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ABSTRACT
In this paper, we present the results of pharmacophore identification 
and bioactivity prediction for pyrrolo[2,1-c][1,4]benzodiazepine 
derivatives using the electron conformational–genetic algorithm 
(EC–GA) method as 4D-QSAR analysis. Using the data obtained 
from quantum chemical calculations at PM3/HF level, the electron 
conformational matrices of congruity (ECMC) were constructed by 
EMRE software. The ECMC of the lowest energy conformer of the 
compound with the highest activity was chosen as the template 
and compared with the ECMCs of the lowest energy conformer of 
the other compounds within given tolerances to reveal the electron 
conformational submatrix of activity (ECSA, i.e. pharmacophore) by 
ECSP software. A descriptor pool was generated taking into account 
the obtained pharmacophore. To predict the theoretical activity 
and select the best subset of variables affecting bioactivities, the 
nonlinear least square regression method and genetic algorithm were 
performed. For four types of activity including the GI50, TGI, LC50 and 
IC50 of the pyrrolo[2,1-c][1,4] benzodiazepine series, the r2

train, r2
test and 

q2 values were 0.858, 0.810, 0.771; 0.853, 0.848, 0.787; 0.703, 0.787, 
0.600; and 0.776, 0.722, 0.687, respectively.

Introduction

Many of the clinically potent anticancer agents directly target DNA to show their antitumour 
effects [1]. In recent years, there has been an increasing interest in DNA interactive ligands 
which can bind to DNA to achieve the required sequence selectivity. As a gene-targeted 
ligand, naturally occurring pyrrolo[2,1-c][1, 4]benzodiazepines (PBDs) showing antibiotic 
and antitumour effects are derived from the fermentation broth of various Streptomyces 
species, well-known members of which include anthramycin, tomaymycin, sibiromycin and 
DC-81 [2–4].

As the most reliable and cited approach, quantitative structure–activity relationships 
(QSARs) have been utilized to correlate the biological activities of a compound library and 

© 2016 Informa UK Limited, trading as Taylor & Francis Group

KEYWORDS
Electron conformational–
genetic algorithm; 
pyrrolo[2,1-c][1,4]
benzodiazepines; 4D-QSAR, 
pharmacophore; genetic 
algorithm; electron 
conformational method

ARTICLE HISTORY
Received 22 November 2015 
Accepted 30 March 2016

CONTACT  E. Sarıpınar   emin@erciyes.edu.tr

mailto:emin@erciyes.edu.tr


318    A. Özalp et al.

its structural/molecular information in drug design [5]. These relationships form statistical 
models, which help in the development of new bioactive chemical compounds by predicting 
the biological activities as a function of molecular descriptors. In accordance with the sim-
ilarity-property principle, since structurally analogous molecules have a tendency to produce 
similar biological activities [6], structural information is encoded by molecular descriptors 
including the physicochemical properties of a ligand molecule.

Starting from the traditional 2D-QSAR studies in which only physicochemical properties 
were handled to predict the biological activities of related compounds [7,8], over the last 
50 years a number of QSAR methodologies indicating different dimensions of QSARs from 
2D to nD and containing conformation-dependent 3D [9,10], 4D with conformational 
Boltzmann sampling [11], 5D with induced-fit hypotheses [12], 6D with multiple solvation 
models [13] and 7D (target-based receptor model data 7D) [14] have been developed to 
overcome previous limitations.

Although there have been several studies related to the design, synthesis and biological 
evaluation of pyrrolo[2,1-c][1, 4]benzodiazepines [15–19], structure–activity relationship 
studies are not available, except for that of Antonow and co-workers who presented a broad 
SAR examination of monomeric C2-aryl PBDs as antitumour agents [20]. In the mentioned 
paper, SAR studies were conducted on four different cytotoxicity parameters (GI50, TGI, LC50 
and IC50) of 80 analogues containing a wide range of substituents at the C2-position of the 
PBD. The GI50 is the concentration that causes 50% decrease in the cell growth. The TGI is the 
concentration that totally inactivates the growth of cells. The LC50 is the median lethal con-
centration that is expected to kill 50% of organisms in a given population. The IC50 is the 
median concentration of a drug that causes 50% inhibition.

Based on the experimental biological activity data of Antonow et al. [20], and taking into 
account all possible molecular conformations subject to Boltzmann distribution, we applied 
a 4D-QSAR study to explore a better understanding of C2-aryl PBDs using the EC–GA method 
developed by Sarıpınar et al. [21].

Following the electron topological method (ET) as a pharmacophore identification pro-
cess [22], the electron conformational (EC) method consisting of both pharmacophore iden-
tification and bioactivity prediction was developed by Bersuker [23]. This method, which 
has many applications in the literature, is based on a triangle ET matrix of geometric and 
electronic features for the pharmacophore generation procedure and a nonlinear equation 
for the prediction of bioactivity considering the most probable conformer of each com-
pound. The most important limitation of the EC method is the dependence on only one 
conformer of each related compound, so that it overlooks all possible conformers owing to 
the complexity of the nonlinear equation. Detailed information about this method is avail-
able in Bersuker et al. [24].

Genetic algorithms (GAs), which have found many applications in QSAR analysis, offer a 
consistent, efficient and meaningful way to explore a large space and to construct predictive 
and robust models among a large number of descriptors. By specifically working with a large 
number of descriptors, the GA overcomes this complexity [25].

The EC–GA method, first introduced in 2010, was generated as an integrated method of 
the EC method and the GA [21]. In contrast to the EC method and many other methods in 
which model construction is based on physicochemical information for a single molecular 
conformation ignoring the highly populated conformational space (except the lowest energy 
conformer), this versatile EC–GA method considers all low-energy Boltzmann weighted 
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conformations knowing that a number of low-energy conformations are available at room 
temperature for a molecule and each low-energy conformer produces a considerable effect 
on biological activity and contributes to model power. In this method, the biological activity 
prediction and pharmacophore identification are performed as a function of physicochem-
ical and structural descriptors for a set of low-energy conformers of each compound, instead 
of a single lowest energy conformation. To establish a meaningful and predictive QSAR 
model, it is crucial to select the best subset of molecular descriptors in the optimum number. 
Here the GA optimization technique is used for descriptor selection. The final model is 
cross-validated by the leave-one-out cross-validation (LOO–CV) method. As a promising 
4D-QSAR approach the EC–GA method, which provides pharmacophore detection, variable 
selection and quantitative bioactivity prediction, was performed employing C2-aryl PBD 
derivatives for four types of biological activities.

Materials and methods

C2-aryl PBD derivatives were analysed by the EC–GA method to distinguish the pharma-
cophore group and to derive a relationship between biological activities and selected molec-
ular parameters. Detailed information about the methodology can be found in the literature 
[26–30]. The GI50, TGI and LC50 activity values for compound 17 and 38 are not given in Table 
1 since they were not determined experimentally.

The structure of relevant compounds and their experimental biological activities including 
the GI50, TGI, LC50 and IC50 values obtained from the literature are given in Table 1. The con-
centrations which are in μM were converted to a negative logarithmic scale which allows us 
to better handle the numbers.

Spartan 10 [31] software was used for the construction of the 3D structures of compounds, 
conformational analysis and quantum chemical calculations at Hartree Fock 3-21 G* level. Even 
though the more complicated basis sets give more accurate results, they expend a great deal 
of computation time. In case of a large number of compounds and conformations, as in this 
study, the required computation time increases due to much larger basis sets. Accordingly, we 
have considered the basis set 3-21G*, which is faster and sufficiently small without compro-
mising the required level of accuracy. Water was used as solvent since it is the most similar 
solvent to biological systems. Following the conformational search of each molecule, conform-
ers with Boltzmann distribution under 1/10000 were excluded, and higher ones were kept.

Mulliken charges and bond orders/interatomic distances were utilized to generate the 
electron conformational matrix of congruity (ECMCs) for individual conformations of the 
entire compound set and placed in diagonal and non-diagonal positions, respectively. Non-
diagonal elements are of two types: bond orders for chemically bonded atom pairs and 
interatomic distances for non-bonded atom pairs [32]. An example of ECMC is illustrated for 
the lowest energy conformer of compound 63 as the template in Figure 1. For 87 analogues 
of C2-aryl 1, 4PBD derivatives, 997 ECMCs were created to be used in the comparison of the 
ECMCs by EMRE software [26–30] after eliminating the conformers which overlap and have 
lower Boltzmann distribution.

Of all the conformers of individual compounds, the lowest energy conformer of the most 
active one was chosen as template. The compounds were categorized as active and inactive 
by indicating a proper activity threshold value which is based on the data of the activity 
range for each type of activity. Up to a specified tolerance value, by adjusting the tolerance 
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Table 1. Chemical structures, substituents and experimental pGI50, pTGI, pLC50 and pIC50 activity values 
for C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine derivatives.

No R1 pGI50 pTGI pLC50 pIC50

1
H

8.699 7.398 5.290 8.602

2
N(CH3)2

8.523 7.398 5.491 7.493

3
NH2

8.699 7.523 5.320 7.854

4
NHAc

8.222 6.699 4.939 7.527

5
OH

8.699 7.097 5.470 7.987

6
OCH3

9.000 6.824 4.721 8.310

7
OPh

8.523 7.523 5.900 7.292

8
C(CH3)3

8.699 7.301 5.712 7.321

9
CH3

8.699 6.745 5.051 8.553

10
CH2CH3

9.000 7.155 5.380 7.100

11
CH(CH3)2

8.398 8.222 5.351 6.939

12
CHCH2

8.301 8.000 6.208 7.161

13
Ph

8.097 8.046 5.440 7.708

14
SCH3

8.301 7.699 5.842 7.721

15
F

8.699 6.921 4.951 8.796

16
Cl

8.699 7.155 5.350 7.504

17
Br

- - - 6.626

18
CHO

8.046 6.796 4.821 7.580

19
CF3

8.398 7.523 5.780 7.614

20
CN

8.523 6.824 5.130 7.703

21
COOH

4.879 4.631 4.600 6.000

22
NO2

8.398 7.155 5.160 7.883

23
CONH2

8.046 6.337 4.860 7.807

N

NH3CO

H3CO

O

H

R1

(Continued)
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No R1 pGI50 pTGI pLC50 pIC50

24
CON N CH3

7.824 6.149 4.860 7.225

25
CONH OH

6.801 5.730 4.900 6.794

26

 
CONH N(CH3)2

7.721 7.046 5.410 6.943

27
CONH N(CH3)2

7.237 6.081 4.450 6.783

28
N N CH3

8.301 7.097 5.080 9.201

29
N O

8.301 6.796 4.879 8.056

30

 

NH2 8.398 7.301 5.230 7.225

31 OCH3 7.959 7.222 5.390 9.347

32 CH3 8.301 7.155 5.120 8.022

33 F 8.523 7.301 4.780 8.194

34 Cl 7.770 7.000 6.268 7.712

35 CF3 8.222 7.523 5.870 7.330

36 OF3 8.222 6.745 5.140 7.116

37 CN 8.398 6.252 4.790 7.821

38 COOH - - - 6.000

39 COOCH3 8.301 7.398 5.120 7.907

40 NO2 8.301 7.301 5.250 7.236

41 CONH N(CH3)2 7.569 5.730 4.979 6.924

42 CONH N(CH3)2 6.991 6.071 4.851 6.564

Table 1. (Continued)

(Continued)
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No R1 pGI50 pTGI pLC50 pIC50

43 H3C 7.921 6.602 4.971 8.032

44 F3C 7.796 6.796 5.361 6.588

45 C3HO

C3HO

6.959 5.959 4.932 7.215

46 H3C

H3C

6.070 5.461 4.680 6.000

47 F

F

7.602 6.481 5.361 8.149

48 Cl

Cl

8.523 7.301 5.520 6.975

49 9.222 7.824 6.398 7.343

50

OCH3

9.046 8.155 6.569 8.638

51

OCH2CH3

8.699 7.699 5.710 7.900

52 6.860 6.022 4.857 6.242

53 S 8.000 6.824 6.131 8.959

54
N
NH 7.921 6.569 5.190 7.697

55

N
N
CH3 8.523 7.301 5.270 7.914

56 N 8.301 7.155 4.770 7.740

57
N

7.745 6.222 4.570 7.542

58 N
O
(
N(CH3)2)3

8.398 7.222 5.390 8.027

59

O

8.222 7.301 6.357 7.967

Table 1. (Continued)

(Continued)
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No R1 pGI50 pTGI pLC50 pIC50

60

S

8.301 8.046 6.268 7.573

61

O

O 8.699 7.523 5.440 9.328

62

N
H

8.301 7.398 5.150 7.900

63

N

10.000 9.000 6.745 8.051

64

N

9.398 8.398 6.721 8.854

65
S

7.602 6.658 5.270 6.787

66
O

7.310 6.678 5.550 6.792

67

S

6.300 5.759 5.050 6.000

68 6.400 5.842 4.971 7.064

69

N

N
HH3CO

H3CO

OCH3

O

6.991 6.347 6.041 6.027

70

N

N HH3CO

H3CO
O

5.670 4.721 4.240 6.312

72

N

N HH3CO

H3CO
O

5.010 4.360 4.040 6.000

73 5.870 5.090 4.220 7.842

74
CH3

8.398 7.699 5.801 10.000

Table 1. (Continued)

(Continued)
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No R1 pGI50 pTGI pLC50 pIC50

75
F

8.699 7.301 6.357 7.386

76
Cl

8.301 8.000 5.959 9.886

77
CF3

8.301 7.699 6.000 7.812

78

N

N

O

HH3CO

H3CO

8.523 7.699 5.959 7.506

79
H

7.268 6.367 5.240 7.783

80
C(CH3)3

8.097 7.301 6.022 7.155

81
F

8.301 7.398 5.000 7.788

82 OCH3 8.301 7.155 6.201 8.149

83 8.699 7.699 5.590 8.745

84

N

9.699 8.398 6.456 8.886

85 Anthramycin methyl ether 7.886 5.801 4.611 8.097
86 Sibiromycin (R) 7.481 6.071 4.7773 8.8539
87 Sibiromycin (S) 7.4815 6.071 4.7773 8.8539

Table 1. (Continued)

Figure 1. ECMC of the lowest energy conformer of the most active template molecule (compound 63) 
in the data set. The diagonal members correspond to the Mulliken charges whereas the non-diagonal 
elements refer to the bond orders for chemically bonded atom pairs and interatomic distances for non-
bonded pairs. Hydrogen atoms attached to carbon atoms are omitted in the ECMC for clarity.
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limit steadily all matrix elements of the ECMC of the template compound were compared 
with that of other ECMCs. Through the comparison of ECMCs, we obtained several electron 
conformational submatrices of activity (ECSA). Each ECSA was evaluated according to two 
commonly used criteria (Pα and αa) given in Equations 1 and 2 below [33]: 

where n1 and n2 are the numbers of molecules including and not including pharmacophore 
atoms (ECSA) in the class of highly active compounds, respectively, whereas n3 and n4 have 
similar meaning for weakly active compounds; m1 and m2 are the numbers of molecules in 
the class of highly active and weakly active compounds, respectively; m3 = n1 + n3; m4 = 
n2 + n4 [34]. Herein the first term Pα is related with the possibility of pharmacophore presence 
in active compounds while the second one is related with the possibility of pharmacophore 
presence in inactive/low active compounds.

To make clear how additional groups affect biological activity besides the pharmacophore, 
auxiliary groups (AG) and anti-pharmacophore shielding groups (APS) [23] were determined. 
AG and APS groups are distinguished by their opposite effects on biological activity. While 
the AG group promotes biological activity, the APS group shows a reducing effect. The 
out-of-pharmacophore groups are described by the following S function [35]:

 

where a(j)
ni

 is the parameter depicting the jth kind of feature in the jth conformation of the 
nth compound, N is the number of selected parameters and κj is the relative weight of dif-
ferent parameters. Each parameter has a different and constant κj value.

In the equation below [23], biological activity is expressed as a function of molecular 
descriptors, its energy and temperature considering the Boltzmann weighting of the indi-
vidual conformations of each compound as follows:

 

where An and Al are the activity values of the nth compound and the reference compound, 
respectively. Eli is the relative energy of the ith conformation of the reference compound (in 
kcal mol−1). Eni is the relative energy of the ith conformation of the nth compound (in kcal 
mol−1), R (kcal mol−1 K−1) is the gas constant and T is the temperature in Kelvin. δ is a kind of 
Dirac δ function which takes two values based on pharmacophore presence. The value equals 
1 if the pharmacophore is present and 0 if not. The same equation was also used to calculate 
the κj, variational constants. To implement and solve the weighted least squares fitting prob-
lem for the κj values of the parameters, the lsqnonlin function of the optimization toolbox 
in Matlab [36] is used. The weighted nonlinear least-squares analysis combined with GA can 
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be efficiently utilized with parameter selection and any kind of nonlinear optimizations. In 
addition, a GA and the method including iteration of the lsqnonlin function combined with 
initial values generated stochastically within a wide parameter range are employed to explore 
the best parameter subset. The numbers “κj” = 1, 2,…, N, obtained in this way characterize 
the weights of each kind of the ani (j) parameters in the overall APS/AG influence [23].

Another significant point is the preparation and the selection of descriptors. Hereby, 1331 
molecular descriptors based upon four main classes (quantum chemical, thermodynamic, 
electrostatic and geometrical) regarding the pharmacophore group were generated for each 
conformer of PBD derivatives by EMRE software [21,26–30]. To eliminate the irrelevant and 
unnecessary descriptors and to increase model accuracy, the descriptor pool was reduced 
to a small subset of parameters. For this purpose, the most important parameters, ani

(j) in 
Equation 4, were selected by the GA technique [37,38] since it is a fast and efficient method. 
The GA procedure starts with a randomly generated initial population comprising N indi-
viduals, each of which corresponds to a different parameter subset randomly selected from 
the descriptor pool. The populations are mainly composed of integer units defining model 
parameters (κj indices) as genetic codes. To calculate the κj values of the model parameters, 
each parent is subjected to the lsqnonlin function. The initial selected population according 
to the fitness values is subjected to genetic operators named selection, mutation and cross-
over to yield the new generation. Thus, some part of the next generation is constituted from 
the mutation procedure and the other part from crossover. Repeating this procedure, a 
number of models giving different parameter subsets are obtained until they converge or 
the prespecified size of generation is reached. Here, we run the GA with the following param-
eters: number of generation: 400; population size: 400; number of iterations: 150; crossover 
fraction: 85%; mutation rate: 1.5%.

Through LOO–CV, the fitness value of each chromosome was calculated by the predictive 
residual sum of squares (PRESS) as the fitness function. The formula of PRESS which measures 
the distribution of the calculations obtained from LOO-cross-validated values is given by:

 

where Aexp
n  is the experimental activity of the nth molecule in the experimental activity data, 

Apred
n  is the predicted value of activity of the nth molecule in the training set by LOO–CV, and 

N is the total number of compounds in the training set.
In this study, the quality of the each of the obtained models was assessed internally by 

the LOO–CV method and externally by an analogous test set. In the internal validation of 
the models, only the training set compounds were considered. Each compound is precluded 
one by one to determine the biological activity with remaining compounds. Therefore, the 
contribution of each molecule to the robustness of the model is evaluated. For internal 
validation of the models, the value of q2 was found by the following formula: 
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N∑
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where N indicates the total number of compounds in the training set. Āexp
n  is the mean value 

of experimental activity of all the molecules in the training set. Aexp
n  is the experimental 

activity of the nth molecule in the training set. SYY expresses the sum of squared deviations 
of experimental activity from the mean (Āexp

n ). So as to verify the reliability and predictivity 
of the models on the new compounds which are not used in the model development, the 
data set is split into training and test sets. The model developed by training compounds is 
applied to the test compounds to confirm the prediction power. In order to calculate the q2, 
two expressions of external validation were proposed by Schüürmann et al. [39] and are 
based on the average values involving the training set and test set means in the denominator 
and the sum of squares of the external set in the numerator. These equations are given by 
the following formulas [39]:
 

 

where N is the number of molecules to be tested. Aexp
ntest

 and Apred
ntest

 are the experimental and 
the predicted activities of the nth compound in the test set. Āexp

ntraining
 and Āexp

ntest
 are the arithmetic 

means of the experimental activities of the training and test sets, respectively.
Another external validation measure called Q2

F3 was introduced by Consonni et al. [40] for 
the purpose of discussing the predictive ability of QSAR models with external assessment 
described in Schüürmann et al.’s study [40]. The external prediction capability given by 
Consonni is calculated by the following equation: 

 

where Ntest and Ntraining are the number of test and training molecules, respectively. Whereas 
Aexp
ntest

 and APred
ntest

 refer to the experimental and the predicted activity values of the nth test 
compound, Aexp

ntraining
 is the experimental activity of the nth compound in the training set. Āexp

ntraining
 

is equal to the mean of the experimental activities of the training compounds. In Equation 
9, the sum of squares in the denominator is related with the training set while that in the 
numerator is related with the external prediction set.

In addition to the external evaluation criteria given above, Chirico and Gramatica pro-
posed a different and simpler alternative which gives more cautious and restrictive results 
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in proportion to other compared measures. The rearranged version of the concordance 
correlation coefficient (CCC) is given by following equation [41]:

 

 

 

where Aexp

i
 and Apred

i
 correspond to the experimental and predicted values of the activity, 

respectively. Similarly, Āexp and Āpred correspond to the averages of the experimental and 
predicted activity values. In the formula, by using both training and test sets, the reliability 
of the model was developed. The CCC, which has a value greater than 0.85, confirms the 
excellent precision and accuracy of the model.

For QSAR model development, different external evaluation functions which have advan-
tages or drawbacks with regard to each other were introduced by different researchers. 
Among those expressions, Equations 7–9 were used to appraise model consistency in pre-
vious papers by us. We also made use of the last two external validation formulas (Equations 
10–12) aforementioned for the first time in this 4D-QSAR EC–GA study.

At the end of the model development stage, evaluating the prediction abilities of all the 
models considering the r2, q2, q2

ext1, q2
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ext3 and CCC criteria by the LOO–CV technique, 
the best parameter subset and related best model were determined. Using the best param-
eter subset and corresponding κj values, we calculated the activity values of the compounds 
with unknown activity with Equation 4.

In the best parameter subset, one or several parameters make more contribution to the 
biological activity. To estimate which parameter/parameters in the subset is predominant, 
the E-statistics technique is used [42]. The statistical E value is calculated by the following 
formula as the ratio of the predictive sum of squares:
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− Āpred)(A

exp

i
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− Āpred)2 +

n
test∑

i = 1

(A
exp

i
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where Aexp
n  and Apred

n  refer to the experimental and predicted activity in the LOO–CV proce-
dure. In this situation only a small number of parameters (N = 9–11 in this study) were used 
to construct the model. The value of the E defines the impact of the parameters. The greatest 
the increase in the E value, the lowest the contribution made by the parameter. In parallel 
with the high value of E, omission of the parameter reduces the model’s performance.

Results and discussion

The chemical structures of the C2-aryl PBD derivatives with substituents and experimental 
pGI50, pTGI, pLC50 and pIC50 values are given in Table 1 in the previous section. The data 
comprising atomic charges, Cartesian coordinates, bond orders and interatomic distances 
from the conformational analysis and quantum chemical calculations at Hartree Fock 3-21G* 
level were assigned to build the ECMCs of the 997 conformers of 87 compounds by the EMRE 
programme (see Figure 1 for sample matrix of the lowest energy conformer of reference 
compound). To describe the pharmacophore for GI50 activity, the value pGI50 = 8.3010 was 
regarded as the activity threshold. In total, 46 compounds with pGI50 ≥ 8.3010 were catego-
rized as high-activity compounds, 37 were classed as low-activity compounds and four com-
pounds had unknown activity.

For GI50 activity, the comparison procedure of the ECMCs defined in the materials and 
methods section resulted in a pharmacophore group comprising the O1, O2, C9, O3, N1, N2, 
C14 and C17 atoms with an optimum Pα = 0.9737 and αa = 0.7849 values (i.e. with the highest 
Pα and αa values). The final ECSA and relevant tolerance values for both active and inactive 
compounds including the compounds with unknown activity are reported in Table 2, in 
which pharmacophore atoms are shown in yellow. Table 2 contains six submatrices. The first 
submatrix corresponds to pharmacophore atoms for the lowest energy conformer of the 
template compound. The second and third ones are the tolerance submatrices for 46 com-
pounds with high activity and 37 compounds with low activity, respectively. The fourth 
submatrix represents tolerance values for the overall conformers (997) of 87 compounds 
without tolerance limitation. As seen in (b) and (c) of Table 2, the atomic charge tolerances 
of the O1 atom are ±0.024 and ±0.093 and the tolerances of the distance between the N1 
and N2 atoms are ±0.028 and ±0.189 for high and low active compounds, respectively. Table 
2 proves that, in general, compounds with high activity possess lower tolerance values than 
those with low activity.

After careful analysis of the pharmacophore atoms, the O3, N1, O1 and O2 atoms present 
in the benzodiazephine ring are identified among the key pharmacophoric elements as 
hydrogen-bond acceptors. The C14 and C17 atoms located in the imidazole and quinoline 
ring, respectively, comprise the hydrophobic regions. Most of the pharmacophore atoms 
are placed on a rigid plane since the structure contains condensed heterocyclic units showing 
very little conformational flexibility. The O1, O2, N1, O3 and N2 atoms are defined as nega-
tively charged atoms while the C9 atom is positively charged. The C14 and C17 atoms show 
lower negative charges than the others. The highest tolerance value of interatomic distances 
for high-activity compounds pertains to the C17–O2 distance which shows the flexibility of 
the position whereas the N2–O3 distance has minimum tolerance due to a rigid plane.

In the first step of bioactivity prediction, four data sets associated with pGI50, pTGI, pLC50 
and pIC50 values were randomly divided into three data sets: the training set, test set and 
unknown set. The compounds in the training, test and unknown set were randomly selected 
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Table 2.  (a) Pharmacophore (ECSA) of reference compound (63) for pGI50 activity values of C2-aryl 
pyrrolo[2,1-c][1,4]benzodiazepine derivatives; (b) Tolerance matrix of ECSA for 46 compounds with high 
activity; (c) Tolerance matrix of ECSA for 37 compounds with low activity; (d) Tolerance values for 997 
conformers of 87 compounds; (e) Tolerance matrix of ECSA for the lowest energy conformer of 4 com-
pounds with unknown activity; f ) Tolerance matrix of 64 conformers of 4 compounds with unknown 
activity. Pharmacophore atoms are shown in yellow. The optimum Pα and αa values found are 0.9737 
and 0.7849, respectively.

C8

O1

O2
C7

C2

C3
C4

C1
C6

C5

N1

N2

N4

C11

C12

C13

C14

C9

C10

O3

C15

C17

C18
C16

C20

C19
C21

C22

C23

a) ECSA of reference compound (63)

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms
-0.574 2.738 5.624 6.253 4.777 6.480 8.635 10.910 O1

-0.591 4.797 4.937 5.590 5.974 8.198 10.581 O2
0.813 1.704 3.111 0.907 3.545 6.010 C9

-0.716 4.264 2.246 4.049 6.444 O3
-0.511 2.979 4.566 6.641 N1

-0.581 2.274 4.727 N2
-0.096 2.473 C14

-0.152 C17

b) Tolerance values for 46 compounds with high activity

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms
±0.024 ±0.077 ±0.021  ±0.034  ±0.037  ±0.009 ±0.042  ±0.071 O1

±0.008  ±0.013  ±0.046 ±0.008 ±0.032  ±0.024  ±0.110 O2
±0.005  ±0.046 ±0.030  ±0.025  ±0.009  ±0.017 C9

±0.015 ±0.019 ±0.005  ±0.054  ±0.046 O3
±0.226  ±0.028  ±0.095  ±0.092 N1

±0.012  ±0.007 ±0.020 N2
±0.034  ±0.021 C14

±0.074 C17

c) Tolerance values for 37 compounds with low activity

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms
±0.093 ±0.078  ±0.151 ±0.251  ±0.118 ±0.049  ±0.055  ±0.249 O1

±0.132  ±0.108  ±0.994  ±2.856 ±0.801 ±1.202 ±1.467 O2
±0.008 ±0.038  ±0.156  ±0.048 ±0.074  ±0.505 C9

±0.022 ±0.195  ±0.014  ±0.128  ±0.607 O3
±0.288  ±0.189 ±0.223 ±0.383 N1

±0.018  ±0.091  ±0.426 N2
±0.176 ±0.068 C14

±0.603 C17

d) Tolerance values for 997 conformers of 87 compounds

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms
±0.932 ±1.836 ±1.298 ±1.676  ±0.731  ±1.762  ±1.353 ±1.735 O1

±0.617  ±1.046  ±1.160 ±2.856 ±1.588 ±1.539 ±1.923 O2
±1.395  ±0.760  ±1.758  ±1.600 ±1.232 ±1.737 C9

±0.901  ±1.760  ±0.915  ±1.630  ±1.621 O3
±1.325 ±1.746 ±1.685  ±1.617 N1

±0.879  ±1.471  ±1.851 N2
±0.908  ±1.596 C14

±0.923 C17

(Continued)
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from the entire data set by GA. For each activity type, the generated models were evaluated 
both internally and externally.

These subsets for GI50 activity included 55 training, 27 test and five unknown compounds. 
Likewise, the pTGI, pLC50 and pIC50 datasets were classified as training, test and unknown 
sets (55, 27, 5; 55, 27, 5; and 48, 24, 15, respectively).

The main goal of descriptor selection is to develop a robust model by employing the 
minimum number of variables. As the optimal number of parameters is not known formerly, 
it is essential to run a number of models to explore the relationship between prediction 
power (q2) and the number of parameters in the subset. First the compounds were randomly 
selected; then they were kept stable and we scanned the number of parameters from 1 to 
15 to detect the optimum number of parameters. The number of parameters was plotted 
versus r2 (for training and test set), q2, q2

ext1, q2
ext2, q2

ext3 and CCC of pGI50 activity as shown 
in Figure 2. As seen in Figure 2, even if increasing the number of parameters causes a rise in 
r2 and q2 up to 11 descriptors, after 11 descriptors the model gains stability and a higher 
number of descriptors does not enhance the model performance very much. As a general 
rule, the ratio of the number of parameters to the number of compounds in the model should 
not be higher than 1:5 to avoid potential overfitting risk [43].

The plots showing the optimum number of parameters for pTGI, pLC50 and pIC50 values 
are also given in Figures S1–S3 as supporting information (available via the Supplementary 
Content tab on the article’s online page). The pTGI activity values of C2-aryl PBD derivatives 
resulted in an optimum of 11 parameters for 55 training and 27 test compounds. In Figure 
S1, the statistical parameters exhibit an increase until 11 parameters. At 11 parameters, the 
model reaches a steady state and does not need any extra parameters. Thus, the model for 
pTGI was found as a function of the best 11 parameters. In the same way, the optimum 
numbers of parameters for pLC50 and pIC50 activities are determined in Figures S2 and S3 as 
11 and 9, respectively.

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms

e) Tolerance matrix of ECSA for the lowest energy conformer of 4 compounds with unknown activity

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms
±0.097 ±0.076 ±0.147 ±0.133  ±0.080  ±0.187 ±0.223 ±0.290 O1

±0.035 ±0.041 ±0.038  ±0.032  ±0.077  ±0.075 ±0.123 O2
±0.004  ±0.032  ±0.037 ±0.011 ±0.007 ±0.010 C9

±0.012  ±0.075 ±0.006 ±0.046 ±0.074 O3
±0.244 ±0.043  ±0.136 ±0.163 N1

±0.024 ±0.008  ±0.011 N2
±0.009 ±0.011 C14

±0.064 C17

f ) Tolerance matrix of 64 conformers of 4 compounds with unknown activity

O1 O2 C9 O3 N1 N2 C14 C17 Pha Atoms
±0.513 ±0.333  ±0.647 ±0.731  ±0.681  ±0.524 ±0.375 ±0.331 O1

±0.148  ±0.490 ±0.361  ±0.632  ±0.492  ±0.544  ±0.569 O2
±0.874  ±0.721  ±0.622  ±0.557 ±0.297 ±0.505 C9

±0.666  ±0.668 ±0.685 ±0.615  ±0.837 O3
±1.321  ±0.732  ±0.591 ±0.687 N1

±0.379  ±0.339  ±0.336 N2
±0.908 ±0.051 C14

±0.540 C17

Table 2. (Continued)
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For pGI50, a brief definition of the best 11 descriptors selected with GA and the related κj 
values are listed in Table 3. The analysis of Table 3 shows that geometrical and electronic 
parameters have more impact on the GI50 activity of C2-aryl PBD derivatives. a(1), a(2), a(3), a(4), 

Table 3.  Optimal 11 descriptors chosen by GA and κj values for pGI50 activity values of C2-aryl 
pyrrolo[2,1-c][1,4]benzodiazepine derivatives.

ani
(j) Molecular parameters κj

a(1) Orthogonal distance from C8 atom to the O1 N1 O3 plane (Å) 0.102
a(2) Orthogonal distance from O3 atom to the N1 N2 C14 plane (Å) -0.128
a(3) Orthogonal distance from C4 atom to the N1 N2 C14 plane (Å) + van der Waals radius (Å) 0.297
a(4) Orthogonal distance from C8 atom to the C17 C14 N1 plane (Å) + van der Waals radius (Å) -0.061
a(5) Orthogonal distance from C15 atom to the O1 O2 C17 plane (Å) -0.141
a(6) Orthogonal distance from C11 atom to the N4 C12 O3 plane (Å) 0.064
a(7) Angle between O3 C9 N2 plane and the line of C14-C23 0.103
a(8) Electrostatic charge of N2 atom -0.498
a(9) Nucleophilic atomic frontier electron density of O3 atom -2.193
a(10) Nucleophilic atomic frontier electron density of N2 atom -1.801
a(11) Fukui atomic electrophilic reactivity index of C17 atom -30.654

Figure 3. Presentation of orthogonal distance related parameters a(2) and a(3) for pGI50 activity values.

Figure 2. Plot of the correlation between number of parameters and r2, q2, q2
ext1, q2

ext2, q2
ext3 and CCC for 

pGI50 activity values.
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a(5), a(6) and a(7) are the geometrical parameters involving mostly pharmacophore atoms. The 
parameters a(1), a(2), a(5) and a(6) are orthogonal distances. a(3) and a(4) are the orthogonal 
distances plus van der Waals radius (Å). The remaining four parameters represent the elec-
tronic features of the pharmacophoric atoms. a(8) is the electrostatic charge of the N2 atom 
placed in the imidazole ring. a(9) and a(10) are the nucleophilic atomic frontier electron density 
index values [44] of the O3 and N2 atoms, respectively. The last parameter, a(11), in Table 3 is 
the Fukui atomic electrophilic reactivity index value [45] of the C17 atom. The presentation 
of parameter a(2) and a(3) is shown in Figure 3.

The best descriptors and related κj values corresponding to pTGI, pLC50 and pIC50 values 
are given in Tables S1–S3 (available online). In Table S1 for TGI activity, it is seen that the first 
eight parameters (a(1)–a(8)) are geometrical parameters including the orthogonal distance, 
orthogonal distance + van der Waals radius and the angle between the line and plane of 
atoms, whereas a(9) and a(10) symbolize the Fukui atomic electrophilic reactivity index values 
of the O1 and C17 atoms. a(11) is log P, which is the partition coefficient related with the 
compound’s hydrophobicity. A similar situation is seen in Table S2 and Table S3 for LC50 and 
IC50 activities. For both types of activity, geometrical parameters are predominant. The param-
eter list of LC50 activity gave a(1)–a(7) as geometrical parameters which are mainly composed 
of orthogonal distance and orthogonal distance + van der Waals radius. The other four 
parameters (a(8)–a(11)) are the nucleophilic atomic frontier electron density index value of 
the O3 atom [46], the Fukui atomic electrophilic reactivity index value of the C17 atom, the 
HOMO and log P. The best parameters' list for pIC50 values (see Table S3) includes nine param-
eters of which a(1) is the orthogonal distance + van der Waals radius, a(2) is the orthogonal 
distance, a(3) is the angle between the C16 C17 C20 plane and the C14–C18 line, a(4) and a(5) 
are the electrophilic atomic frontier electron density index values of the C17 and C16 atoms 
[46] and a(6)–a(9) are the dihedral angles.

To determine the AG and APS groups which contribute positively or negatively to the 
activity, the product of κj and the parameter value was taken into account. If the result of 
the product is positive then the related parameter is regarded as an AG parameter, otherwise 
it is an APS parameter. Accordingly, within the 11 optimal parameters in Table 3 for GI50 
activity a(2), a(4), a(5), a(9), a(10) and a(11) are AG parameters while a(1), a(3), a(6), a(7) and a(8) are APS 
parameters. In the same way for TGI activity, a(1), a(3), a(6), a(9), a(10) and a(11) were determined 
as AG parameters and a(2), a(4), a(5), a(7) and a(8) as APS parameters. Among the parameters in 
Table S2 of LC50 activity, a(2), a(4), a(6), a(8), a(9) and a(11) are AG parameters while a(1), a(3), a(5), a(7) 
and a(10) are APS parameters. Finally a(4), a(6), a(8) and a(9) are AG parameters and a(1), a(2), a(3), 
a(5) and a(7) are APS parameters for IC50 activity.

In consideration of previous explanations, among the several models for pGI50, pTGI, pLC50 
and pIC50 activity values, the experimental and predicted activity values, r2, standard error 
and both internal and external q2 values for the best models of each activity type are listed 
in Table 4. As seen in Table 4, the data set of pGI50 was divided into a training set of 55 com-
pounds and a test set of 27 compounds in order to get an exact robust model through a 
validation procedure with test compounds. The compounds marked with “a” correspond to 
test compounds while those marked with an asterisk are unknown compounds. The number 
of training, test and unknown sets for pTGI, pLC50 and pIC50 datasets are 55, 27, 5; 55, 27, 5 
and 48, 24, 15, respectively.

As a general rule, if the q2 values of the cross-validated models are higher than 0.5, the 
predictive ability of the model should be acceptable [47]. Based on internal validation, the 
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Table 4. Experimental and predicted activity values with statistical results of pGI50, pTGI, pLC50 and pIC50 
for C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine derivatives.

pGI50 pTGI pLC50 pIC50

Comp. Aexp Apred Comp. Aexp Apred Comp. Aexp Apred Comp. Aexp Apred

1a 8.699 8.766 1a 7.398 6.985 1a 5.290 5.299 1 8.602 8.070
2 8.523 8.605 2a 7.398 7.099 2a 5.491 5.351 2 7.494 7.368
3a 8.699 8.606 3a 7.523 6.831 3a 5.320 5.139 3 7.854 7.948
4 8.222 8.416 4a 6.699 6.400 4 4.939 5.121 4 7.527 7.965
5a 8.699 8.426 5 7.097 6.920 5 5.470 5.029 5 7.987 7.935
6a 9.000 8.389 6 6.824 7.030 6 4.721 5.043 6 8.310 7.578
7 8.523 8.008 7 7.523 7.686 7a 5.900 5.557 7 7.292 7.518
8 8.699 8.563 8 7.301 7.814 8 5.712 5.522 8 7.321 7.351
9a 8.699 8.660 9a 6.745 7.032 9 5.051 5.399 9 8.553 8.056
10 9.000 8.554 10a 7.155 7.051 10 5.380 5.441 10a 7.100 7.157
11a 8.398 8.289 11 8.222 7.802 11a 5.351 5.549 11 6.939 7.318
12a 8.301 8.228 12a 8.000 7.094 12a 6.208 5.641 12 7.161 7.453
13 8.097 8.741 13a 8.046 7.304 13 5.440 5.642 13a 7.708 7.940
14a 8.301 8.373 14 7.699 7.024 14 5.842 5.195 14 7.721 7.709
15 8.699 8.837 15 6.921 6.953 15a 4.951 5.341 15* - 8.030
16 8.699 8.817 16 7.155 7.121 16 5.350 5.060 16 7.505 7.447
17* - 8.764 17* - 7.148 17*  - 5.551 17 * - 7.973
18a 8.046 7.668 18 6.796 6.578 18a 4.821 4.977 18 7.580 7.726
19 8.398 8.156 19a 7.523 6.979 19 5.780 5.732 19 7.614 7.897
20 8.523 7.988 20a 6.824 6.564 20 5.130 5.446 20a 7.703 8.042
21* - 7.819 21a 4.631 6.025 21*  - 5.095 21* - 7.807
22* - 6.684 22 7.155 6.531 22* - 4.623 22a 7.883 7.616
23a 8.046 8.228 23 6.337 6.789 23 4.860 5.151 23 7.807 7.330
24 7.824 7.895 24a 6.149 6.088 24 4.860 5.129 24 7.226 7.525
25* - 7.625 25a 5.731 5.827 25* -  5.255 25 6.794 7.144
26 7.721 7.786 26 7.046 6.690 26 5.410 5.162 26 6.943 7.308
27a 7.237 8.147 27a 6.081 6.367 27a 4.450 5.224 27a 6.783 7.606
28a 8.301 8.541 28a 7.097 6.726 28 5.080 5.289 28* - 7.730
29a 8.301 8.485 29 6.796 6.913 29 4.879 5.127 29 8.056 7.774
30 8.398 8.021 30 7.301 6.670 30 5.230 5.028 30 7.226 7.180
31 7.959 8.426 31 7.222 7.300 31a 5.390 5.286 31* - 7.095
32a 8.301 8.275 32 7.155 7.354 32 5.120 5.208 32 8.022 7.192
33 8.523 8.499 33 7.301 7.226 33 4.780 5.463 33 8.194 7.210
34 7.770 8.442 34 7.000 7.157 34 6.268 5.343 34 7.712 7.185
35 8.222 8.101 35 7.523 7.476 35 5.870 5.407 35a 7.330 7.372
36 8.222 8.497 36 6.745 7.035 36 5.140 5.082 36 7.116 7.249
37 8.398 7.857 37a 6.252 6.354 37a 4.791 5.020 37 7.821 7.230
38* - 7.490 38* - 6.115 38* -  4.838 38* - 7.230
39 8.301 7.755 39 7.398 6.914 39a 5.120 4.917 39 7.907 7.274
40 8.301 8.086 40 7.301 7.736 40 5.250 5.107 40 7.236 7.244
41 7.569 8.199 41a 5.731 6.307 41 4.979 4.942 41 6.925 7.693
42 6.991 7.680 42 6.071 6.245 42 4.851 5.097 42 6.564 7.241
43 7.921 7.524 43 6.602 6.422 43 4.971 4.929 43 8.032 8.044
44 7.796 7.612 44 6.796 6.541 44 5.361 4.869 44a 6.588 7.621
45 6.959 7.209 45a 5.959 6.046 45a 4.932 4.989 45 7.215 7.149
46 6.070 6.508 46a 5.461 5.659 46 4.680 4.796 46a 6.000 6.255
47a 7.602 7.956 47 6.482 7.147 47 5.361 5.260 47 8.149 7.918
48 8.523 8.391 48 7.301 7.288 48 5.520 5.537 48* - 7.940
49 9.222 8.900 49 7.824 8.024 49a 6.398 6.480 49a 7.343 7.226
50 9.046 8.861 50 8.155 8.169 50 6.569 6.033 50a 8.638 8.221
51a 8.699 8.712 51a 7.699 7.502 51 5.710 6.019 51a 7.900 7.750
52 6.860 6.977 52a 6.022 6.122 52a 4.857 5.207 52a 6.242 7.155
53a 8.000 8.266 53 6.824 7.620 53 6.131 5.772 53 8.959 8.852
54 7.921 8.139 54 6.569 6.742 54 5.190 4.743 54 7.697 8.122
55 8.523 8.093 55 7.301 6.873 55a 5.270 4.857 55 7.914 7.539
56 8.301 8.290 56 7.155 6.959 56 4.770 4.774 56a 7.740 8.338
57 7.745 7.732 57 6.222 6.241 57 4.570 4.526 57* - 4.447
58a 8.398 7.799 58 7.222 6.735 58 5.390 5.701 58 8.027 7.695
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developed model gave excellent internal accuracy with a non-cross-validated r2 value of 
0.858 and cross-validated q2 value of 0.771 for the training set, and an r2 value of 0.810 for 
the test set. This model was used to predict the antitumour GI50 activity of the compounds 
in the external test set and also of unknown compounds. The model for external validation 
resulted in satisfactory external q2 values (q2

ext1 = 0.797 and q2
ext2=0.791). In addition, the 

difference between the experimental and predicted activity values is less than 1. The use-
fulness of the obtained models for future activity prediction of new PBD analogues can be 
seen from the high quality of the statistical results of the models. It is seen that the TGI activity 
results also showed very good predictive capability with internal and external validation 
criteria. For the best model of TGI activity with an optimum 11 of parameters, the r2 and q2 
values of the training set were found as 0.848 and 0.787. In addition, the external validation 
results of the test set (r2 = 0.848, q2

ext1 = 0.743 and q2
ext2 = 0.731), which is the real indicator 

of the prediction capacity of a model, are also highly predictive and acceptable. The models 

aTest compounds; *Compounds with unknown activity.

pGI50 pTGI pLC50 pIC50

Comp. Aexp Apred Comp. Aexp Apred Comp. Aexp Apred Comp. Aexp Apred

59a 8.222 8.044 59a 7.301 6.946 59a 6.357 6.131 59a 7.967 9.071
60 8.301 8.407 60 8.046 7.969 60 6.268 6.532 60* - 9.023
61a 8.699 8.313 61 7.523 7.343 61 5.440 5.356 61* - 7.829
62a 8.301 8.508 62 7.398 7.491 62 5.150 5.246 62a 7.900 8.151
63 10.000 10.000 63 9.000 9.000 63 6.745 6.745 63 8.051 8.070
64 9.398 9.298 64 8.398 8.469 64a 6.721 6.341 64a 8.854 8.360
65 7.602 7.131 65 6.658 6.748 65a 5.270 5.213 65a 6.787 7.400
66 7.310 7.142 66 6.678 6.672 66 5.550 5.070 66 6.792 7.259
67a 6.300 6.307 67a 5.760 5.766 67 5.050 5.066 67a 6.000 6.570
68 6.400 6.553 68a 5.842 5.720 68 4.971 4.847 68a 7.065 7.805
69 6.991 6.633 69 6.347 6.265 69 6.041 6.005 69 6.027 6.015
70 5.670 5.621 70 4.721 4.641 70a 4.240 4.050 70 6.312 6.412
71 5.010 5.073 71 4.360 4.465 71 4.040 4.473 71a 6.000 5.673
72a 5.870 5.431 72 5.090 5.036 72 4.220 4.335 72* - 6.646
73 8.398 8.583 73a 7.699 7.211 73a 5.801 5.959 73 10.000 9.973
74a 8.699 8.481 74 7.301 7.910 74a 6.357 6.017 74* - 9.738
75 8.301 8.574 75a 8.000 7.279 75a 5.959 6.035 75 9.886 9.886
76a 8.301 8.556 76 7.699 8.057 76 6.000 6.101 76* 7.813 9.710
77 8.523 8.396 77a 7.699 7.368 77 5.959 6.054 77* - 9.053
78 7.108 7.140 78 5.910 6.019 78 4.520 4.589 78 8.569 8.677
79 7.268 7.649 79 6.367 6.799 79a 5.240 5.221 79 7.783 8.202
80a 8.097 7.775 80 7.301 6.928 80 6.022 5.335 80 7.155 7.756
81 8.301 7.698 81 7.398 6.897 81 5.000 5.200 81a 7.788 8.114
82 8.301 7.815 82 7.155 7.360 82a 6.201 5.796 82 8.149 7.458
83 8.699 9.430 83 7.699 7.788 83 5.590 6.247 83 8.745 8.426
84 9.699 10.092 84a 8.398 7.634 84 6.456 6.441 84a 8.886 8.288
85 7.886 7.971 85 5.801 6.007 85 4.611 4.581 85a 8.097 8.238
86a 7.482 7.326 86 6.071 6.027 86 4.777 4.643 86a 8.854 8.775
87 7.482 7.583 87a 6.071 6.114 87a 4.777 4.648 87* - 8.200
Training
r2 0.858 r2 0.853 r2 0.703 r2 0.776
se 0.052 se 0.053 se 0.075 se 0.070
q2 0.771 q2 0.787 q2 0.600 q2 0.687
Test
r2 0.810 r2 0.848 r2 0.787 r2 0.722
se 0.074 se 0.074 se 0.092 se 0.112
q2

ext1 0.797 q2
ext1 0.743 q2

ext1 0.787 q2
ext1 0.597

q2
ext2 0.791 q2

ext2 0.731 q2
ext2 0.781 q2

ext2 0.564

Table 4. (Continued)
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developed for LC50 and IC50 activities are quite good but had slightly lower r2 (0.703 and 
0.776) and q2 (0.600 and 0.687) values in the training set than for the GI50 and TGI activities. 
Considering the external test set results, both LC50 and IC50 show r2 values over 0.700 while 
q2

ext1 and q2
ext2 values for only LC50 activity are higher than 0.700. The lower q2

ext1 and q2
ext2 

values indicate that the model is less capable of correctly predicting.
The plot of experimental vs. predicted pGI50 values of training and test sets obtained by 

11 descriptors is shown in Figure 4. Consequently, taking into account all the conformers of 
the 87 compounds, both the training and test sets gave acceptable statistical results with 
an optimal 11 descriptors. The model generated with the EC–GA method produced a good 
prediction power (see Table 4, Figure 4, Figures S4–S6 (available online)). The pTGI, pLC50 and 
pIC50 corresponding plots are given in Figures S4–S6.

All calculations related to bioactivity prediction and statistical analysis were carried out 
in two ways: the first examined all the conformers and the second examined only the lowest 
energy conformer for each compound. The statistical results for pGI50 regarding both only 
one conformer and all conformers are presented in Figure 5. Regarding only the lowest 
energy conformer of each compound, we obtained the q2, r2

training, r2
test, q

2
ext1, q2

ext2, q2
ext3, 

con1, con2 and con3 values as 0.573, 0.777, 0.764, 0.747, 0.740, 0.844, 0.867, 0.846 and 0.862, 
respectively. Accordingly, as shown in Figure 5, we obtained better statistical outcomes 
considering all conformers energetically reasonable for EC–GA model development. The 
other three activity types showed a similar trend. Comparisons of the statistical results for 
pTGI, pLC50 and pIC50 considering one conformer and all conformers are given in Figures 
S7–S9 (available online).

When we considered only the lowest energy conformer we achieved the following results: 
for TGI activity q2 = 0.720, r2

training = 0.816, r2
test = 0.660, q2

ext1 = 0.404, q2
ext2 = 0.378, q2

ext3 = 
0.221, con1 = 0.902, con2 = 0.570, con3 = 0.785; for pLC50, q2 = 0.541, r2

training = 0.681, r2
test = 

0.753, q2
ext1 = 0.743, q2

ext2 = 0.736, q2
ext3 = 0.685, con1 = 0.813, con2 = 0.836, con3 = 0.822; 

for pIC50, q2 = 0.490, r2
training = 0.684, r2

test = 0.729, q2
ext1 = 0.568, q2

ext2 = 0.532, q2
ext3 = 0.387, 

con1 = 0.823, con2 = 0.757, con3 = 0.793. With all the statistical results for four data types, 
it was seen that taking into account all reasonable conformers gave higher internal and 
external validation values.

Figure 4. Plot of experimental vs. predicted pGI50 activity values of training and test sets obtained with 
11 descriptors.
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The statistical results of TGI, LC50 and IC50 activities containing the experimental and pre-
dicted activity values, r2, standard error and both internal and external q2 values for the best 
model obtained by the optimum number of descriptors are given in Table 4.

The best parameter subsets including 9–11 parameters which yielded the best models 
for the pGI50, pTGI, pLC50 and pIC50 of C2-aryl PBD derivatives are the parameters suggested 
as contributing most to the activity. However, the contribution of each parameter is not 
equal. The E-statistic technique was used to analyse the individual effect of each parameter 
on the biological activity. In turn, each parameter was excluded and the model was estab-
lished with other parameters. Consequently, neglecting the related parameter, the differen-
tiation in the model performance was observed over the E, r2

training, setraining, r2
test, setest, q

2, 
q2

ext1, q2
ext2, q2

ext3, con1, con2 and con3 values that are represented in Table 5 for GI50 activity. 

Figure 5.  Comparison of statistical results of pGI50 activity values for C2-aryl pyrrolo[2,1-c][1,4]
benzodiazepine derivatives using both only the lowest energy conformer of each compound and all 
conformer via optimum 11 parameters.

Table 5. E-statistic results for pGI50 activity values of C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine deriva-
tives demonstrating how r2

training, se training, r2
test, setest, q

2, q2
ext1, q2

ext2, q2
ext3, con1, con2 and con3 values 

were affected by each descriptor.

Parameter E r2
tr setr r2

test setest q2 q2ext1 q2ext2 q2
ext3 con1 con2 con3

ani 
(j)

a(1) 0.587 0.817 0.059 0.742 0.102 0.609 0.741 0.734 0.841 0.903 0.856 0.893
a(2) 0.854 0.845 0.054 0.790 0.092 0.732 0.764 0.757 0.855 0.919 0.885 0.911
a(3) 0.754 0.844 0.054 0.781 0.094 0.696 0.786 0.781 0.869 0.919 0.845 0.910
a(4) 0.539 0.826 0.057 0.691 0.111 0.575 0.690 0.682 0.810 0.909 0.795 0.888
a(5) 0.749 0.833 0.056 0.797 0.090 0.694 0.791 0.785 0.872 0.912 0.891 0.908
a(6) 0.737 0.826 0.057 0.784 0.093 0.689 0.708 0.700 0.820 0.909 0.870 0.899
a(7) 0.903 0.841 0.055 0.789 0.092 0.746 0.789 0.783 0.870 0.917 0.882 0.909
a(8) 0.887 0.832 0.056 0.749 0.100 0.742 0.640 0.630 0.778 0.912 0.847 0.895
a(9) 0.531 0.801 0.061 0.769 0.096 0.568 0.685 0.676 0.806 0.894 0.862 0.886
a(10) 0.814 0.844 0.054 0.770 0.096 0.718 0.760 0.754 0.853 0.919 0.856 0.909
a(11) 0.070 0.512 0.096 0.331 0.164 -2.279 -0.189 -0.222 0.269 0.676 0.508 0.643
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Omission of a parameter in the E-static technique causes a decrease or increase in r2, se and 
q2 values depending on its influence on model performance.

The best model for pGI50 activity values generated by 11 descriptors had high r2
training 

(0.858) and q2 (0.771) value in the training set. Upon analysis of Table 5, a remarkable decline 
in the r2

tr, q
2, q2

ext1 and q2
ext2 values from 0.858, 0.771, 0.797 and 0.791 to 0.512, –2.279, –0.189 

and –0.222, respectively, proves that the a(11) parameter, which corresponds to the Fukui 
atomic electrophilic reactivity index value of the C17 atom, has maximal impact on the 
activity. The negative correlation between pGI50 activity values and the Fukui atomic elec-
trophilic reactivity index also has the lowest E value. Hence omission of a(11) leads to a dete-
rioration in the model performance. The angle between the O3 C9 N2 plane and the line of 
C14-C23, a(7), which has the highest E value, does not much affect the model’s performance. 
a(9), a(4) and a(1) are the most potent second, third and fourth parameters; ignoring them gives 
a reasonable E value and noticeably low q2 values compared with a(11). Considering the 
statistical values in Table 5, the contribution of parameters to the model quality is, respec-
tively, as follows: a(11), a(9), a(4), a(1), a(6), a(5), a(3), a(10), a(2), a(8) and a(7).

The E-statistic results to determine which parameters contribute most to the pTGI, pLC50 
and pIC50 activity values are listed in Tables S4–S6 (available online). Whereas the q2 and 
r2

training values of the model with the optimum 11 descriptors based on pTGI activity values 
are 0.853 and 0.787, respectively, it is clearly seen neglecting the a(10) parameter, which is 
the Fukui atomic electrophilic reactivity index value (eV) of the C17 atom, obviously results 
in decreased q2 (–0.245) and r2

training (0.638) values (see Table S4 online). In addition, remark-
able negative q2 (–0.245), q2

ext1 (–0.369), q2
ext2 (–0.429) and q2

ext3 (–0.790) values and the 
lowest E value (0.171) reveal how influential the a(10) parameter is on the activity and how 
essential it is for the model development as the most important contributor. The a(3) param-
eter (orthogonal distance from C6 atom to the C10 N2 O3 plane (Å)) whose E value (0.994) 
is the highest has very little effect on the model. This means that omitting the effect of the 
a(3) parameter on the activity gives an acceptable model without any loss of model perfor-
mance. The orthogonal distance from the C14 atom to the N2 C9 O3 plane (Å), a(5), is the 
second most potent parameter as a geometrical parameter. Neglecting a(5) also gives neg-
ative q2

ext1, q2
ext2 and q2

ext3 values, which affirm its impact on the activity. The descending 
contribution of the parameters to the biological activity is as follows: a(10), a(5), a(2), a(9), a(11), 
a(8), a(4), a(6), a(1), a(7) and a(3).

In consideration of pLC50 activity values, the q2 value of the developed model with 11 
parameters is 0.600. As seen from Table S5 (available online), the two most influential param-
eters with the lowest E and q2 values are the Fukui atomic electrophilic reactivity index value 
of the C17 atom (a(9)) and the nucleophilic atomic frontier electron density of the O3 atom 
(a(8)). Exclusion of the a(9) parameter decreases the q2 value from 0.600 to –17.770. With the 
lowest value of E (0.021), a(9) has the maximal impact. Moreover r2

training, r2
test, q2

ext1, q2
ext2, 

q2
ext3, con1, con2 and con3 exhibit the lowest values for the situation of a(9). Neglecting a(1), 

the orthogonal distance from the C17 atom to the O1 O2 O3 plane +van der Waals radius 
(Å), we obtained relatively high statistical values of r2

training, r2
test, q

2
ext1, q2

ext2, q2
ext3, con1, con2 

and con3, which indicates that it can be ignored. The a(9), a(8), a(2), a(6), a(11), a(4), a(7), a(5), a(3), 
a(10) and a(1) parameters show their contribution to activity in the given order.

For pIC50 activity values (Table S6, available online), the best nine parameters were taken 
into account. According to E–statistic results, the importance of the variables can be given 
as follows: a(2), a(6), a(1), a(3), a(7), a(8), a(9), a(4) and a(5). The accuracy of the model was influenced 
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by a(2) more than by the others. The orthogonal distance from the C11 atom to the N4 C12 
O3 plane displays its effect by lowering all the statistical values, especially q2

ext1, q2
ext2 and 

q2
ext3 negatively. We cannot eliminate this parameter without loss of accuracy. The variables 

whose effects are most negligible are a(4) and a(5). Their effects are equal to each other.
As a result, considering four types of activity it was seen that the Fukui atomic electrophilic 

reactivity index value (eV) of the C17 atom is the most important and essential parameter 
for GI50, TGI and LC50 activities. For IC50 activity, the orthogonal distance is the dominant 
parameter.

Conclusion

In this study a mathematical model was developed for pharmacophore identification and 
antitumour activity prediction of 87 C2-aryl PBD derivatives by the extensive 4D-QSAR EC–GA 
method. For both stages of the study, a conformational ensemble of the compounds presenting 
molecular flexibility was used related to Boltzmann distribution. The defined pharmacophore, 
which is mainly located in benzodiazepine and imidazole rings, consists of eight atoms, namely 
the O1, O2, N1, O3, N2, C9, C14 and C17 atoms. By dividing the original data set into training 
and test sets, the generated QSAR models with LOO-cross-validated r2 and q2 values varying 
between 0.56 and 0.80 showed high internal and external accuracy for four types of activity 
and proved their robustness. The models were also applied and tested on the compounds 
with unknown activity to guide the employment of new bioactive benzodiazepines.

The final models and their validation results for all GI50, TGI, LC50 and IC50 activities indicate 
that the geometrical and electrostatic descriptors used in this study are influential on the 
biological activity. The resulting EC–GA models and their internal and external validation 
for all of the dataset of pGI50, pTGI, pLC50 and pIC50 activity values showed that the goodness 
of fit between experimental and predicted activities was over 0.700. The prediction power 
represented by q2, q2

ext1 and q2
ext2 values for both training and test sets was greater than 0.6. 

Only for pIC50 activity values, the q2
ext1 and q2

ext2 values were lower than 0.6. Thus, the QSAR 
model of C2-aryl PBD derivatives created by the EC–GA method is a promising tool for the 
future design of novel benzodiazepine derivatives as antitumour agents.
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