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ABSTRACT

DEEP LEARNING MODELS FOR TRAFFIC VOLUME

PREDICTION

Nevin Çini
Ph.D. in Electrical and Computer Engineering Department

Advisor: Assoc. Prof. Zafer AYDIN
January 2024

In the last 50 years, with the growth of cities and increase in the number of vehicles and

mobility, traffic has become troublesome. As a result, traffic flow prediction started to

attract attention as an important research area. However, despite the extensive literature,

traffic flow prediction still remains as an open research problem, specifically for long-

term traffic flow prediction. Compared to the models developed for short-term traffic

flow prediction, the number of models developed for long-term traffic flow prediction is

very few. Based on this shortcoming, in this study, we focus on long-term traffic flow

prediction and propose a novel deep ensemble model (DEM). In order to build this

ensemble model,  first,  we developed a  convolutional neural  network (CNN), a long

short term memory (LSTM) network, and a gated recurrent unit (GRU) network as deep

learning models,  which formed the base learners.  In the next  step,  we combine the

output of these models according to their individual forecasting success. We use another

deep learning model to determine the success of the individual models. Our proposed

model is a flexible ensemble prediction model that can be updated based on traffic data.

To evaluate the performance of the proposed model, we use a publicly available dataset.

Numerical results show that our proposed model performs better than individual deep

learning models (i.e., LSTM, CNN, GRU), selected traditional machine learning models

(i.e.,  linear  regression  (LR),  decision  tree  regression  (DTR),  k-nearest-neighbors

regression (KNNR) and other ensemble models such as random-forest-regression(RFR).

Keywords: Traffic Flow Prediction, Deep Learning, Time Series Prediction, Ensemble

Learning,  Convolutional neural network.
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ÖZET

TRAFİK YOĞUNLUĞU TAHMİNİ İÇİN DERİN ÖĞRENME

MODELLERİ

Nevin Çini
 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora

Tez Yöneticisi: Doç. Dr. Zafer AYDIN
Ocak 2024

Son 50 yılda şehirlerin  büyümesi,  araç sayısının  ve hareketliliğin  artmasıyla  birlikte

trafik  sıkıntılı  hale  geldi.  Bunun sonucunda trafik  akış  tahmini  önemli  bir  araştırma

alanı olarak dikkat çekmeye başladı. Bununla birlikte, kapsamlı literatüre rağmen trafik

akışı  tahmini,  özellikle  uzun vadeli  trafik  akışı  tahmini  için  hala  açık  bir  araştırma

problemi olarak kalmaktadır. Kısa vadeli trafik akışı tahmini için geliştirilen modellerle

karşılaştırıldığında  uzun vadeli  trafik  akışı  tahmini  için geliştirilen  modellerin  sayısı

oldukça azdır. Bu eksiklikten yola çıkarak, biz bu çalışmada uzun dönem trafik akış

tahmini  problemine  odaklanıyoruz  ve  yeni  bir  derin  topluluk  öğrenme  modeli

öneriyoruz.  Bu  topluluk  öğrenme  modelini  oluşturabilmek  için  öncelikle,  temel

öğreniciler olarak kullandığımız 3 farklı derin öğrenme mimarisini (yani LSTM, CNN

ve  GRU)  kullanarak  3  farklı  derin  öğrenme  modeli  geliştirdik.  Daha  sonra,  bu

modellerin bireysel tahmin başarılarına göre tahmin sonuçlarını birleştirdik. Bunun için

ayrı  bir  derin  öğrenme modeli  kullandık.  Önerdiğimiz  model  esnek  ve  dinamik  bir

yapıya  sahiptir,  model  güncel  trafik  durumuna  göre  kendini  yenileyebilir.  Önerilen

modelin performansını değerlendirmek için halka açık bir veri seti kullanıyoruz. Sayısal

sonuçlar,  önerilen  modelimizin  bireysel  derin  öğrenme  modellerinden  (örn.  LSTM,

CNN,  GRU),  seçilmiş  geleneksel  makine  öğrenme  modellerinden  (örn.  doğrusal

regresyon (LR), karar ağacı regresyonu (DTR), k-en yakın komşular) ve rastgele orman

regresyonu  (RFR)  gibi  diğer  topluluk  öğrenme  modellerinden  daha  iyi  performans

sergilediğini  gösteriyor.

Anahtar  kelimeler:  Trafik Akış  Tahmini,  Derin  Öğrenme,  Zaman  Serileri  Tahmini,

Topluluk Öğrenme, Yapay Zeka
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Chapter 1

Introduction

Traffic flow refers to the number of vehicles passing a certain road section per

unit time.  This data is collected automatically, usually with the help of sensors. Since

vehicles  can only move on the  roads  prepared  for  them, accurate  estimation  of  the

traffic flow in a certain area prevents possible congestion and ensures more efficient use

of the roads [1,2,3].

Traffic flow prediction plays an important role in the construction of Intelligent

Transportation Systems (ITS). Transportation planners try to predict the location and

time of potential traffic congestion with the traffic flow forecasting applications. Thus,

by controlling the traffic, they can increase the safety and comfort of the drivers and

passengers. 

Traffic congestion causes many problems that we can examine under different

headings such as economic, environmental, social. Among them, the most emphasized

is the increase in cost with the lengthening of the travel time. These two key issues lead

to the emergence of other problems. For example, prolonged travel time causes social

and psychological problems, environmental problems such as noise pollution and even

accidents  from time to  time.  Although increasing  the  cost  of  travel  is  an economic

problem, increasing fuel consumption also leads to environmental problems such as air

pollution.

Decision makers who reach information about when and where traffic congestion

may occur with traffic flow forecasting can direct drivers to safer roads so that resources

can be used more efficiently. With a more effective planning, it is possible to use public

transportation  more efficiently as well. In this way, the environmental impact caused by

traffic can be reduced. For this reason, traffic flow forecasting is of key importance in

controlling  traffic  congestion and solving many problems that  may occur,  and is  an

indispensable component for intelligent transportation systems. 

Since the early 1980s, transportation engineers have conducted a lot of research to

minimize the negative effects of traffic on life quality. However, the inadequacy of the

number and quality of data and the inadequacies in data processing technologies limited
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the success of many studies. Thanks to the technological developments in hardware and

software in recent years, it is possible to process large amounts of data in a short time.

In addition, the available traffic data has increased. Today, researchers are investigating

how big data can be processed most efficiently with smart algorithms and how more

successful smart transportation applications can be developed with new technologies. 

That's why, in recent years, many studies in this area have focused on developing

reliable and realistic traffic flow prediction models using the latest technologies [2,4,5].

However, most of these studies have presented short-term traffic flow prediction models

[6].  Few  of  the  proposed  forecasting  models  are  capable  of  long-term  forecasting.

However,  long-term forecasting  is  as  important  and useful  as  short-term forecasting

[1,7,8]. Furthermore, long-term traffic flow forecasting is of practical importance for

decision makers.  An accurate  forecast model will  facilitate  traffic  management  even

during the rush hours, and will enable effective measures to be taken by informing in

advance of possible negative events. 

However, long-term forecasting is a challenging task. This is due to the stochastic

nature  of  the  dynamics  that  make  up  the  traffic  flow data,  which  is  nonlinear  and

contains complex dependencies [9]. It is also not identical in both temporal and spatial

dimensions.  Modeling  dynamic  temporal  and  spatial  dependencies  for  traffic  flow

prediction is very burdensome and arduous. These complex dependencies increase in

number and become more and more complex in long-term predictions.  As the forecast

horizon increases,  even in  the best  models,  the prediction  quality  decreases  and the

average error increases [10]. 

As a result, reliable long-term prediction becomes a difficult task, and it is almost

impossible to model long-term dependencies of traffic flow with simple and traditional

prediction models [8,11,12].  

In this study, we propose a deep learning-based ensemble framework for long-

term traffic flow prediction. While deep learning (DL) models can learn dynamic and

complex  dependencies  of  traffic  data  better  than   traditional  learning  algorithms,

ensemble learning (EL) provides flexibility by increasing the generalization ability of

the  final  model.  Because  many  different  predictive  models  collaborate  to  solve  the

given problem in ensemble learning, it is often expected that the ensemble model will

exceed the predictive success of a single model.  

2



Figure 1.1 Different performances of base learners

The most important feature of the proposed EL model is that we employ three

different DL models (i.e CNN, LSTM and GRU) as base learners. This increases model

diversity  so that  a  failure  of  one model  can  be compensated  by another  model.  As

shown in Figure 1.1, the performances of all three models change as traffic conditions

change.  From  this  figure  (Figure  1.1),  it  is  clear  that  we  cannot  achieve  the  best

prediction  performance with a  single model.  Because each model  has strengths  and

weaknesses, the contribution of the base models to the final prediction result cannot be

equal. In a successful ensemble model, a base model with high predictive performance

is expected to contribute more to the final result than less successful models. In our

ensemble model, we have developed a meta-learner to provide this. Owing to this meta-

learner, we have dynamically weighted the base-models, that is, we have ensured that

each model contribute in the final prediction result according to its current prediction

performance.  We leverage this capability of ensemble learning to improve long-term

prediction accuracy.  In order to assess the accuracy, we conducted several experiments,

in which we compared the proposed model with widely used prediction models. 

3



  There are three main contributions of this study:

1. In this study, we proposed a fully DL-based ensemble learning framework for

long-term traffic flow prediction. To the best of our knowledge, this is the first

time a fully DL-based ensemble model is proposed for long-term traffic flow

prediction.

2. We used three different DL models as base-learners. In the model we developed,

we use LSTM and GRU together. We have not come across a model in literature

that uses these two techniques together.  Since these two techniques are versions

of  recurrent  neural  networks,  it  is  not  preferred  to  use  them  together  in  a

prediction model. However, although these two techniques are similar to each

other, their performances are quite different as seen in Figure 1.1. So where one

fails, the other can be quite successful. For this reason, we preferred to use these

two techniques together.

3. We use deep learning architectures in our model, both as base learners and the

meta-learner.  Thanks to a feed forward neural network (FFNN), which is the

most basic deep learning technique, we decide the weights of the base learners.

We train a feed forward neural network as a meta-learner in order to obtain the

final  prediction  result.  In  this  way,  we  ensured  that  the  base-learners

dynamically contribute in the final prediction result according to their prediction

success (more successful ones contribute more, less successful ones contribute

less).

The study is organized as follows:  A brief overview of current literature on traffic

flow prediction is provided in chapter 2. In chapter 3 we provide a background section

and introduce the details of our deep learning-based ensemble framework. Then, we

present dataset, preprocessing steps in chapter 4 and experimental results and discussion

in chapter 5. Chapter 6 includes conclusion and future work.
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Chapter 2

Related Work

The  importance  of  traffic  flow  prediction  in  transportation  engineering  is

increasing, and accordingly, we can say that there is a very large literature in this field.

Most studies propose a model to predict traffic flow. We will examine these proposed

models under two topics by following the tradition in the literature: Parametric models

and non-parametric models [4, 12, 15–19]. 

We summarize the related literature in Table 2.1.

2.1 Parametric Models

Models in this class can be explained by traffic flow theories of transportation

engineering, statistics and probability. In a parametric model, traffic flow is represented

as a function of random variables (e.g., accident, instantaneous decisions of drivers),

time-dependent variables (e.g., time of day, day of the week, or season), and auxiliary

variables (e.g., weather, public holidays, sports or concert events). That is, traffic flow is

defined as the total  number of vehicles  passing through a certain road segment at  a

certain time period under the influence of many dependent or independent variables,

each of which is dynamic in itself. Modeling with parametric approaches is relatively

easy, but these models are suitable for uncomplicated small-sized data sets [19].

The most widely used parametric approaches in literature are ARIMA, kalman

filtering and linear regression.

ARIMA is a time series modeling approach that explores the temporal relationship

between data points of a time series. There are many traffic flow forecasting models

developed  using  ARIMA  and  its  advanced  versions  i.e.,  ARIMAX,  SARIMA,

SARIMAX in literature [20, 21].
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Kalman Filtering is a widely used traffic flow prediction method. Its main idea is

to  predict  future  traffic  flow  using  historical  traffic  flow  data  with  a  recursive  or

iterative process [22].

Linear regression is a pretty simple parametric approach. This method describes

the traffic flow as a linear combination of the independent variables [23].

2.2 Non-parametric Models

Models  in  this  category  are  more  advanced than parametric  models,  and their

performance varies according to the quality and size of the dataset. These models can

achieve satisfactory prediction success with big data, but this requires quite a lot of

computational  capacity.  K-nearest-neighbor  (K-NN),  support  vector  machine  (SVM)

and neural networks (NN) are the approaches we can count in this category.

K-NN can be used for classification or regression. In this model, common patterns

are tried to be extracted from historical traffic flow data. By using the best match with

these defined patterns, future traffic patterns are tried to be predicted [24].

Another parametric model used in traffic flow prediction is SVM [15]. Although

the estimation accuracy can be increased by using different ”kernels”, the computational

load of model training is quite high, especially compared to K-NN and NN. Therefore,

it is not practical for large datasets. 

Indeed,  K-NN  and  SVM  are  not  popular  models  developed  for  traffic  flow

forecast. The most popular models in this category are the NN-based models. And the

reasons why NN-based models are so popular can be listed as follows: (1) They are

suitable  for  big  data,  (2)  They  have  fast  convergence,  (3)  They  can  achieve  high

prediction accuracy. A wide variety of NN models have been proposed for traffic flow

prediction [1, 7, 12, 18].

2.3 Deep Learning-Based Models

Although deep learning models are  also non-parametric  models,  we wanted to

examine these studies separately since they have been very popular in this field in recent

years and have a fairly wide literature. The simplest DL models that can be found in

literature in this field are multi-layer-perceptron (MLP)-based models developed using

multiple hidden layers [25]. 
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However,  the  most  widely  used  DL  technique  in  solving  the  traffic  flow

prediction problem is recurrent neural networks (RNN). Especially, GRU and LSTM

techniques, which are variants of RNN, are the most common methods since they are

successful in capturing dependencies at different times. For example [26], developed a

two-layer LSTM-based model. It used a fully connected layer as the extraction layer in

the first  layer,  and the LSTM layer as the prediction layer in the second layer.  The

proposed other LSTM-based models are in [6]. 

A GRU-based model is proposed in [27]. In this study, weather data was used in

addition to traffic data. Apart from RNN, CNN-based models also have been proposed

for  short-term  traffic  flow  forecasting  problems  [28–30].  CNN-based  models  are

especially preferred because they can produce results faster than other neural networks

[31].

2.4 Hybrid and Ensemble Models

Understanding that it is not possible to model the complexity of traffic data with

simple  and  traditional  methods,  many  researchers  have  turned  to  hybrid  models,

especially in recent years. While in early studies we can see the combination of several

parametric  models,  in  recent  studies,  many  of  the  hybrid  models  were  build  by

combining two or more non-parametric methods [7, 8, 11, 32, 33].

Especially LSTM and CNN are used together in recently developed hybrid models

[29, 34,  35].  There are also hybrid models developed by using parametric  and non-

parametric methods together  [11, 36].

On the other hand, EL-based models emerge as a new trend [37–42] . There are

only a limited number of EL-based prediction models in the literature [16, 17, 21, 43–

45].  However,  none  of  these  studies  focus  on  long-term forecasting.  And  this  is  a

research gap that we want to fill in this study. 
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Table 2.1 Summary of the related literature

Ref. Horizon Input
data

Data size Method/
Technologies
used 

Evaluation
metrics

[9] 24 hour Highways
Agency
Network
Traffic  Flow
Data

15 minutes 
resolution 
from 1 Jul 
2018 to 28 
Jan 2020

Wavelet 
decomposition, 
CNN, LSTM

RMSE,  MAE,
R square 

 [7] Up to 24h Caltrans
Performance
Measuremen
t  System
(PeMS)
dataset

5  minutes
interval.  data
size  not
mentioned.

LSTM  encoder-
decoder

RMSE,
Symmetric
MAPE

[1] 24 hour Dataset
obtained
from  the
DRIVENET

From
February  1,
2015  to
March  31,
2016

Deep  neural
network (DNN)

APE, MAPE

[8] Up to 4h GPS-data 
taken from 
the GAIA

 from October
to November 
2016

Graph CNN-
LSTM

RMSE, MSE, 
MAE and 
MAPE 

[12] Up to 1h Victoria 
Street 
(Melbourne)

One-year data
(2016)

Convolutional 
GRU with 
attention network

Weighted 
MAPE, 
RMSE, MAE

[16] single step 
(unspecified)

PeMS District 5 
named 
Central Coast 
in 2013 

Ensemble 
learning , CNN 

MAE, RMSE,  
MRE, and the 
standard 
deviations 
MAE, MRE 
and RMSE
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Table 2.2 Summary of the related literature (Continues)

Ref. Horizon Input data Data size Method/
Technologie
s used 

Evaluation
metrics

[21] 1-hour Princes 
Highway, 
Victoria Road, 
Canterbury 
Road, and M1 in 
Sydney

Hourly traffic 
count from 
November 2017
to November 
2018

Ensemble 
learning, 
ARIMA

RMSE, 
MAPE

[29] 5 hours Data  from
Hangzhou
Integrated
Transportation
Research  Center
and PeMSD10

from  16th
October,  2013
to  3rd  October,
2014  and from
1st  January,
2018  to  31st
March, 2018 (15
minutes
resolution)

Graph
convolutional
network,
Recurrent
neural network

RMSE  and
MAPE

[32] 1 hour (12
steps)

PeMSD4  and
PeMSD8

from January to
February  in
2018  and  from
July  to  August
in  2016  (5-
minutes
interval)

Encoder-
decoder,
attention
network,
LSTM

RMSE,
MAE,
MAPE,
median
absolute
error
(MdAE),
mean
absolute
scaled  error
(MASE)
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Table 2.3 Summary of the related literature (Continues)

Ref. Horizon Input data Data size Method/
Technologies
used 

Evaluation
metrics

[17] Up to three-
steps

Portland-
Vancouver 

from March 4 to
June 28, 2019

Ensemble 
learning, 
Ensemble 
empirical mode 
decomposition,  
DBN (Deep 
belief networks)

RMSE, 
MAPE

[37] 1 hour (4 
steps)

arterial 
sensors in 
Arcadia, CA 
in 2015

15-minutes 
interval data

Ensemble 
learning,ARMA
X, Partial Least 
Squares, Support 
Vector 
Regression, 
Kernel Ridge 
Regression, 
Gaussian Process
Regression

MAE and 
StdAE(stand
ard 
deviation)

[38] Up to 30 
min

PeMS(``freew
ay segment 
located in San 
Diego'')

from September
1,  to September
30, 2019, 
interval is 5 min

Ensemble 
Empirical Mode 
Decomposition,  
Wavelet, LSTM

RMSE, 
MAE, 
MAPE

[45] Up to 30 
min

Yuanda Road,
Furong 
District, 
Changsha City

from September
to October in 
2013, excluding
weekend  time 
interval is 5 
min'

optimized 
variational mode 
decomposition 
(OVMD) and 
(LSTM)

RMSE, MAE
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Chapter 3

Methodology

3.1 Problem Formulation

Traffic flow forecasting models are often based on a simple assumption: the future

depends on the past. In other words, data that generated traffic conditions in the past

will affect current and future traffic situation. Therefore, continuity of data is important.

Traffic flow prediction is a time-series problem, and as with all time-series problems,

past values are used as target function parameters in the traffic flow estimation problem.

In other words, the target/prediction value at time  T n becomes one of the target function

parameters at time  T (n+1) . This is for single-step prediction.  In multi-step prediction,

more than one value at consecutive time steps, participates in the process at the same

time. To formulate this problem mathematically, we use the notation to ƒt
i define traffic

flow from station i at time t. In order to extract spatial and temporal features of traffic

flow here, we construct spatial-temporal feature matrix as follows:

                                          (3.1)

Here,  s  denotes  the  number  of  stations.  We  construct  this  flow  matrix  with

temporal information horizontally and spatial information vertically. In the next step,

we can formulate the traffic flow prediction problem as follows:
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                   (3.2)

Here, since we use historical flow data to predict future flows, the matrix on the

left  hand side  represents  historical  flow data  and the matrix  on the right  hand side

represents  prediction  values.  The  traffic  flow  prediction  model  is  represented  by  a

prediction function, which is represented by θ. ƒd denotes traffic flow from station d. β

is the looked-back steps, and h is the prediction horizon.

3.2  The  Differences  Between  Short  and  Long-term

Prediction

In fact, the difference between the short and long-term forecast goes far beyond

the  period  we  determine  with  only  the  prediction  horizon.  In  literature,  long-term

forecasting is categorized as predicting an hour later or a few steps later (usually 5 steps

or more), while short-term forecasting is defined as predicting one step or a few minutes

later. Here, we can say that a categorization based on this definition is not reliable due

to the lack of a consensus in terms of the prediction horizon. However, according to the

assessments made taking into account the time interval of the data, it is reasonable in

our opinion to consider 5 steps and beyond as a long-term forecast.

3.3 Related Technologies

In this section, the related technologies used in the proposed model and methods

used to compare are described.
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3.3.1 Linear Regression (LR)

The linear regression model, which is considered the simplest method to model

the  correlation  between  the  dependent  variable  and  independent  variables,  makes

inferences  assuming  that  the  data  are  randomly  distributed.  Linear  regression  is  a

parametric method that tries to describe the relationship between at least two variables

with a linear function. 

This method can be widely used to predict future data from existing data or to

analyze and understand existing data. Linear regression is a frequently used technique,

and with this method it is possible to create good predictive models for many problems

because there are usually linear as well as non-linear relationships between variables.

And linear regression can easily describe these simple relationships.  

However, linear regression makes modeling with many assumptions that are not

possible in practice. For example, it assumes that the variance of the predicted value is

the  same for  all  values  of  the  independent  variable.  This  is  not  accurate  for  many

problems  and  causes  incorrect  prediction  results.  Linear  regression  can  be  simply

defined as z=kx+c. Here, z is the dependent variable, x is the independent variable, k is

the weight  value  that  needs  to  be optimized,  and c  is  the point  where the equation

intersects the constant or axis. In this way, linear regression allows us to understand

how and by how much the dependent variable will change as the independent variables

change.

3.3.2 K-Nearest Neighbors (KNN)

In fact, k-nearest neighbors (k-NN) is a classification algorithm, a non-parametric

method that is widely used in different fields, which we can count among the supervised

learning methods of machine learning. 

Although it is recommended for classification problems, there is also a version

used in regression problems. In the simplest sense, KNN creates a prediction by looking

at the closeness of the data to be predicted to the existing data, without actually creating

a  mathematical  prediction  model.  Euclidean,  Manhattan  and  Minkowski  distance

measurement formulas are generally used to measure the distance between two data.

The K value indicates the number of nearest neighbors and is a value that greatly affects

the prediction performance. This value can be optimized by various methods or the best

K value can be found by trial and error. 
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This method is  quite simple and effective.  The main disadvantage is that  it  is

necessary to scan the entire data set each time to obtain each predictive value.  This is

very time consuming, especially  for large data sets.  However,  it  is  quite faster than

many machine learning methods (such as SVM) because it does not waste time finding

a prediction function at the beginning. 

The  classification  version  uses  the  class  value  with  the  densest  K  nearest

neighbors in the current data set to decide the class value of the data to be classified.

The regression version produces prediction values by simply averaging the y values of

the K nearest neighbors.

3.3.3 Decision Trees (DT)

Decision trees are a well-known non-parametric method in machine learning and

were  first  proposed  as  a  classification  algorithm.  Especially  its  simplicity,

understandability and ease of implementation  has made it a preferred method in solving

many problems. 

The advantages of this method based on generating rules are that the data set-

specific  rules  can be easily  visualized  and the  prediction  process  is  understandable.

Decision trees are a supervised learning method created by continuously dividing the

data set sequentially and gradually in order to maximize the difference variable between

data  points  included  in  defined  classes.   So  this  method  does  not  actually  use  a

mathematical model to produce predictive values (unlike SVM or Linear regression). It

simply divides the data set according to a certain criterion, and after each division, two

groups within and outside of this certain criterion are formed. The method considers

these two groups as two different classes. 

The most important difficulty for decision trees is where to split the data set and

when to stop splitting the data set.  To overcome these difficulties, entropy information

is often used.  Entropy is  a versatile  concept,  but  as used in decision trees,  Entropy

measures the irregularity of the set of data that forms the classes that will emerge as a

result of each split. In other words, the less data there is from other classes among the

data in a class, the lower the Entropy value. 

Although decision trees were developed as a classification algorithm, there is also

a version proposed for regression problems. In this version, decision trees divide the

data set  and create  many different  groups from the data  set,  as in  the classification

version. However, instead of class names, leaf nodes contain the average of the target
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values of the data that make up that class. Max depth (maximum depth of the tree) or

minimum information gain can be used as stopping criterion.

3.3.4 Random Forest (RF)

The random forest model is an ensemble learning model in which decision trees

are used as single learners. It is a prediction model developed for discrete problems, but

it also has a version developed for continuous problems. 

The random forest model can consist of many decision trees depending on the

difficulty level of the problem. In its simplest form, the model works as follows: First of

all, the model creates different sub-data sets from the raw data set for each decision tree.

Using the data sets it creates, it trains an independent and different decision tree base

learner model for each data set. Trained models produce their individual predictions.

For classification problems, the most preferred class among the predictions becomes the

final prediction class. For regression problems, the final prediction result is found by

calculating the average of the predictions of the decision trees. 

The most important feature of the random forest model is that it reduces the risk

of overfitting because it consists of many decision trees with different architectures. In

addition, since the random forest model is an ensemble learning model, the developed

prediction model is expected to have high generalizability.

3.3.5 Recurrent Neural Network (RNN)

This model is one of the most important DL techniques particularly developed for

time series problems. RNN has a simple feedback loop in order to learn dependencies

among the different time intervals. However, the basic RNN architecture is insufficient

to capture complex relationships in long time intervals, so two different versions have

been proposed. 

The first of these versions is long-short-term memory (LSTM) and the other is

gated-recurrent network (GRU). LSTM has three different gates (input, output, forget)

while GRU has two different gates (update and reset) and by the agency of these gates,

they remove unnecessary information from the model that comes from the past states,

and allowing the model to focus on only useful information. In this way, the model can

learn long-term dependencies with ease. Figure 3.1 presents the general structure of the

RNN, LSTM and GRU.
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3.3.6 Convolutional Neural Network (CNN)

Since CNN was not developed for time series problems, it was not used for time

series prediction for a long time. However, with the increase in the amount of data, the

increase  in  computational  load  and  the  inability  to  parallelize  the  RNN  algorithm

efficiently led to new searches. CNN is promising for time series problems as it can be

parallelized and produces faster results. 

In recent years, successful CNN-based time series forecasting models have been

developed. Due to its architecture, CNN is used to reveal the relationships of different

time series, especially in problems that need learning temporal dependencies and spatial

dependencies together. A simple CNN model includes convolution layers, pooling layers,

fully connected layers (FC), and an output layer as can be seen in Figure 3.2. Filters are

used in the convolution and pooling layers and the results are combined in the FC layer.

In this way, learning is provided at each convolution layer.
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Figure 3.2 A simple CNN model

3.3.7 Deep Ensemble Learning

Ensemble  learning  models  combine  several  base  or  individual  models  with

different strategies in order to provide better generalization and improve final prediction

performance [13, 14]. Moreover, today, deep learning models with complex and layered

architecture outperform traditional prediction models. Deep ensemble learning models,

on the other hand, aim to build a more successful prediction model by combining the

peculiar advantages of these two models. 

There are many models developed for traffic flow prediction in the literature, but

few of them are ensemble learning-based. Whereas, ensemble learning-based models

provide higher accuracy and generalizability because they are constructed by combining

either individual models developed with different combinations of the same method or

individual models developed using different methods. Combining multiple models in

this way for traffic flow forecasting can increase the final forecasting accuracy while

preventing overfitting. Because each individual model deals with one aspect of the final

model, as a result, the final model provides a more general representation and achieves a

higher predictive accuracy compared to individual models. To this end, we focus on
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ensemble learning approaches in this study and propose a novel deep ensemble model

for traffic flow prediction. The formula for an ensemble model is as follows:

 

                                         (3.3)

Where FPM is final prediction model,  α k is the k th individual model,W k is the

weight of the k th individual model and K is the number of individual models. This

form of ensemble learning is called “Stacking Ensemble” in literature.

According to  this  formula,  the ensemble  learning model  gives  weight  to  each

individual model. The most common approach in the literature, for this purpose, is to

give  equal  weight  to  each  model.  One  issue  of  this  approach  is  that  each  model

conduces equally to the final prediction, without considering the prediction performance

of single models.  When we give a  fixed weight  to  each single model,  we limit  the

performance  of  the ensemble  model  due to  a  reduction  in  its  generalization  ability.

Therefore to improve the prediction accuracy, we propose a flexible and robust deep

ensemble model in this study. The proposed model assigns the weights based on the

individual model performance and traffic situation change. Equation 3.3 is the general

formula of an ensemble model and is its simplest form. We propose a complex FFNN-

based meta-learner to optimize the weights in our proposed ensemble model.

3.4 The Proposed Model

The  proposed  model  is  a  deep  ensemble  model  which  is  capable  of  properly

fusing the prediction results of multiple deep learning models. Our model learns the

strengths and weaknesses of individual models and weights the predictions of single

models according to their prediction performance. In addition, our model is flexible and

performs well under different traffic conditions since our model receives actual data as

well as prediction results from each model to obtain the final result.

Figure 3.3 demonstrates the details of our deep ensemble traffic flow prediction

framework.  Our  proposed  model  consists  of  three  stages.  The  first  stage  is  the
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preprocessing and dataset preparation. We will explain this stage in detail in the next

section. 

The  second  stage  is  base  model  selection.  At  this  stage,  we  adjust  the

configurations of the three base models namely LSTM, GRU and CNN. For this, we run

models  LSTM, GRU and CNN multiple  times  with  different  time-lags,  numbers  of

hidden layers and neurons. We optimize the internal parameters of each base model and

select the best models with the highest accuracy. After selecting the base models, in the

third stage, we decide how much each base model will contribute to the final model

according  to  their  performance.  That  is  we  develop  a  meta-learner  to  dynamically

weight each base learner. For this, we first form new training, validation and test sets

using each base model, then by using these new datasets we build a feed forward neural

network-based (FFNN) model with deep architecture and the outputs of this final model

(i.e.,  FFNN)  or  meta-learner  are  the  predicted  traffic  flow values.  With  this  meta-

learner, we can learn the weights of each base model. Thus, the weight of each base

model is determined automatically.  Figure 3.3 shows the general structure of a feed

forward neural network.

Meanwhile, in order to capture the traffic condition changes, we use raw input

data as well during the construction of the final model. Consequently, we separate the

base models weighting step from the base models selection and tuning step so that the

ensemble model can be dynamic and can change with the traffic conditions.

As we mentioned in section 3.3.7, an ensemble model can be built in two different

approaches: It can built by combining either individual models developed with different

combinations  of  the  same  method  or  individual  models  developed  using  different

methods.  The novelty of our model is that it combines these two approaches. Moreover,

the base-learners and meta-learner we use in our model all have deep architecture, and

we don’t use a fixed weight for each base-learner, we introduce a meta-learner with the

ability of dynamically weighting the base-learners according to their predictive success.

3.5 The Alternative Model

We suggest a different ensemble model that can be an alternative to the model We

suggested in the previous section. as seen in Figure 3.4, the alternative model is quite
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similar to the proposed model that we introduced in Section 3.3. In this model, We use

three different deep learning models as base learners: These are LSTM, CNN and GRU

and we use FFNN as a meta-learner, as well. However, in the first model, we  provide 4

inputs to meta-learner. 3 of these are outputs from base-learners. The 4th input is the

raw data input. In other words, in order to train the meta-learner, we reuse the data we

prepared  as  the  training  set  to  train  the  base  learners.  In  the  alternative  model,  we

provide only the outputs from base-learners as input to meta-learner, that is, we provide

3 inputs in total  to meta-learner. we proposed this model as an alternative ensemble

model and repeated all experiments for this model as well. Our goal is to see how the

difference  between two ensemble  models  will  affect  the  result.  In  other  words,  we

wanted to measure how and to what extent the result is affected by the absence of raw

data input. In the results section, the experimental results of the two models for 8 time

horizons can be found comparatively. 

For the experiments, we used the same dataset in both models. The base learners

we use in both models are the same, but since the meta learners are different, we only

optimized the meta learners separately for each time period. In this way, we tried to get

the best performance from both models for each time horizon. We call this alternative

ensemble model "Ens1" in the results tables.

Figure 3.3 General Structure of Feed Forward Neural Network
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Figure 3.4 General structure of the proposed model.

Figure 3.5 General structure of the alternative model.



Chapter 4

Experiments

4.1 Dataset and Preprocessing

We conducted this study with a publicly available and a real-world dataset1. The

dataset contains a total of 274 stations. The data was collected from January 1st, 2015 to

December 31st, 2015, which contains both weekends and weekdays and aggregated one

hour intervals.

In addition  to  the traffic  volumes for  each hour  as  a  feature,  the dataset  also

includes supplementary information which can be used to build the prediction model

and is shown in Table 4.1.

Although the dataset contains 274 stations, some stations only have data for 3-4

months,  for  instance,  station  116820  has  data  only  for  the  2nd,  9th,  11th  and  12th

months. That is, for some stations there are too many missing values, and this disrupts

the continuity of the dataset.
1Source: www.transportation.gov/data, and it is available at: https://cloud.google.com/bigquery/public-
data
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       Table 4.1  Attributes and descriptions.



However,  this  is  not desirable  for time series and can significantly reduce the

forecasting quality. Therefore, both because our computational resources are limited and

because  we  want  our  model  to  produce  more  reliable  predictive  results,  we  have

selected 100 stations with as few missing values as possible and we tested all prediction

models by using these 100 stations.  we can list the criteria we consider when choosing

these 100 stations as follows: Stations should

 have the same state code  

 include data for all months of a year

 include at least fifteen day data for a month

Figure  4.1  shows the  10  stations  we have  selected  and Figure  4.2  shows the

locations of the selected stations.
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We filled the missing values of the stations used in the experiments by averaging

the data of the previous and the next hour. Thus the total number of data samples is

100 365. We chose this method to fill the missing data because data that are closer∗365. We chose this method to fill the missing data because data that are closer

together, whether spatially or temporally, are more related to each other than data that

are far apart. This idea is based on Tobler’s first law, which says that things that are

close together are more related to each other [21]. Inspired by this, we used this method

to fill the missing data.

While choosing the stations we will use in our experiments,  we also took into

account the road type to which the station belongs, in addition to the amount of data

because we wanted to show how robust and generalizable our model is for different

road types.Table 4.2 shows the road types we used and their percentages in the data set.

We separated the dataset into three: We organized 65% of the dataset (about the

first eight months) as the training set, the last two months as the validation set, and the

remaining part as the test set. And we performed Z-Score normalization.
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Figure 4.2 Road network used for experiments.



Table 4.2 Road Types

Urban: Principal Arterial - Other                            30%

Rural: Principal Arterial - Other                            20%

Urban: Principal Arterial - Interstate                       14%

Urban: Minor Arterial                                        10%

Rural: Minor Arterial                                        10%

Urban: Principal Arterial - Other Freeways or Expressways     8%

Rural: Principal Arterial - Interstate                        6%

Rural: Major Collector                                        2%

4.2 Constructing Traffic Flow Matrix

We tried to find the optimum time lag by running each deep learning model (base

learner) many times with different time lags, i.e., the current traffic flow depends on

how many steps in the past traffic flow. Thus, we have obtained an optimum time lag

for each base learner. 

If we show the time-lag value with W; we set W hours as the time lag and added

W new features, each of which indicates hourly traffic volumes in a W-hour period. In

this way, prediction models try to predict the traffic volume in the (W+1)th hour by

using previous W hours of data. 

We tested the proposed model for multiple horizon values: The prediction horizon

h is specified as 1 for single step prediction,  and 2, 3, 4, 5, 9, 12, 24 for multi-step

prediction  (i.e.,  long-term prediction).  That  is,  we  used  W hours  historical  data  to

predict  the  following  h  hour(s)  traffic  flow value.  Accordingly,  we  constructed  the

traffic flow matrix as input(X) and output(Y) matrix as follows:

         (4.1)
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    (4.2)

In equation 4.1 and 4.2,  ƒt
s1 indicates  the traffic flow of station 1 at  time t.  h

represents prediction horizon, W denotes time-lag(or time-window-size) and d is the

stride value which is a parameter that determines how much of the time window we will

shift. The term h in matrix X is added just to match the matrices X and Y

4.3 Experiments Settings

TensorFlow2  and Keras3  , which are open source libraries of Python, were used

to build the proposed deep ensemble model and other deep learning models. We used

the scikit-learn4 as the machine learning library to implement the LR, KNN, DT, RF

models.

We made a lot of trials to determine the best time-lag. As a result of these trials,

we found that the best time-lag is 24h for all models.

We optimized the hyper-parameters of each model separately. For deep learning

models the number of hidden neurons, activation function, dropout rate and learning

rate were optimized by using ‘Bayesian Search’ algorithm. Table 4.3 shows the hyper-

parameter values that we obtained as a result of optimization for each deep learning

model. We used ‘Random Search’ algorithm for optimizing hyper-parameters of LR,

KNN, DT, RF models. The Adam algorithm is used to optimize the loss function of all

deep learning models and the ensemble model. The maximum number of epochs is set

to 100 however due to early stopping, there was no model that reached 100 epochs.

2www.tensorflow.org

3www.keras.io

4www.scikit-learn.org
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4.4 Comparison Metrics

We use four metrics to measure the performance of the developed models, mean

absolute error (MAE), mean squared error (MSE), Mean Squared Logarithmic Error

(MSLE) and R-squared score which are the most frequently used metrics for traffic

forecasting. 
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MAE, MSE, MSLE, R2are defined as:

                         (4.3)
                      

where t, p and T indicate the actual value, prediction value and the total number of

samples, respectively. And v indicates that mean value of the actual traffic flow data.
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Chapter 5

Results and Discussions
In order to assess the performance of our ensemble model (i.e., Ens2 in Table 5.1

and Table 5.2 ), we compare the proposed model with base models, i.e., LSTM, GRU

and  CNN.  Besides  these  models,  we  also  compare  our  model  with  some  selected

traditional machine learning models including LR, KNN, DT, RF. We use raw input

connection in meta-learner so that our ensemble model can be dynamic and capture the

traffic  conditions  well.  We  construct  an  alternative  model,  which  has  the  same

architecture as the proposed ensemble model except the raw input connection (i.e., Ens1

in Table 5.1 and Table 5.2). We also compared the prediction performance of this model

with the model we propose. 

5.1 Comparison of the Proposed Model with 
Traditional Machine Learning Models 

We  compared  our  proposed  model  with  four  traditional  machine  learning

methods. These methods are linear regression, K nearest neighbors, decision trees, and

random forest. For comparison, we trained models for 8 different horizons using these

ML methods. We calculated MSE and MAE values for each model.

Table 5.1 shows all the results we obtained for this study. As seen in this table, the

model we propose is quite successful compared to traditional ML models. There is a

significant difference between the proposed model and traditional ML models for both

MSE and MAE values for all time horizons. For example, when the time horizon is 1

hour, LR has an MSE value of 0.1007, while the MSE value of the proposed model is

only 0.0613. When the time horizon was 4 hours, the MAE value of the DT model was

0.3188, and the MAE value of the proposed model decreased to 0.2302. KNN, another

traditional ML model, reached 0.3019 MSE value when the forecast horizon was 24

hours, but the proposed model decreased to 0.2539.
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Figure 5.1 shows the 3-day forecast performance for all  models.  While Figure

5.1a  shows  single-step  prediction  performances,  Figure  5.1b  shows  multi-step

prediction  performances.  When  we  examine  these  two  figures  only  by  considering

traditional ML models, we can reach the following conclusions:

Traditional machine learning models are not sufficient for especially long-term

prediction. Among the traditional machine learning-based (ML-based) models we have

compared, the best performance belongs to KNN. However, the performance of tree-

based models is quite low. The prediction performance of Random Forest(RF), which is

a tree-based ensemble model, is quite far behind KNN.

When Figure 5.1 (a) and Figure 5.1 (b) are compared, it is seen that the proposed

model is relatively more successful in sharp ups and downs.

                                                                       (a)

                                                                       (b)

Figure 5.1 Comparison of the prediction results:  (a) TimeHorizon=1(Single-step

prediction). (b) TimeHorizon=24 (Multi-stepprediction).
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Table 5.1 Comparison of prediction performances of the proposed ensemble model 
and other competitive models for 8 time horizons.



5.2 Comparison of the Proposed Model with Base-
Learner Models

Table  5.1  shows MSE and MAE results  we have  obtained  as  a  result  of  our

experiments for eight time horizons. In addition to the results of the ensemble model we

proposed (which appears as Ens2 in the table), we also added the results of the base

learners that make up our ensemble model. In the table, it can be seen that the ensemble

model we proposed performs better than base learners. This result is valid for all time

horizons in the table. For example, while the MSE value of LSTM for time horizon 3

hours is 0.1499, this value is 0.1119 for Ens2. When the time horizon is 5 hours, the

MAE value of CNN is 0.2911 and the Ens2 value is 0.2300. When the time horizon is

12 hours, the MAE value of GRU is 0.3725, while this value is 0.2847 for Ens2. As can

be seen from these results, the proposed model is quite successful compared to base

learners. 

When we evaluate  the  results  in  the  table  only  from the  perspective  of  base-

learners, we can reach the following conclusions:  According to this, among the base-

learner models, CNN has shown the best performance in many horizons. This result is

interesting because CNN was not originally developed for time-series problems. But

before we can generalize this result, we need to do more experiments. For the dataset

we used in this study, CNN performs quite successfully. In other words, we can say that

we have developed a prediction model compatible with the dataset. Nevertheless, we

cannot make a general conclusion that CNN is the most successful DL technique for

time series problems. However, we can say that CNN is promising for such problems. 

According to the results of our experiments, although CNN is more successful DL

model than others, the performance of the other DL models is roughly competitive with

CNN.  These results  indicate  that  DL-based models  offer  the opportunity to develop

more  successful  prediction  models  because  they  can  better  capture  long-term

dependencies.

The 3-day forecasting performance of the base models and the ensemble models

are shown in Figure 5.2 (a) and (b). Figure 5.2 (a) shows single-step prediction (i.e.,

prediction-horizon=1) and Figure 5.2 (b) shows multi-step predictions (i.e., prediction-

horizon=24).  The forecasting graphs belonging to the same period (month/day/hour)

were selected in order to compare the performance of the top and bottom forecasting
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horizons. Based on these figures, the predictive success of the proposed deep ensemble

model has increased considerably for both time horizons compared to single models.

The  histograms  in  Figure  5.3  (a)-(e)  show  forecasting  performances  for  time

horizon=1 for different days of the week and different times of the day. To obtain these

histograms, for each model, first, the difference between the each prediction value and

its ground truth was taken separately. Then, for each prediction value, the model with

the smallest of this difference was awarded a score, and in the end, the models’ scores

were added up. These histograms show the total score of each model. The highest score

in all five histograms belongs to the proposed ensemble model. In fact, these histograms

show that the proposed model is decisively ahead of the other models. 
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models: (a) TimeHorizon=1(Single-step prediction). (b) TimeHorizon=24 (Multi-
stepprediction).



When the histograms in Figure 5.3 are examined, it is seen that the prediction

performance of the proposed model is quite good both on weekdays and during peak

hours. However, the performance of CNN among the single models is the lowest for

these two categories.

When we examine the histograms in Figure 5.3, we see that the most successful

single model is GRU. GRU outperforms even our alternative ensemble model (Ens1)

for all categories.

In Table 5.2, we compare ensemble models with base models using MSLE and R2

metrics. We chose these two metrics because the first metric measures relative error

rather than actual error. That is, it gives approximately equal weight to small and large

differences between actual and predicted values. The second metric is used to compare

the quality  of models with each other, rather than to decide the overall  quality  of a

model. This metric takes a value between 0-1. and the model is considered good as the

value get closer to 1. However, it is very difficult to obtain values close to 1 for difficult

34

Figure 5.3 Comparison of the prediction results: (a) Prediction results on 
weekdays. (b) Prediction results on weekends. (c)Prediction results on rush 
hours. (d) Prediction results on off-peak hours. (e) Overall performance 
(TimeHorizon=1).



problems such as traffic flow prediction. Therefore, each prediction problem should be

evaluated on its own. 

In general, as prediction horizon increases, the prediction performance of all the

models we compare, including the model we propose, decreases, which proves that the

long-term prediction is more difficult.

Although  the  prediction  performance  of  our  proposed  model  decreases  as  the

prediction horizon increases, this decrease is small compared to the other models we

compared. For example, when the forecast horizon is 4 hours, the MSE of our model is

0.1313, and this  value increases to 0.1388 when the forecast horizon is  5 hours.  In

contrast, when the forecast horizon is 4 hours, the MSE of CNN is 0.1406. However,

when the forecast horizon increases to 5 hours, this value increases to 0.1881

Based  on  our  observations  during  our  experiments,  we  can  also  make  a

comparison  between  DL-based  models  in  terms  of  computation  times.  CNN  also

performs best in terms of computation time among DL-based models. This is probably

due to the fact that CNN can be parallelized more efficiently than GRU and LSTM.

However, LSTM was the model with the worst performance in terms of computation

time.
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models and base models for 8 time horizons.



5.3 Comparison of the Proposed Model with and 

without Raw Input Connection (Ens1 vs Ens2)

As we explained in Section 3, we propose another ensemble model that can be an

alternative to the model we proposed. To compare these two models, we repeated all

experiments for the alternative model. With these experiments, we tried to understand

how much the raw input  connection  improves  our  model.  This  alternative  model  is

called  as Ens1 and the proposed model is called as Ens2.

Table  5.1  shows MSE and MAE results  we have  obtained  as  a  result  of  our

experiments for eight time horizons. As can be seen in the table, our model(i.e., Ens2) is

the most successful model in all time horizons except time horizon=9, in which Ens1

model was the most successful.  This result shows how much the raw input connection

improves our model.  Morover these results prove that the ensemble models perform

better, especially in long-term traffic flow prediction. 

In addition to these main results, when we examine both metrics values in Table

5.2, we see that the model we recommend is the best model for all prediction horizons

except 9h. This shows us the results in Table 5.2 are consistent with the results in Table

5.1. The results show that we can achieve a significant performance improvement when

we combine ensemble learning architecture and deep learning techniques with raw input

connection. 

When  we  examine  the  results  in  Table  5.1  in  detail,  we  see  that  the  error

differences between the two models are not large. However, we can say that there is a

slight improvement. To give a few examples of this, for example, for time horizon 2

hours, the Ens1 model has 0.0899 MSE and 0.1889 MAE values, while for Ens2 these

values are 0.0862 and 0.1840, respectively. While the Ens1 model has 0.2165 MSE and

0.2911 MAE values for the time horizon 12 hours, these values for Ens2 are 0.2079 and

0.2847, respectively.

5.4 Comparison of all Models via Residual Plots

Figure 5.4 shows the residual plots of our proposed model and the models we

compared The residual plot shows the difference between actual values and predicted

values. The closer the points forming the graph are to the starting point, the better the
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developed model.  When these graphs are  examined in detail,  the  superiority  of  our

proposed model over other models is clearly seen.
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5.5 Two-tailed Z-test

We want to see whether the improvements obtained by the proposed ensemble

model over the base-learners are statistically significant or not. To this end, we perform

two-tailed Z-test between the proposed model and the best base-learner model for each

time  horizon.  Table  5.3  shows  the  p-values  that  are  computed  during  the  Z-test

experiment that compares our deep ensemble model and the best base-learner model.

According  to  two-tailed  Z-test  results  for  all  time  horizon,  the  performance

improvements of our deep ensemble model are  statistically significant because all p-

values less than 0.05.

Table  5.3 Two-tailed  Z-test  results  for  the  best  base-learner  and  the  proposed

model for each time horizon

 Time Horizon Base Model p-Value

1 CNN 7.483790763285578e-21

2 CNN 3.0300077486715994e-115

3 GRU 0.0
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4 CNN 3.4729959685477615e-159

5 GRU 4.0339859311062113e-134

9 CNN 8.987073830610557e-08

12 LSTM 0.00021070979763453582

24 LSTM 7.930674522337066e-217

5.6 Experiments to Find Optimum Time-Lag

In many studies, it has been stated that the time-lag value is one of the important

parameters affecting the performance of the forecast model in time series problems and

it is emphasized that it  should be optimized. For this reason, we optimized the time

window parameters  of the LSTM, GRU, CNN models,  which we used as the basic

learner  in  the  ensemble  model  we proposed in  this  study,  separately  for  each  time

horizon. For this, we set 5 time window values: 5, 10, 15, 20, 24. Using these time

windows, we conducted 5 experiments for each base learner and each time horizon.

That is, we reconstructed the traffic flow matrix for training, validation and test sets

according to  the time window value  each time.  Using these data  sets,  we trained 5

separate LSTM, 5 separate GRU and 5 separate CNN models for each time horizon. So,

since we built 5 separate prediction models for each time horizon, we trained 8 * 5 = 40

different  prediction  models  for  a base learner.  Since we trained these 40 prediction

models separately for 3 base learners, we developed a total of 120 different prediction

models. we compared the performance of the forecast models separately for each time

horizon.

We used MSE and MAE metrics to compare. We determined the time window

value of the forecast model that give the lowest MSE and MAE values as the best time

window value.

We  present  the  results  of  all  the  experiments  we  conducted  in  Table  5.4.

According to these experiment results, the best time window value for all time horizon

values is 24, as seen in Table 5.4. And this value is the same for 3 base learners. In other

words, as a result of our experiments, we found the best time window value to be 24 for
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the LSTM, CNN and GRU deep learning models that we use as the base learner in our

proposed model and for all time horizon values 

Table 5.4 Optimum Time-Lag for each time horizon.

Horizon Time-Lag Metrics CNN LSTM GRU

1

5 MSE 0.0983 0.0964 0.0993

MAE 0.2050 0.2059 0.2100

10 MSE 0.1098 0.0932 0.0913

MAE 0.2266 0.2011 0.1993

15 MSE 0.0849 0.0858 0.0940

MAE 0.1905 0.1928 0.2024

20 MSE 0.1008 0.0885 0.0897

MAE 0.2175 0.1972 0.1972

24 MSE 0.0676 0.0676 0.0687

MAE 0.1675 0.1656 0.1657

2

5 MSE 0.1852 0.1681 0.1756

MAE 0.2967 0.2805 0.2836

10 MSE 0.1792 0.1426 0.1448 

MAE 0.2933 0.2560 0.2628

15 MSE 0.1551 0.1379 0.1328

MAE 0.2761 0.2471 0.2364

20 MSE 0.1210 0.1351 0.1358 

MAE 0.2252 0.2426 0.2403
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24 MSE 0.0989 0.1139 0.1095

MAE 0.2039 0.2252 0.2166

3

5 MSE 0.2160 0.2230 1.0323

MAE 0.3153 0.3176 0.8726

10 MSE 0.1588 0.1606 0.1559

MAE 0.2628 0.2675 0.2607

15 MSE 0.2018 0.1600 0.1570

MAE 0.3272 0.2660 0.2620

20 MSE 0.2113 0.2097 0.1614

MAE 0.3435 0.3214 0.2677

24 MSE 0.1271 0.1499 0.1195

MAE 0.2296 0.2401 0.2168

4

5 MSE 0.2660 0.2966 0.3001

MAE 0.3514 0.3879 0.3828

10 MSE 0.2985 0.2636 0.2725

MAE 0.3952 0.3571 0.3713

15 MSE 0.2233 0.2402 0.1950 

MAE 0.3259 0.3537 0.2981

20 MSE 0.2411 0.2466 0.1741

MAE 0.3441 0.3492 0.2866

24 MSE 0.1406 0.2330 0.1506

MAE 0.2449 0.3412 0.2560
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5

5 MSE 0.3153 0.2875 0.2793 

MAE 0.3940 0.3691 0.3616

10 MSE 0.2404 0.2052 0.2125

MAE 0.3537 0.3097 0.3127

15 MSE 0.2315 1.0000 0.2072

MAE 0.3190 0.8685 0.3068

20 MSE 0.1888 0.1968 0.1912

MAE 0.2991 0.2910 0.2944

24 MSE 0.1881 0.1517 0.1515

MAE 0.2911 0.2455 0.2438

9

5 MSE 0.3412 0.3865 0.3464

MAE 0.4097 0.4399 0.4196

10 MSE 0.2863 0.2562 0.2524

MAE 0.3647 0.3413 0.3479

15 MSE 0.2510 0.2399 0.2362

MAE 0.3443 0.3272 0.3265

20 MSE 0.2196 0.2148 0.2582

MAE 0.3033 0.3046 0.3441

24 MSE 0.2066 0.2090 0.2214 

MAE 0.2923 0.3018 0.3071

5 MSE 0.3583 0.3407 0.3465 

MAE 0.4149 0.4112 0.4146
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12

10 MSE 0.2866 0.2760 0.2865

MAE 0.3626 0.3542 0.3690

15 MSE 0.2860 0.2900 0.3249 

MAE 0.3649 0.3728 0.3822

20 MSE 0.2781 0.2712 0.3492

MAE 0.3546 0.3466 0.4

24 MSE 0.2117 0.2160 0.3016

MAE 0.2938 0.3021 0.3725

24

5 MSE 0.4001 0.3940 0.4411 

MAE 0.4615 0.4302 0.4678

10 MSE 0.3191 0.3131 0.3392

MAE 0.3900 0.3842 0.3971

15 MSE 0.2955 0.2921 0.2860

MAE 0.3715 0.3593 0.3561

20 MSE 0.2840 0.2898 0.3298

MAE 0.3566 0.3659 0.3948

24 MSE 0.2754 0.2598 0.2683

MAE 0.3467 0.3224 0.3396

5.7 Comparison of Two Dataset Splitting Approaches 

As we emphasized before, the continuity of the data set is very important for time

series problems. However, in order to create a prediction model, dividing the existing
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data into train, validation and test sets is a commonly used strategy. However, unlike

data sets of other problems, time series data sets have features (such as seasonality) that

can  significantly  affect  forecasting  performance.  For  this  reason,  we  can  say  that

forecasting  models  developed  using  classical  data  set  division  approaches  for  time

series problems have a high risk of being underfit or overfit. 

For  this  reason,  we think  that  new data  set  partitioning  approaches  should  be

developed for time series, which can be an alternative to classical methods. For this

purpose, in this study, we carried out a series of experiments using two different data set

partitioning methods for time series. 

The first method is a very simple method. We call this method as Split1. In this

approach we divide the entire data set as 60% train, 20% validation, 20% test set 

Since continuity is important in time series datasets and in order not to disrupt this

continuity  when  dividing  the  dataset,  the  second  splitting  method  follows  this

approach: Instead of dividing the entire data set as 60% train, 20% validation, 20% test

set, we divide each month in the dataset as 60% train, 20% validation and 20% test set

(We named this alternative method Split2).  Thus, it contains data from 12 months in

certain proportions in 3 sub-datasets (i.e. train, validation, test). 

We conducted 5 separate experiments to measure the performance of this method.

For each experiment, we selected one station with different road types from the total

data set. First of all, we divided each station separately into train, validation and test sets

using the Split2. And we trained 3 base deep learning models (i.e. LSTM, CNN, GRU)

using this dataset. We did this process separately for each station. We then conducted a

second experiment using data sets from the same 5 stations. Using the entire dataset of

each station, we divided it into 60% train, 20% validation, and 20% test set, and using

these  datasets,  we  trained  3  base  deep  learning  models  (i.e.  LSTM,  CNN,  GRU)

separately  for  each  station.  As  a  result,  we  compared  the  results  of  these  two

experiments with each other. We used MSE and MAE metrics to compare. We present

the comparison results in Table 5.5.

As  seen  in  Table  5.5,  we  used  datasets  from  5  different  road  types  for  the

experiments. Three of these belong to the “Urban” road category and two belong to the

“Rural”  road  category.  The  MSE and  MAE values  we  obtained  as  a  result  of  the

experiments are presented separately in the table. When we examine these values, we

can see that the Split1 method  produces better results. However the alternative method,
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that is Split2, produces more erroneous predictions. Indeed, when we look at the error

values,  we can see that  the difference between the two methods is  quite  large.  The

results are the same for all 5 stations. For example, while the CNN model of the Split2

method for station “110177” has an MSE value of 0.2364, for Split1 this value is only

0.0950. For another station (50272), the CNN model of the Split2 method has an MAE

value of 0.4964, while for Split1 this value is only 0.2926.

The reasons  why the  performance  of  the  Split2  method  is  so  bad may  be  as

follows: Since we divide the months in the dataset into 3 as train, test and validation, we

actually use the future data to predict the past data when training the model. This may

cause erroneous results. Because in time series problems, normally future data can be

predicted using past data.

We think these results are interesting and do not mean that the alternative method

is useless,  but we can say that  more experiments  are needed to find the underlying

reason for these results.

Table 5.5 Comparison of two dataset splitting approaches

Station_id Road_Type Split_Type Metrics CNN LSTM GRU

110177 Urban: Principal 
Arterial - Other

Split2

MSE 0.2364 0.2430 0.2167

MAE 0.3063 0.3576 0.3216

Split1

MSE 0.0950 0.1353 0.1224

MAE 0.2271 0.2788 0.2527

970407

Urban: Principal 
Arterial - Other 
Freeways or 
Expressways

Split2

MSE 0.3114 0.3341 0.2902

MAE 0.3242 0.3832 0.3316

Split1

MSE 0.1020 0.1870 0.2085

MAE 0.1973 0.3001 0.2825

30191 Urban: Principal 
Arterial - Interstate Split2

MSE 0.3196 0.3198 0.3236

MAE 0.3693 0.3848 0.3704
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Split1

MSE 0.1191 0.2320 0.2516

MAE 0.2320 0.3669 0.3676

550349 Rural: Principal 
Arterial - Other Split2

MSE 0.2132 0.2616 0.2035

MAE 0.3016 0.3758 0.3082

Split1

MSE 0.0632 0.1393 0.0991

MAE 0.1825 0.2823 0.2386

50272 Rural: Minor 
Arterial Split2

MSE 0.4120 0.3646 0.3300

MAE 0.4964 0.4543 0.4171

Split1

MSE 0.1638 0.2101 0.2281

MAE 0.2926 0.3609 0.3807

5.8 The Results of Model Averaging Approach 
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As we emphasized before, when developing an ensemble model, several strategies

have been proposed to determine how much each base learner contributes to the final

result. The simplest of these is the model averaging approach.  

As  can  be  seen  in  Figure  5.5,  in  this  approach,  the  final  prediction  result  is

obtained by taking the arithmetic average of all base learners’ results.  In other words,

each base learner contributes equally to the result. This approach ignores the individual

performances  of  base learners.  That  is,  a  very successful  base learner  and a  highly

unsuccessful base learner contribute to the final prediction result at the same rate.  

Our purpose in conducting this experiment is to understand the contribution of the

meta-learner we developed to the performance of our model. For this, we repeated all

prediction  experiments  with  the  model  averaging  approach.  We  present  our

experimental results in Table 5.6. As seen in this table, we calculated MSE and MAE

values for all time horizons. When we compare these results with the results of our

proposed model (Ens2) and our alternative model (Ens1), we can say that the model we

proposed is more successful for all time horizons.

                      Table 5.6  Results of Model Averaging

Time 
Horizon

Metrics
Model

Averaging
Ens1 Ens2

1 Hour

MSE 0.0662 0.0641 0.0613

MAE 0.1632 0.1590 0.1553

2 Hours

MSE 0.0956 0.0899 0.0862

MAE 0.2031 0.1889 0.1840

3 Hours

MSE 0.1307 0.1141 0.1119

MAE 0.2274 0.2102 0.2065

4 Hours MSE 0.1595 0.1464 0.1313
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MAE 0.2600 0.2408 0.2302

5 Hours

MSE 0.1643 0.1408 0.1388

MAE 0.2537 0.2329 0.2300

9 Hours

MSE 0.1996 0.1893 0.1904

MAE 0.2793 0.2767 0.2752

12 Hours

MSE 0.2264 0.2165 0.2079

MAE 0.3018 0.2911 0.2847

24 Hours

MSE 0.2633 0.2548 0.2539

MAE 0.3247 0.3186 0.3180
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Chapter 6

Conclusions and Future Prospects 

6.1 Conclusions

Long-term traffic flow forecasting is essential for traffic management issues such

as  congestion  control  and better  route selection.  This  importance  will  become more

evident in the future with the development of related technologies. 

However, compared to studies on short-term traffic flow forecasting, there are few

studies in the literature on long-term traffic flow forecasting. In addition, the prediction

performances of existing studies are not sufficient.

Therefore,  it  is  critical  to  try  to  improve  long-term  traffic  flow  forecasting

performance. That’s why, this study proposed a novel ensemble model for long-term

traffic flow prediction. The proposed model is a deep ensemble model built by properly

combining 3 different deep learning techniques as base models. We designed our model

that can dynamically produce the weights of the base models based on both each base

model’s performance and traffic condition. Experimental results show that the proposed

approach outperforms all the models compared.

The main purpose of this thesis is to develop an effective deep learning-based

prediction model for the traffic flow prediction problem, and this study has achieved its

purpose.  In addition,  since our model  uses basic  deep learning methods as the base

learner, we compared these basic deep learning methods among themselves as a result

of our experiments. As a result of these comparisons, we reached potentially interesting

results.

In our opinion, the most important of these is that CNN is more successful than

other  basic  deep learning  models  in  terms  of  both calculation  speed and prediction

accuracy.  This result  is  interesting  because it  is  the opposite of what  was expected.

Because CNN is not a method developed for time series forecasting.

51



On the  other  hand,  LSTM and  GRU are  methods  developed  for  time  series.

However, we think that this result largely depends on the dataset we used. Because there

are other studies in the literature that compare these methods using different datasets,

but none of them reached a conclusion that supports our results. We think this is due to

the different data set we use.

Another reason for the lower performance of LSTM and GRU may be overfitting

or underfitting. The number of data may have been relatively small for these models and

may have caused the models not to reach the optimum. However, if this is true, we can

say that CNN can produce more successful predictions even with less data than GRU

and LSTM.

6.2 Societal Impact and Contribution to Global 

Sustainability 

It is of vital importance for all stakeholders in different areas to be able to know

traffic flow information in advance. Especially the rapid development in smart city and

smart traffic applications has enabled the traffic flow prediction problem to become a

critical  element  in  research.  If  we consider  the  social,  economic  and environmental

effects of traffic congestion, smart systems in which traffic flow prediction applications

will  be integrated will  minimize traffic congestion and make transportation planning

and management more efficient.

The main goal of traffic forecasting applications is to reduce the time spent in

traffic  due  to  traffic  congestion.  Because  as  the  time  spent  in  traffic  increases,  all

problems increase exponentially. We can collect these problems under the following 3

main headings:

Environmental Problems: As time spent in traffic increases, the amount of fuel

consumed will increase. This can cause serious problems, especially air pollution, with

increased carbon emissions in the long run. These problems, which we know as climate

change and whose future effects we cannot even predict, arise as a result of the increase

in human carbon footprint in nature, and as a result, it is predicted that the world may

experience major disasters in the near future. This shows us how important it is for new

generation electric vehicles to become widespread.
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Economic Problems: We stated that fuel consumption will increase as time spent

in traffic increases. We would like to emphasize that this has not only environmental but

also  economic  consequences.  This  means  that  natural  resources  cannot  be  used

efficiently  as  fuel  costs  increase.  We  can  understand  how  serious  this  problem  is,

especially when we consider that the energy used by transportation vehicles today is not

renewable. Studies carried out to use renewable energy resources in this field are very

valuable  in  this  respect.  The  natural  resources  in  the  world  are  not  inexhaustible.

Therefore,  we would like to emphasize that in terms of global sustainability,  even a

traffic application that recommends shorter and more efficient routes to drivers is more

than a simple navigation tool.

Social  Problems:  Especially  in  big  cities,  the  traffic  problem  has  become  an

inextricable  situation due to the rapidly increasing number of vehicles,  roads whose

capacity cannot be increased, and unpredictable traffic jams. Many medium-sized cities

experience traffic problems at least as much as large cities due to traffic infrastructure

that is not properly planned and managed. 

Many social problems arise due to increased traffic, especially on certain days and

hours.  Both  people  using  public  transportation  and people  using  their  own vehicles

complain about not being able to reach the places they want to go on time. We know

that this causes many different individual problems.  It is a fact that as the time spent in

traffic  increases,  people  become  more  angry  and  experience  mental  burnout,  and

therefore their productivity decreases both at work and at school. However, it is also

known that with the change in the mood of people in traffic, the probability of drivers

having an accident increases and more accidents occur.

6.3 Future Prospects

In future research,  we plan  to  investigate  the effectiveness  of  our  model  with

using different base models and data-sets. We will also implement a 1D-CNN followed

by a recurrent neural network (such as LSTM or GRU) as base learner and investigate

the effect of including this network into our ensemble model. In addition, the fact that

the CNN-based prediction model we developed was quite successful compared to other

DL models motivated us to conduct more research in this area.

As a future work, we plan to make more experiments to compare the forecasting

performance of CNN using different time series datasets. More than that, we will try to

53



understand  why  CNN  is  performing  better.  We  also  plan  to  address  the  issue  of

interpretability of DL-based models. Although deep learning algorithms provide high

prediction performance, the interpretability of DL-based models is very low. This is also

true for our model. Therefore, as a future study, we plan to analyze the outputs of the

base learners of our model separately. Thus, we will try to discover the critical hours

that affect the outcome for each model. 

It  would  also  be  beneficial  to  try  to  understand  the  temporal  and  spatial

components to which our ensemble model gives more weight.  We used only temporal

features  in  this  study,  but  we  know that  spatial  information  also  affects  prediction

performance. For this reason, we plan to conduct new studies to see its contribution to

the deep ensemble  learning model  we developed by providing the most  appropriate

representation of spatial information.

In addition, it has been stated in many studies that the variables we call auxiliary

variables  (e.g.,  weather,  public  holidays,  traffic  accidents,  sports  or  concert  events)

increase the prediction performance. However, the data set we used in this study does

not contain this  information.  If we can access a dataset  containing this  information,

testing  the  model  we  developed  with  this  dataset  and  measuring  how  much  its

performance has changed may be guiding for future studies. 

In addition to all these, we can list the experiments and analyzes that can be done

in the future to expand this study as follows:

 Model  performance  can  be  tested  by  using  the  some attributes  in  Table  4.1

appropriately. 

 Model performance can be increased by optimizing the batch size.

 Ensemble  models  that  use  only  two  base  learners,  such  as  CNN+LSTM,

CNN+GRU or GRU+LSTM, can be tested and performance comparisons can be

made..

 During the preprocessing step,  different  methods can be tried and how these

methods affect the model performance can be investigated.

 Different methods such as reinforcement learning can be used

 The  prediction  performance  of  the  model  for  different  road  types  can  be

analyzed.
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