).”2; %DWH eq.22
aif90=abs(En.*an*ftau+En.*bn*fpi)."2; %DWH eq.23

m air=1;

dscatO=(1_vac/m_env)"2/(4*pi*2)*aif0; % diff scat cs (parallel) %DWH eq.19
dscat90=(1_vac/m_env)"2/(4*pi"2)*aif90; % diff scat cs (perpendicular) %DWH eq.20
dscat=(dscatO+dscat90)/2; % diff scat cs (unpolarized) %DWH eq.21

theta2=asind(sind(theta)*m_env/m_air);

plim=find(theta2(:)>=5&theta2(:)<=21); %between 5-21 degree
[aa,bb]=findpeaks(dscat(plim));
peaks=round(theta2(bb+plim(1)),1); %calculation of peak angle

plot(theta2(plim),dscat(plim)./max(dscat(plim)), LineWidth',2,'Color','t','LineStyle','-");
%ititle("Unpolarised");

xlabel('Scattering Angle ( M\circ )','FontSize',16)

ylabel('Differential scattering cross section (A.U.)','FontSize',16)
xlim([theta2(plim(1)) theta2(plim(end))]); hold on

xlim([5 22])

ylim([0 1])
Imb=char(hex2dec('039B"));

fprintf(['Peaks at;\n' 'Diameter(um): ', num2str(d*1e+6), "\n' ...
Imb '(nm): ' num2str(l_vac*1e+9) "n' ...
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'n_sphere: ', num2str(m_sph), [, and \n' ...
'n_medium: '], num2str(m_env) ' = [',num2str(peaks) '[\n']) %??

OUTPUT:

Peaks at;

Diameter(um): 8

A(nm): 656.3

n_sphere: 1.79, and

n_medium: 1.331 =[7.2 12.2 18.5]

Differential scattering cross section (A.U.)

L L L L L L L L
6 8 10 12 14 16 18 20 22

Scattering Angle ()

Figure A.1 Theoretical result of angular scattering of Me8 particles by 656.3 nm
laser.
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APPENDIX B

Code for Dataset Creation

clear
cle

line=0;

wl=[656.3 514.9 403.8];
rad=5:0.5:13;
nparticle=1.3:0.01:2.2;
nmed=[1.331 1.3344 1.3388];

%H20: 1.3310R, 1.3344G, 1.3388B
%ME: 1.79-R, 1.89-G, 1.96-B
%PS: 1.589-R, 1.601-G, 1.617-B

for i1=1:length(wl)
for i2=1:length(rad)
for 13=1:length(nparticle)

line=line+1;

[a(line,:),theta, theta2]=mie(wl(i1),rad(i2),nparticle(i3),nmed(i1));
dta(line,1)=wl(il);

dta(line,2)=rad(i2);

dta(line,3)=nparticle(i3);
dta(line,4)=nmed(il);

end
end
end
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APPENDIX C

Sample dataset for Model 1

Table C.1 Sample lines from dataset adjusted for training for Model 1.

E

=

£l

gE | v (o] (30)

p— N = j=H j=H j=9 j=9
403.8 | 1.3388 82 | 134|185 | 0.0

403.8 | 1.3388 | 84 | 13.6 | 185 | 0.0
403.8 | 1.3388 | 8.6 | 13.6 | 185 | 0.0
403.8 | 1.3388 | 8.6 | 13.6 | 18.5| 0.0
403.8 | 1.3388 | 8.6 | 13.6 | 185 | 0.0
403.8 | 1.3388 | 8.6 | 13.6 | 183 | 0.0

4
|| v |wnwn Uld_part(um)

(@)W LV, I (R S IO TS I N T

1545| 403.8 | 1.3388 | 6.6 | 82 |10.1 | 133 | 13
1546 | 403.8 | 1.3388 | 6.6 | 84 |12.0| 152 | 13
1547| 403.8 | 1.3388 | 6.7 | 83 |[10.6 | 11.4| 13
1548 | 5149 | 1.3344 | 10.7 | 173 | 0.0 | 0.0 5
1549 | 5149 | 13344 | 108 | 17.5| 0.0 | 0.0
1550 5149 | 1.3344 | 11.0 | 17.5| 0.0 | 0.0 5

3092 5149 | 13344 | 6.1 | 82 | 10.8 | 152 | 13
3093 | 5149 | 13344 | 6.1 | 83 | 106 | 148 | 13
3094 | 5149 | 13344 | 60 | 84 | 102 | 13.0| 13
3095 | 656.3 1.331 | 139 0.0 | 0.0 | 0.0
3096 | 656.3 1.331 | 140 | 0.0 | 0.0 | 0.0
3097 | 656.3 1.331 | 14.0| 0.0 | 0.0 | 0.0

4636 | 656.3 1.331 7.7 1104|143 1192 | 13
4637 | 656.3 1.331 79 |10.1|13.6 | 188 | 13
4638 | 656.3 1.331 7.7 | 1321174 ] 0.0 13
4639 | 656.3 1.331 7.6 | 11.1 166 | 21.5| 13
4640 | 656.3 1.331 7.6 | 10.7]16.1 | 20.2 | 13
4641 | 656.3 1.331 7.7 110.5] 1431195 13
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APPENDIX D

Sample dataset for Model 2

Table D.1 Sample lines from dataset adjusted for training for Model 2.

z g

S_| 3 £

= = | - o en A s

— = (=9 (=9 (=9 [=9) =
11| 403.8 1.3388 82 (134 ] 185 | 0.0 | 1.30
21 403.8 1.3388 84 | 13.6 | 185 | 0.0 | 1.31
31 403.8 1.3388 8.6 | 13.6 | 185 | 0.0 | 1.32
41 403.8 1.3388 8.6 | 13.6 | 185 | 0.0 | 1.33
51 403.8 1.3388 8.6 136 | 185 | 0.0 1.34
6| 403.8 1.3388 8.6 13.6 | 183 | 0.0 1.35

1545| 403.8 | 1.3388 | 6.6 | 8.2 | 10.1 | 13.3 | 2.18
1546 | 403.8 | 1.3388 | 6.6 | 84 | 12.0 | 152 | 2.19
1547| 403.8 | 1.3388 | 6.7 | 83 | 10.6 | 11.4]2.20
1548 | 5149 | 1.3344 | 10.7 | 173 | 0.0 | 0.0 | 1.30
1549| 5149 | 1.3344 | 10.8 | 17.5| 0.0 | 0.0 | 1.31
1550| 5149 | 1.3344 | 11.0 | 17.5| 0.0 | 0.0 | 1.32

3092 | 5149 | 1.3344 | 6.1 | 82 | 10.8 | 152 | 2.18
3093 | 5149 | 1.3344 | 6.1 | 83 | 10.6 | 14.8 | 2.19
3094 | 5149 | 1.3344 | 6.0 | 84 | 10.2 | 13.0 | 2.20
3095| 6563 | 1.331 | 139 0.0 | 0.0 | 0.0 | 1.30
3096 | 656.3 | 1.331 | 14.0| 0.0 | 0.0 | 0.0 | 1.31
3097 | 656.3 | 1.331 | 14.0| 0.0 | 0.0 | 0.0 | 1.32

4636 | 656.3 | 1.331 7.7 | 104 | 143 | 19.2 | 2.15
4637| 656.3 | 1.331 79 |10.1 | 13.6 | 18.8 | 2.16
4638 | 656.3 | 1.331 7.7 (1321174 0.0 |2.17
4639 | 656.3 | 1.331 7.6 | 11.1 ] 16.6 |21.5|2.18
4640| 656.3 | 1.331 7.6 |10.7 ] 16.1 | 20.2 | 2.19
4641 656.3 | 1.331 7.7 | 10.5] 143 | 19.5 | 2.20
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APPENDIX E

Code for Random Forest algorithm

clear

close all

warning off

data=readtable('lib_np.xlsx");

%data2=readtable('lab_np.xlsx"); %use when lab results will be tested
prm="np'; %emodel type

for i=1:20

i

cv = cvpartition(size(data,1),'HoldOut',0.2); %%?20 of data is separated for testing
1dx = cv.test;

dataTrain=data(~idx,:);

dataTest=data(idx,:);

%dataTest=data2; %use when lab results will be tested
testing=dataTest(1:end,1:end-1);

model l=fitensemble(dataTrain,prm,' Bag',100, Tree', Type','classification");
prediction1=predict(modell,testing);
ms1(i)=(sum(prediction1==table2array(dataTest(:,end)))/size(dataTest,1))*100;

end
accuracy=sum(ms1)/i;

sdev=std(msl);

fprintf(['Mean of testing ' prm ' values:' num2str(mean(dataTest{:,7})) "\n']);
fprintf(['Mean of predicted ' prm ' values:' num2str(mean(predictionl)) "n']);
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