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ABSTRACT
DEEP LEARNING MODELS FOR TRAFFIC VOLUME
PREDICTION

Nevin Cini
Ph.D. in Electrical and Computer Engineering Department
Advisor: Assoc. Prof. Zafer AYDIN
January 2024
In the last 50 years, with the growth of cities and increase in the number of vehicles and
mobility, traffic has become troublesome. As a result, traffic flow prediction started to
attract attention as an important research area. However, despite the extensive literature,
traffic flow prediction still remains as an open research problem, specifically for long-
term traffic flow prediction. Compared to the models developed for short-term traffic
flow prediction, the number of models developed for long-term traffic flow prediction is
very few. Based on this shortcoming, in this study, we focus on long-term traffic flow
prediction and propose a novel deep ensemble model (DEM). In order to build this
ensemble model, first, we developed a convolutional neural network (CNN), a long
short term memory (LSTM) network, and a gated recurrent unit (GRU) network as deep
learning models, which formed the base learners. In the next step, we combine the
output of these models according to their individual forecasting success. We use another
deep learning model to determine the success of the individual models. Our proposed
model is a flexible ensemble prediction model that can be updated based on traffic data.
To evaluate the performance of the proposed model, we use a publicly available dataset.
Numerical results show that our proposed model performs better than individual deep
learning models (i.e., LSTM, CNN, GRU), selected traditional machine learning models
(i.e., linear regression (LR), decision tree regression (DTR), k-nearest-neighbors

regression (KNNR) and other ensemble models such as random-forest-regression(RFR).

Keywords: Traffic Flow Prediction, Deep Learning, Time Series Prediction, Ensemble

Learning, Convolutional neural network.



OZET
TRAFIK YOGUNLUGU TAHMINI iCIN DERIN OGRENME
MODELLERI

Nevin Cini
Elektrik ve Bilgisayar Miihendisligi Anabilim Dali Doktora
Tez Yoneticisi: Dog. Dr. Zafer AYDIN
Ocak 2024
Son 50 yilda sehirlerin biiyiimesi, ara¢ sayisinin ve hareketliligin artmasiyla birlikte
trafik sikintih hale geldi. Bunun sonucunda trafik akis tahmini 6nemli bir arastirma
alani olarak dikkat cekmeye basladi. Bununla birlikte, kapsaml literatiire ragmen trafik
akis1 tahmini, 6zellikle uzun vadeli trafik akisi tahmini icin hala acik bir arastirma
problemi olarak kalmaktadir. Kisa vadeli trafik akis1 tahmini icin gelistirilen modellerle
karsilastinldiginda uzun vadeli trafik akisi tahmini icin gelistirilen modellerin sayisi
oldukca azdir. Bu eksiklikten yola ¢ikarak, biz bu caligmada uzun dénem trafik akis
tahmini problemine odaklaniyoruz ve yeni bir derin topluluk 6grenme modeli
oneriyoruz. Bu topluluk 6grenme modelini olusturabilmek igin 6ncelikle, temel
ogreniciler olarak kullandigimiz 3 farkl derin 6grenme mimarisini (yani LSTM, CNN
ve GRU) kullanarak 3 farkli derin 6grenme modeli gelistirdik. Daha sonra, bu
modellerin bireysel tahmin basarilarina gére tahmin sonuclarini birlestirdik. Bunun igin
ayr1 bir derin 6grenme modeli kullandik. Onerdigimiz model esnek ve dinamik bir
yapiya sahiptir, model giincel trafik durumuna gore kendini yenileyebilir. Onerilen
modelin performansini degerlendirmek igin halka acik bir veri seti kullaniyoruz. Sayisal
sonuclar, onerilen modelimizin bireysel derin 6grenme modellerinden (6rn. LSTM,
CNN, GRU), secilmis geleneksel makine 6grenme modellerinden (6rn. dogrusal
regresyon (LR), karar agaci regresyonu (DTR), k-en yakin komsgular) ve rastgele orman
regresyonu (RFR) gibi diger topluluk 6grenme modellerinden daha iyi performans

sergiledigini gosteriyor.

Anahtar kelimeler: Trafik Akis Tahmini, Derin Ogrenme, Zaman Serileri Tahmini,

Topluluk Ogrenme, Yapay Zeka
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Chapter 1
Introduction

Traffic flow refers to the number of vehicles passing a certain road section per
unit time. This data is collected automatically, usually with the help of sensors. Since
vehicles can only move on the roads prepared for them, accurate estimation of the
traffic flow in a certain area prevents possible congestion and ensures more efficient use
of the roads [1,2,3].

Traffic flow prediction plays an important role in the construction of Intelligent
Transportation Systems (ITS). Transportation planners try to predict the location and
time of potential traffic congestion with the traffic flow forecasting applications. Thus,
by controlling the traffic, they can increase the safety and comfort of the drivers and
passengers.

Traffic congestion causes many problems that we can examine under different
headings such as economic, environmental, social. Among them, the most emphasized
is the increase in cost with the lengthening of the travel time. These two key issues lead
to the emergence of other problems. For example, prolonged travel time causes social
and psychological problems, environmental problems such as noise pollution and even
accidents from time to time. Although increasing the cost of travel is an economic
problem, increasing fuel consumption also leads to environmental problems such as air
pollution.

Decision makers who reach information about when and where traffic congestion
may occur with traffic flow forecasting can direct drivers to safer roads so that resources
can be used more efficiently. With a more effective planning, it is possible to use public
transportation more efficiently as well. In this way, the environmental impact caused by
traffic can be reduced. For this reason, traffic flow forecasting is of key importance in
controlling traffic congestion and solving many problems that may occur, and is an
indispensable component for intelligent transportation systems.

Since the early 1980s, transportation engineers have conducted a lot of research to
minimize the negative effects of traffic on life quality. However, the inadequacy of the

number and quality of data and the inadequacies in data processing technologies limited



the success of many studies. Thanks to the technological developments in hardware and
software in recent years, it is possible to process large amounts of data in a short time.
In addition, the available traffic data has increased. Today, researchers are investigating
how big data can be processed most efficiently with smart algorithms and how more
successful smart transportation applications can be developed with new technologies.

That's why, in recent years, many studies in this area have focused on developing
reliable and realistic traffic flow prediction models using the latest technologies [2,4,5].
However, most of these studies have presented short-term traffic flow prediction models
[6]. Few of the proposed forecasting models are capable of long-term forecasting.
However, long-term forecasting is as important and useful as short-term forecasting
[1,7,8]. Furthermore, long-term traffic flow forecasting is of practical importance for
decision makers. An accurate forecast model will facilitate traffic management even
during the rush hours, and will enable effective measures to be taken by informing in
advance of possible negative events.

However, long-term forecasting is a challenging task. This is due to the stochastic
nature of the dynamics that make up the traffic flow data, which is nonlinear and
contains complex dependencies [9]. It is also not identical in both temporal and spatial
dimensions. Modeling dynamic temporal and spatial dependencies for traffic flow
prediction is very burdensome and arduous. These complex dependencies increase in
number and become more and more complex in long-term predictions. As the forecast
horizon increases, even in the best models, the prediction quality decreases and the
average error increases [10].

As a result, reliable long-term prediction becomes a difficult task, and it is almost
impossible to model long-term dependencies of traffic flow with simple and traditional
prediction models [8,11,12].

In this study, we propose a deep learning-based ensemble framework for long-
term traffic flow prediction. While deep learning (DL) models can learn dynamic and
complex dependencies of traffic data better than traditional learning algorithms,
ensemble learning (EL) provides flexibility by increasing the generalization ability of
the final model. Because many different predictive models collaborate to solve the
given problem in ensemble learning, it is often expected that the ensemble model will

exceed the predictive success of a single model.
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Figure 1.1 Different performances of base learners

The most important feature of the proposed EL model is that we employ three
different DL models (i.e CNN, LSTM and GRU) as base learners. This increases model
diversity so that a failure of one model can be compensated by another model. As
shown in Figure 1.1, the performances of all three models change as traffic conditions
change. From this figure (Figure 1.1), it is clear that we cannot achieve the best
prediction performance with a single model. Because each model has strengths and
weaknesses, the contribution of the base models to the final prediction result cannot be
equal. In a successful ensemble model, a base model with high predictive performance
is expected to contribute more to the final result than less successful models. In our
ensemble model, we have developed a meta-learner to provide this. Owing to this meta-
learner, we have dynamically weighted the base-models, that is, we have ensured that
each model contribute in the final prediction result according to its current prediction
performance. We leverage this capability of ensemble learning to improve long-term
prediction accuracy. In order to assess the accuracy, we conducted several experiments,

in which we compared the proposed model with widely used prediction models.



There are three main contributions of this study:

1. In this study, we proposed a fully DL-based ensemble learning framework for
long-term traffic flow prediction. To the best of our knowledge, this is the first
time a fully DL-based ensemble model is proposed for long-term traffic flow

prediction.

2. We used three different DL models as base-learners. In the model we developed,
we use LSTM and GRU together. We have not come across a model in literature
that uses these two techniques together. Since these two techniques are versions
of recurrent neural networks, it is not preferred to use them together in a
prediction model. However, although these two techniques are similar to each
other, their performances are quite different as seen in Figure 1.1. So where one
fails, the other can be quite successful. For this reason, we preferred to use these

two techniques together.

3. We use deep learning architectures in our model, both as base learners and the
meta-learner. Thanks to a feed forward neural network (FFNN), which is the
most basic deep learning technique, we decide the weights of the base learners.
We train a feed forward neural network as a meta-learner in order to obtain the
final prediction result. In this way, we ensured that the base-learners
dynamically contribute in the final prediction result according to their prediction
success (more successful ones contribute more, less successful ones contribute

less).

The study is organized as follows: A brief overview of current literature on traffic
flow prediction is provided in chapter 2. In chapter 3 we provide a background section
and introduce the details of our deep learning-based ensemble framework. Then, we
present dataset, preprocessing steps in chapter 4 and experimental results and discussion

in chapter 5. Chapter 6 includes conclusion and future work.



Chapter 2

Related Work

The importance of traffic flow prediction in transportation engineering is
increasing, and accordingly, we can say that there is a very large literature in this field.
Most studies propose a model to predict traffic flow. We will examine these proposed
models under two topics by following the tradition in the literature: Parametric models
and non-parametric models [4, 12, 15-19].

We summarize the related literature in Table 2.1.
2.1 Parametric Models

Models in this class can be explained by traffic flow theories of transportation
engineering, statistics and probability. In a parametric model, traffic flow is represented
as a function of random variables (e.g., accident, instantaneous decisions of drivers),
time-dependent variables (e.g., time of day, day of the week, or season), and auxiliary
variables (e.g., weather, public holidays, sports or concert events). That is, traffic flow is
defined as the total number of vehicles passing through a certain road segment at a
certain time period under the influence of many dependent or independent variables,
each of which is dynamic in itself. Modeling with parametric approaches is relatively
easy, but these models are suitable for uncomplicated small-sized data sets [19].

The most widely used parametric approaches in literature are ARIMA, kalman
filtering and linear regression.

ARIMA is a time series modeling approach that explores the temporal relationship
between data points of a time series. There are many traffic flow forecasting models
developed using ARIMA and its advanced versions i.e., ARIMAX, SARIMA,
SARIMAX in literature [20, 21].



Kalman Filtering is a widely used traffic flow prediction method. Its main idea is
to predict future traffic flow using historical traffic flow data with a recursive or
iterative process [22].

Linear regression is a pretty simple parametric approach. This method describes

the traffic flow as a linear combination of the independent variables [23].

2.2 Non-parametric Models

Models in this category are more advanced than parametric models, and their
performance varies according to the quality and size of the dataset. These models can
achieve satisfactory prediction success with big data, but this requires quite a lot of
computational capacity. K-nearest-neighbor (K-NN), support vector machine (SVM)
and neural networks (NN) are the approaches we can count in this category.

K-NN can be used for classification or regression. In this model, common patterns
are tried to be extracted from historical traffic flow data. By using the best match with
these defined patterns, future traffic patterns are tried to be predicted [24].

Another parametric model used in traffic flow prediction is SVM [15]. Although
the estimation accuracy can be increased by using different ”kernels”, the computational
load of model training is quite high, especially compared to K-NN and NN. Therefore,
it is not practical for large datasets.

Indeed, K-NN and SVM are not popular models developed for traffic flow
forecast. The most popular models in this category are the NN-based models. And the
reasons why NN-based models are so popular can be listed as follows: (1) They are
suitable for big data, (2) They have fast convergence, (3) They can achieve high
prediction accuracy. A wide variety of NN models have been proposed for traffic flow

prediction [1, 7, 12, 18].

2.3 Deep Learning-Based Models

Although deep learning models are also non-parametric models, we wanted to
examine these studies separately since they have been very popular in this field in recent
years and have a fairly wide literature. The simplest DL models that can be found in
literature in this field are multi-layer-perceptron (MLP)-based models developed using

multiple hidden layers [25].



However, the most widely used DL technique in solving the traffic flow
prediction problem is recurrent neural networks (RNN). Especially, GRU and LSTM
techniques, which are variants of RNN, are the most common methods since they are
successful in capturing dependencies at different times. For example [26], developed a
two-layer LSTM-based model. It used a fully connected layer as the extraction layer in
the first layer, and the LSTM layer as the prediction layer in the second layer. The
proposed other LSTM-based models are in [6].

A GRU-based model is proposed in [27]. In this study, weather data was used in
addition to traffic data. Apart from RNN, CNN-based models also have been proposed
for short-term traffic flow forecasting problems [28-30]. CNN-based models are
especially preferred because they can produce results faster than other neural networks

[31].

2.4 Hybrid and Ensemble Models

Understanding that it is not possible to model the complexity of traffic data with
simple and traditional methods, many researchers have turned to hybrid models,
especially in recent years. While in early studies we can see the combination of several
parametric models, in recent studies, many of the hybrid models were build by
combining two or more non-parametric methods [7, 8, 11, 32, 33].

Especially LSTM and CNN are used together in recently developed hybrid models
[29, 34, 35]. There are also hybrid models developed by using parametric and non-
parametric methods together [11, 36].

On the other hand, EL-based models emerge as a new trend [37-42] . There are
only a limited number of EL-based prediction models in the literature [16, 17, 21, 43—
45]. However, none of these studies focus on long-term forecasting. And this is a

research gap that we want to fill in this study.



Table 2.1 Summary of the related literature

Ref. Horizon Input Data size = Method/ Evaluation
data Technologies metrics
used
[9] |24 hour Highways 15 minutes |Wavelet RMSE, MAE,
Agency resolution decomposition,  |R square
from 1 Jul CNN, LSTM
Network
Traffic Fl 2018 to 28
rathic FOW! yan 2020
Data
[7] |Upto 24h Caltrans 5 minutes |LSTM  encoder- RMSE,
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Chapter 3

Methodology

3.1 Problem Formulation

Traffic flow forecasting models are often based on a simple assumption: the future
depends on the past. In other words, data that generated traffic conditions in the past
will affect current and future traffic situation. Therefore, continuity of data is important.
Traffic flow prediction is a time-series problem, and as with all time-series problems,

past values are used as target function parameters in the traffic flow estimation problem.
In other words, the target/prediction value at time T, becomes one of the target function
parameters at time T',,; . This is for single-step prediction. In multi-step prediction,
more than one value at consecutive time steps, participates in the process at the same
time. To formulate this problem mathematically, we use the notation to f; define traffic

flow from station i at time t. In order to extract spatial and temporal features of traffic

flow here, we construct spatial-temporal feature matrix as follows:

£ FEfE e £

o . i

~
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|

{ (B.1)
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Here, s denotes the number of stations. We construct this flow matrix with
temporal information horizontally and spatial information vertically. In the next step,

we can formulate the traffic flow prediction problem as follows:
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Here, since we use historical flow data to predict future flows, the matrix on the
left hand side represents historical flow data and the matrix on the right hand side
represents prediction values. The traffic flow prediction model is represented by a
prediction function, which is represented by 0. f denotes traffic flow from station d.

is the looked-back steps, and h is the prediction horizon.

3.2 The Differences Between Short and Long-term

Prediction

In fact, the difference between the short and long-term forecast goes far beyond
the period we determine with only the prediction horizon. In literature, long-term
forecasting is categorized as predicting an hour later or a few steps later (usually 5 steps
or more), while short-term forecasting is defined as predicting one step or a few minutes
later. Here, we can say that a categorization based on this definition is not reliable due
to the lack of a consensus in terms of the prediction horizon. However, according to the
assessments made taking into account the time interval of the data, it is reasonable in

our opinion to consider 5 steps and beyond as a long-term forecast.

3.3 Related Technologies

In this section, the related technologies used in the proposed model and methods

used to compare are described.
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3.3.1 Linear Regression (LR)

The linear regression model, which is considered the simplest method to model
the correlation between the dependent variable and independent variables, makes
inferences assuming that the data are randomly distributed. Linear regression is a
parametric method that tries to describe the relationship between at least two variables
with a linear function.

This method can be widely used to predict future data from existing data or to
analyze and understand existing data. Linear regression is a frequently used technique,
and with this method it is possible to create good predictive models for many problems
because there are usually linear as well as non-linear relationships between variables.
And linear regression can easily describe these simple relationships.

However, linear regression makes modeling with many assumptions that are not
possible in practice. For example, it assumes that the variance of the predicted value is
the same for all values of the independent variable. This is not accurate for many
problems and causes incorrect prediction results. Linear regression can be simply
defined as z=kx+c. Here, z is the dependent variable, x is the independent variable, k is
the weight value that needs to be optimized, and c is the point where the equation
intersects the constant or axis. In this way, linear regression allows us to understand
how and by how much the dependent variable will change as the independent variables

change.

3.3.2 K-Nearest Neighbors (KNN)

In fact, k-nearest neighbors (k-NN) is a classification algorithm, a non-parametric
method that is widely used in different fields, which we can count among the supervised
learning methods of machine learning.

Although it is recommended for classification problems, there is also a version
used in regression problems. In the simplest sense, KNN creates a prediction by looking
at the closeness of the data to be predicted to the existing data, without actually creating
a mathematical prediction model. Euclidean, Manhattan and Minkowski distance
measurement formulas are generally used to measure the distance between two data.
The K value indicates the number of nearest neighbors and is a value that greatly affects
the prediction performance. This value can be optimized by various methods or the best

K value can be found by trial and error.
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This method is quite simple and effective. The main disadvantage is that it is
necessary to scan the entire data set each time to obtain each predictive value. This is
very time consuming, especially for large data sets. However, it is quite faster than
many machine learning methods (such as SVM) because it does not waste time finding
a prediction function at the beginning.

The classification version uses the class value with the densest K nearest
neighbors in the current data set to decide the class value of the data to be classified.
The regression version produces prediction values by simply averaging the y values of

the K nearest neighbors.

3.3.3 Decision Trees (DT)

Decision trees are a well-known non-parametric method in machine learning and
were first proposed as a classification algorithm. Especially its simplicity,
understandability and ease of implementation has made it a preferred method in solving
many problems.

The advantages of this method based on generating rules are that the data set-
specific rules can be easily visualized and the prediction process is understandable.
Decision trees are a supervised learning method created by continuously dividing the
data set sequentially and gradually in order to maximize the difference variable between
data points included in defined classes. So this method does not actually use a
mathematical model to produce predictive values (unlike SVM or Linear regression). It
simply divides the data set according to a certain criterion, and after each division, two
groups within and outside of this certain criterion are formed. The method considers
these two groups as two different classes.

The most important difficulty for decision trees is where to split the data set and
when to stop splitting the data set. To overcome these difficulties, entropy information
is often used. Entropy is a versatile concept, but as used in decision trees, Entropy
measures the irregularity of the set of data that forms the classes that will emerge as a
result of each split. In other words, the less data there is from other classes among the
data in a class, the lower the Entropy value.

Although decision trees were developed as a classification algorithm, there is also
a version proposed for regression problems. In this version, decision trees divide the
data set and create many different groups from the data set, as in the classification

version. However, instead of class names, leaf nodes contain the average of the target
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values of the data that make up that class. Max depth (maximum depth of the tree) or

minimum information gain can be used as stopping criterion.

3.3.4 Random Forest (RF)

The random forest model is an ensemble learning model in which decision trees
are used as single learners. It is a prediction model developed for discrete problems, but
it also has a version developed for continuous problems.

The random forest model can consist of many decision trees depending on the
difficulty level of the problem. In its simplest form, the model works as follows: First of
all, the model creates different sub-data sets from the raw data set for each decision tree.
Using the data sets it creates, it trains an independent and different decision tree base
learner model for each data set. Trained models produce their individual predictions.
For classification problems, the most preferred class among the predictions becomes the
final prediction class. For regression problems, the final prediction result is found by
calculating the average of the predictions of the decision trees.

The most important feature of the random forest model is that it reduces the risk
of overfitting because it consists of many decision trees with different architectures. In
addition, since the random forest model is an ensemble learning model, the developed

prediction model is expected to have high generalizability.

3.3.5 Recurrent Neural Network (RNN)

This model is one of the most important DL techniques particularly developed for
time series problems. RNN has a simple feedback loop in order to learn dependencies
among the different time intervals. However, the basic RNN architecture is insufficient
to capture complex relationships in long time intervals, so two different versions have
been proposed.

The first of these versions is long-short-term memory (LSTM) and the other is
gated-recurrent network (GRU). LSTM has three different gates (input, output, forget)
while GRU has two different gates (update and reset) and by the agency of these gates,
they remove unnecessary information from the model that comes from the past states,
and allowing the model to focus on only useful information. In this way, the model can
learn long-term dependencies with ease. Figure 3.1 presents the general structure of the

RNN, LSTM and GRU.
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Figure 3.1 Structure of a RNN (on the left), LSTM (in the middle) and GRU (on
the right).

3.3.6 Convolutional Neural Network (CNN)

Since CNN was not developed for time series problems, it was not used for time
series prediction for a long time. However, with the increase in the amount of data, the
increase in computational load and the inability to parallelize the RNN algorithm
efficiently led to new searches. CNN is promising for time series problems as it can be
parallelized and produces faster results.

In recent years, successful CNN-based time series forecasting models have been
developed. Due to its architecture, CNN is used to reveal the relationships of different
time series, especially in problems that need learning temporal dependencies and spatial
dependencies together. A simple CNN model includes convolution layers, pooling layers,
fully connected layers (FC), and an output layer as can be seen in Figure 3.2. Filters are
used in the convolution and pooling layers and the results are combined in the FC layer.

In this way, learning is provided at each convolution layer.
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Figure 3.2 A simple CNN model

3.3.7 Deep Ensemble Learning

Ensemble learning models combine several base or individual models with
different strategies in order to provide better generalization and improve final prediction
performance [13, 14]. Moreover, today, deep learning models with complex and layered
architecture outperform traditional prediction models. Deep ensemble learning models,
on the other hand, aim to build a more successful prediction model by combining the
peculiar advantages of these two models.

There are many models developed for traffic flow prediction in the literature, but
few of them are ensemble learning-based. Whereas, ensemble learning-based models
provide higher accuracy and generalizability because they are constructed by combining
either individual models developed with different combinations of the same method or
individual models developed using different methods. Combining multiple models in
this way for traffic flow forecasting can increase the final forecasting accuracy while
preventing overfitting. Because each individual model deals with one aspect of the final
model, as a result, the final model provides a more general representation and achieves a

higher predictive accuracy compared to individual models. To this end, we focus on
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ensemble learning approaches in this study and propose a novel deep ensemble model

for traffic flow prediction. The formula for an ensemble model is as follows:

FPM(t) =) Wiax(t). (3.3)

Where FPM is final prediction model, a is the k th individual model, W, is the
weight of the k th individual model and K is the number of individual models. This
form of ensemble learning is called “Stacking Ensemble” in literature.

According to this formula, the ensemble learning model gives weight to each
individual model. The most common approach in the literature, for this purpose, is to
give equal weight to each model. One issue of this approach is that each model
conduces equally to the final prediction, without considering the prediction performance
of single models. When we give a fixed weight to each single model, we limit the
performance of the ensemble model due to a reduction in its generalization ability.
Therefore to improve the prediction accuracy, we propose a flexible and robust deep
ensemble model in this study. The proposed model assigns the weights based on the
individual model performance and traffic situation change. Equation 3.3 is the general
formula of an ensemble model and is its simplest form. We propose a complex FFNN-

based meta-learner to optimize the weights in our proposed ensemble model.

3.4 The Proposed Model

The proposed model is a deep ensemble model which is capable of properly
fusing the prediction results of multiple deep learning models. Our model learns the
strengths and weaknesses of individual models and weights the predictions of single
models according to their prediction performance. In addition, our model is flexible and
performs well under different traffic conditions since our model receives actual data as
well as prediction results from each model to obtain the final result.

Figure 3.3 demonstrates the details of our deep ensemble traffic flow prediction

framework. Our proposed model consists of three stages. The first stage is the
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preprocessing and dataset preparation. We will explain this stage in detail in the next

section.

The second stage is base model selection. At this stage, we adjust the
configurations of the three base models namely LSTM, GRU and CNN. For this, we run
models LSTM, GRU and CNN multiple times with different time-lags, numbers of
hidden layers and neurons. We optimize the internal parameters of each base model and
select the best models with the highest accuracy. After selecting the base models, in the
third stage, we decide how much each base model will contribute to the final model
according to their performance. That is we develop a meta-learner to dynamically
weight each base learner. For this, we first form new training, validation and test sets
using each base model, then by using these new datasets we build a feed forward neural
network-based (FFNN) model with deep architecture and the outputs of this final model
(i.e., FFNN) or meta-learner are the predicted traffic flow values. With this meta-
learner, we can learn the weights of each base model. Thus, the weight of each base
model is determined automatically. Figure 3.3 shows the general structure of a feed
forward neural network.

Meanwhile, in order to capture the traffic condition changes, we use raw input
data as well during the construction of the final model. Consequently, we separate the
base models weighting step from the base models selection and tuning step so that the
ensemble model can be dynamic and can change with the traffic conditions.

As we mentioned in section 3.3.7, an ensemble model can be built in two different
approaches: It can built by combining either individual models developed with different
combinations of the same method or individual models developed using different
methods. The novelty of our model is that it combines these two approaches. Moreover,
the base-learners and meta-learner we use in our model all have deep architecture, and
we don’t use a fixed weight for each base-learner, we introduce a meta-learner with the

ability of dynamically weighting the base-learners according to their predictive success.

3.5 The Alternative Model

We suggest a different ensemble model that can be an alternative to the model We

suggested in the previous section. as seen in Figure 3.4, the alternative model is quite
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similar to the proposed model that we introduced in Section 3.3. In this model, We use
three different deep learning models as base learners: These are LSTM, CNN and GRU
and we use FFNN as a meta-learner, as well. However, in the first model, we provide 4
inputs to meta-learner. 3 of these are outputs from base-learners. The 4th input is the
raw data input. In other words, in order to train the meta-learner, we reuse the data we
prepared as the training set to train the base learners. In the alternative model, we
provide only the outputs from base-learners as input to meta-learner, that is, we provide
3 inputs in total to meta-learner. we proposed this model as an alternative ensemble
model and repeated all experiments for this model as well. Our goal is to see how the
difference between two ensemble models will affect the result. In other words, we
wanted to measure how and to what extent the result is affected by the absence of raw
data input. In the results section, the experimental results of the two models for 8 time
horizons can be found comparatively.

For the experiments, we used the same dataset in both models. The base learners
we use in both models are the same, but since the meta learners are different, we only
optimized the meta learners separately for each time period. In this way, we tried to get
the best performance from both models for each time horizon. We call this alternative

ensemble model "Ens1" in the results tables.
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Figure 3.3 General Structure of Feed Forward Neural Network
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Chapter 4

Experiments

4.1 Dataset and Preprocessing

We conducted this study with a publicly available and a real-world dataset'. The
dataset contains a total of 274 stations. The data was collected from January 1st, 2015 to
December 31st, 2015, which contains both weekends and weekdays and aggregated one
hour intervals.

In addition to the traffic volumes for each hour as a feature, the dataset also
includes supplementary information which can be used to build the prediction model

and is shown in Table 4.1.

Table 4.1 Attributes and descriptions.

Attributes Descriptions

Date Date the data was collected

Day of data What day of the month

Day of week What day of the week

Direction of travel Direction of the road

Lane of travel Which lane of the road

Month of data Which month of the year

Station id Unique id assigned to each road/road segment
Year of data Year

Functional classification name | Type of the road

Traffic Flow Traffic flow information aggregated one hour intervals

Although the dataset contains 274 stations, some stations only have data for 3-4
months, for instance, station 116820 has data only for the 2nd, 9th, 11th and 12"
months. That is, for some stations there are too many missing values, and this disrupts

the continuity of the dataset.

'Source: www.transportation.gov/data, and it is available at: https://cloud.google.com/bigquery/public-
data
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However, this is not desirable for time series and can significantly reduce the
forecasting quality. Therefore, both because our computational resources are limited and
because we want our model to produce more reliable predictive results, we have
selected 100 stations with as few missing values as possible and we tested all prediction
models by using these 100 stations. we can list the criteria we consider when choosing

these 100 stations as follows: Stations should
* have the same state code
¢ include data for all months of a year
¢ include at least fifteen day data for a month

Figure 4.1 shows the 10 stations we have selected and Figure 4.2 shows the

locations of the selected stations.
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Figure 4.1 Dataset (10 stations).
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We filled the missing values of the stations used in the experiments by averaging
the data of the previous and the next hour. Thus the total number of data samples is
100%365. We chose this method to fill the missing data because data that are closer
together, whether spatially or temporally, are more related to each other than data that
are far apart. This idea is based on Tobler’s first law, which says that things that are
close together are more related to each other [21]. Inspired by this, we used this method
to fill the missing data.

While choosing the stations we will use in our experiments, we also took into
account the road type to which the station belongs, in addition to the amount of data
because we wanted to show how robust and generalizable our model is for different
road types.Table 4.2 shows the road types we used and their percentages in the data set.

We separated the dataset into three: We organized 65% of the dataset (about the
first eight months) as the training set, the last two months as the validation set, and the

remaining part as the test set. And we performed Z-Score normalization.

=le =

Overseas _

Figure 4.2 Road network used for experiments.
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Table 4.2 Road Types

Urban: Principal Arterial - Other 30%
Rural: Principal Arterial - Other 20%
Urban: Principal Arterial - Interstate 14%
Urban: Minor Arterial 10%
Rural: Minor Arterial 10%
Urban: Principal Arterial - Other Freeways or Expressways 8%
Rural: Principal Arterial - Interstate 6%
Rural: Major Collector 2%

4.2 Constructing Traffic Flow Matrix

We tried to find the optimum time lag by running each deep learning model (base
learner) many times with different time lags, i.e., the current traffic flow depends on
how many steps in the past traffic flow. Thus, we have obtained an optimum time lag
for each base learner.

If we show the time-lag value with W; we set W hours as the time lag and added
W new features, each of which indicates hourly traffic volumes in a W-hour period. In
this way, prediction models try to predict the traffic volume in the (W+1)th hour by
using previous W hours of data.

We tested the proposed model for multiple horizon values: The prediction horizon
h is specified as 1 for single step prediction, and 2, 3, 4, 5, 9, 12, 24 for multi-step
prediction (i.e., long-term prediction). That is, we used W hours historical data to
predict the following h hour(s) traffic flow value. Accordingly, we constructed the

traffic flow matrix as input(X) and output(Y) matrix as follows:

S Ty B - iy ]

el = f(id) f(st1+d+1) f(s;fl+d+2) LR 3 ts+1(W—1)+d
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In equation 4.1 and 4.2, f;' indicates the traffic flow of station 1 at time t. h
represents prediction horizon, W denotes time-lag(or time-window-size) and d is the
stride value which is a parameter that determines how much of the time window we will

shift. The term h in matrix X is added just to match the matrices X and Y

4.3 Experiments Settings

TensorFlow® and Keras® , which are open source libraries of Python, were used
to build the proposed deep ensemble model and other deep learning models. We used
the scikit-learn* as the machine learning library to implement the LR, KNN, DT, RF
models.

We made a lot of trials to determine the best time-lag. As a result of these trials,
we found that the best time-lag is 24h for all models.

We optimized the hyper-parameters of each model separately. For deep learning
models the number of hidden neurons, activation function, dropout rate and learning
rate were optimized by using ‘Bayesian Search’ algorithm. Table 4.3 shows the hyper-
parameter values that we obtained as a result of optimization for each deep learning
model. We used ‘Random Search’ algorithm for optimizing hyper-parameters of LR,
KNN, DT, RF models. The Adam algorithm is used to optimize the loss function of all
deep learning models and the ensemble model. The maximum number of epochs is set

to 100 however due to early stopping, there was no model that reached 100 epochs.

*www.tensorflow.org
*www.keras.io

*www.scikit-learn.org
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Table 4.3 Optimum hyper-parameter settings.

Model

Parameter

Value

Number of layers

4

LSTM hyper-parameters (Base Learner) |

Number of units

512,512,32,32

GRU hyper-parameters (Base Learner)

Activations relu, relu, relu,tanh
Dropout rate 0.0
Learning rate 0.0001

Number of layers 4

Number of units

512, 512, 32, 96

Activations tanh,relu,relu,relu
Dropout rate 0.5
Learning rate 0.0001
Number of hidden layers 3
CNN hyper-parameters (Base Learner) Number of units °12, 96, 128
Filter size 64

Meta-Learner hyper-parameters

Activations tanh, relu, tanh, relu
Dropout rate 0.0
Learning rate 0.0001

Number of layers 4

Number of units

352, 512, 96, 416

Activations tanh, tanh, tanh, tanh
Dropout rate 0.2
Learning rate 0.0001

4.4 Comparison Metrics

We use four metrics to measure the performance of the developed models, mean
absolute error (MAE), mean squared error (MSE), Mean Squared Logarithmic Error
(MSLE) and R-squared score which are the most frequently used metrics for traffic

forecasting.
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MAE, MSE, MSLE, R’are defined as:
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where t, p and T indicate the actual value, prediction value and the total number of

samples, respectively. And v indicates that mean value of the actual traffic flow data.
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Chapter 5

Results and Discussions

In order to assess the performance of our ensemble model (i.e., Ens2 in Table 5.1
and Table 5.2 ), we compare the proposed model with base models, i.e., LSTM, GRU
and CNN. Besides these models, we also compare our model with some selected
traditional machine learning models including LR, KNN, DT, RF. We use raw input
connection in meta-learner so that our ensemble model can be dynamic and capture the
traffic conditions well. We construct an alternative model, which has the same
architecture as the proposed ensemble model except the raw input connection (i.e., Ens1
in Table 5.1 and Table 5.2). We also compared the prediction performance of this model

with the model we propose.

5.1 Comparison of the Proposed Model with
Traditional Machine Learning Models

We compared our proposed model with four traditional machine learning
methods. These methods are linear regression, K nearest neighbors, decision trees, and
random forest. For comparison, we trained models for 8 different horizons using these
ML methods. We calculated MSE and MAE values for each model.

Table 5.1 shows all the results we obtained for this study. As seen in this table, the
model we propose is quite successful compared to traditional ML models. There is a
significant difference between the proposed model and traditional ML models for both
MSE and MAE values for all time horizons. For example, when the time horizon is 1
hour, LR has an MSE value of 0.1007, while the MSE value of the proposed model is
only 0.0613. When the time horizon was 4 hours, the MAE value of the DT model was
0.3188, and the MAE value of the proposed model decreased to 0.2302. KNN, another
traditional ML model, reached 0.3019 MSE value when the forecast horizon was 24

hours, but the proposed model decreased to 0.2539.
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Figure 5.1 shows the 3-day forecast performance for all models. While Figure
5.1a shows single-step prediction performances, Figure 5.1b shows multi-step
prediction performances. When we examine these two figures only by considering
traditional ML models, we can reach the following conclusions:

Traditional machine learning models are not sufficient for especially long-term
prediction. Among the traditional machine learning-based (ML-based) models we have
compared, the best performance belongs to KNN. However, the performance of tree-
based models is quite low. The prediction performance of Random Forest(RF), which is
a tree-based ensemble model, is quite far behind KNN.

When Figure 5.1 (a) and Figure 5.1 (b) are compared, it is seen that the proposed

model is relatively more successful in sharp ups and downs.

Traffic Volume(Norm)

Time(h)

(a)

Traffic Volume(Norm)

2 ® 2 @ ©
,\u"’ A & L %J" 1?‘» o L o
S S S S S S S S S
Time(h)

Figure 5.1 Comparison of the prediction results: (a) TimeHorizon=1(Single-step

prediction). (b) TimeHorizon=24 (Multi-stepprediction).
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Table 5.1 Comparison of prediction performances of the proposed ensemble model
and other competitive models for 8 time horizons.

Prediction | Metrics | LR DT KNN RF | LSTM | GRU | CNN Ensl Ens2
1h MSE 0.1007 | 0.1162 | 0.0882 | 0.0840 | 0.0676 | 0.0687 | 0.0676 | 0.0641
. MAE 0.2079 | 0.2065 | 0.1728 | 0.1740 | 0.1656 | 0.1657 | 0.1675 | 0.1590
2h . MSE 0.1501 | 0.1702 | 0.1218 | 0.1245 | 0.1139 | 0.1095 | 0.0989 | 0.0899
MAE 0.2510 | 0.2484 | 0.2057 | 0.2075 | 0.2252 | 0.2166 | 0.2039 | 0.1889
3h MSE 0.1918 | 0.2196 | 0.1460 | 0.1640 | 0.1499 | 0.1195 | 0.1271 | 0.1141
| MAE 0.2801 | 0.2794 | 0.2226 | 0.2333 | 0.2401 | 0.2168 | 0.2296 | 0.2102
4h .. MSE 0.2161 | 0.2911 | 0.1705 | 0.1877 | 0.2330 | 0.1506 | 0.1406 | 0.1464
. MAE 0.2994 | 0.3188 | 0.2488 | 0.2566 | 0.3412 | 0.2560 | 0.2449 | 0.2408
5h MSE 0.2395 | 0.2940 | 0.1780 | 0.2174 | 0.1517 | 0.1514 | 0.1881 | 0.1408
MAE 0.3136 | 0.3117 | 0.2463 | 0.2611 | 0.2455 | 0.2438 | 0.2911 | 0.2329
9h . MSE 0.2817 | 0.4037 | 0.2164 | 0.3058 | 0.2090 | 0.2213 | 0.2066 | 0.1893
MAE 0.3391 | 0.3622 | 0.2767 | 0.3097 | 0.3017 | 0.3071 | 0.2923 | 0.2767
12h [ MSE 0.2938 | 0.5464 | 0.2418 | 0.4308 | 0.2160 | 0.3016 | 0.2117 | 0.2165
. MAE 0.3472 | 0.4100 | 0.2999 | 0.3530 | 0.3021 | 0.3725 | 0.2938 | 0.2911
24h MSE 0.3256 | 0.4957 | 0.3019 | 0.3874 | 0.2598 | 0.2682 | 0.2754 | 0.2548
. MAE 0.3648 | 0.4569 | 0.3452 | 0.3914 | 0.3224 | 0.3396 | 0.3467 | 0.3186
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5.2 Comparison of the Proposed Model with Base-
Learner Models

Table 5.1 shows MSE and MAE results we have obtained as a result of our
experiments for eight time horizons. In addition to the results of the ensemble model we
proposed (which appears as Ens2 in the table), we also added the results of the base
learners that make up our ensemble model. In the table, it can be seen that the ensemble
model we proposed performs better than base learners. This result is valid for all time
horizons in the table. For example, while the MSE value of LSTM for time horizon 3
hours is 0.1499, this value is 0.1119 for Ens2. When the time horizon is 5 hours, the
MAE value of CNN is 0.2911 and the Ens2 value is 0.2300. When the time horizon is
12 hours, the MAE value of GRU is 0.3725, while this value is 0.2847 for Ens2. As can
be seen from these results, the proposed model is quite successful compared to base
learners.

When we evaluate the results in the table only from the perspective of base-
learners, we can reach the following conclusions: According to this, among the base-
learner models, CNN has shown the best performance in many horizons. This result is
interesting because CNN was not originally developed for time-series problems. But
before we can generalize this result, we need to do more experiments. For the dataset
we used in this study, CNN performs quite successfully. In other words, we can say that
we have developed a prediction model compatible with the dataset. Nevertheless, we
cannot make a general conclusion that CNN is the most successful DL technique for
time series problems. However, we can say that CNN is promising for such problems.

According to the results of our experiments, although CNN is more successful DL
model than others, the performance of the other DL. models is roughly competitive with
CNN. These results indicate that DL-based models offer the opportunity to develop
more successful prediction models because they can better capture long-term
dependencies.

The 3-day forecasting performance of the base models and the ensemble models
are shown in Figure 5.2 (a) and (b). Figure 5.2 (a) shows single-step prediction (i.e.,
prediction-horizon=1) and Figure 5.2 (b) shows multi-step predictions (i.e., prediction-
horizon=24). The forecasting graphs belonging to the same period (month/day/hour)

were selected in order to compare the performance of the top and bottom forecasting
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horizons. Based on these figures, the predictive success of the proposed deep ensemble

model has increased considerably for both time horizons compared to single models.

Traffic Volume(Norm)
!

Traffic Volume(Norm)

Time(h)

Figure 5.2 Comparison of the prediction results of ensemble models and single
models: (a) TimeHorizon=1(Single-step prediction). (b) TimeHorizon=24 (Multi-
stepprediction).

The histograms in Figure 5.3 (a)-(e) show forecasting performances for time
horizon=1 for different days of the week and different times of the day. To obtain these
histograms, for each model, first, the difference between the each prediction value and
its ground truth was taken separately. Then, for each prediction value, the model with
the smallest of this difference was awarded a score, and in the end, the models’ scores
were added up. These histograms show the total score of each model. The highest score
in all five histograms belongs to the proposed ensemble model. In fact, these histograms

show that the proposed model is decisively ahead of the other models.
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Figure 5.3 Comparison of the prediction results: (a) Prediction results on
weekdays. (b) Prediction results on weekends. (c)Prediction results on rush
hours. (d) Prediction results on off-peak hours. (e) Overall performance
(TimeHorizon=1).

When the histograms in Figure 5.3 are examined, it is seen that the prediction
performance of the proposed model is quite good both on weekdays and during peak
hours. However, the performance of CNN among the single models is the lowest for
these two categories.

When we examine the histograms in Figure 5.3, we see that the most successful
single model is GRU. GRU outperforms even our alternative ensemble model (Ens1)
for all categories.

In Table 5.2, we compare ensemble models with base models using MSLE and R’
metrics. We chose these two metrics because the first metric measures relative error
rather than actual error. That is, it gives approximately equal weight to small and large
differences between actual and predicted values. The second metric is used to compare
the quality of models with each other, rather than to decide the overall quality of a
model. This metric takes a value between 0-1. and the model is considered good as the

value get closer to 1. However, it is very difficult to obtain values close to 1 for difficult
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problems such as traffic flow prediction. Therefore, each prediction problem should be
evaluated on its own.

In general, as prediction horizon increases, the prediction performance of all the
models we compare, including the model we propose, decreases, which proves that the
long-term prediction is more difficult.

Although the prediction performance of our proposed model decreases as the
prediction horizon increases, this decrease is small compared to the other models we
compared. For example, when the forecast horizon is 4 hours, the MSE of our model is
0.1313, and this value increases to 0.1388 when the forecast horizon is 5 hours. In
contrast, when the forecast horizon is 4 hours, the MSE of CNN is 0.1406. However,

when the forecast horizon increases to 5 hours, this value increases to 0.1881

Table 5.2 Comparison of prediction performances of the proposed ensemble
models and base models for 8 time horizons.

E‘E‘Z‘x"“ Metrics |LSTM |GRU |CNN |Ensl |Ens2
" MSLE [0.0140|0.0142{0.0139|0.0134 |0.0125
R? 0.9248 (0.9213 [ 0.9258|0.9301 | 0.9366
- MSLE [0.0229|0.0222|0.0196|0.0183|0.0172
R? 0.8722 (0.8715 | 0.8860 | 0.9028 | 0.9050
- MSLE [0.0250|0.0221{0.0243|0.0213 |0.0208
R’ 0.8245 |0.8605 | 0.8583|0.8730|0.8737
" MSLE |0.0400 |0.0280 | 0.0267 | 0.0266 | 0.0240
R? 0.6247 |0.8321 [ 0.8349|0.8422 | 0.8543
o MSLE [0.0277|0.0273{0.0332|0.0253 | 0.0248
R? 0.8181 (0.8281 |0.7876|0.8311 |0.8367
o MSLE [0.0383|0.0384 |0.0360|0.0332|0.0331
R? 0.7254 |0.7469 | 0.7506 | 0.7653 | 0.7562
oh MSLE [0.0376|0.0560 |0.0361|0.0369 | 0.0352
R? 0.7255 |0.5598 [ 0.7101|0.7274 |0.7338
oah MSLE |0.0440 |0.0456 | 0.0468 | 0.0435 | 0.0426
R? 0.6563 [0.6297 | 0.5832|0.6637 | 0.6724

Based on our observations during our experiments, we can also make a
comparison between DL-based models in terms of computation times. CNN also
performs best in terms of computation time among DL-based models. This is probably
due to the fact that CNN can be parallelized more efficiently than GRU and LSTM.
However, LSTM was the model with the worst performance in terms of computation

time.
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5.3 Comparison of the Proposed Model with and

without Raw Input Connection (Ens1 vs Ens2)

As we explained in Section 3, we propose another ensemble model that can be an
alternative to the model we proposed. To compare these two models, we repeated all
experiments for the alternative model. With these experiments, we tried to understand
how much the raw input connection improves our model. This alternative model is
called as Ensl and the proposed model is called as Ens2.

Table 5.1 shows MSE and MAE results we have obtained as a result of our
experiments for eight time horizons. As can be seen in the table, our model(i.e., Ens2) is
the most successful model in all time horizons except time horizon=9, in which Ens1
model was the most successful. This result shows how much the raw input connection
improves our model. Morover these results prove that the ensemble models perform
better, especially in long-term traffic flow prediction.

In addition to these main results, when we examine both metrics values in Table
5.2, we see that the model we recommend is the best model for all prediction horizons
except 9h. This shows us the results in Table 5.2 are consistent with the results in Table
5.1. The results show that we can achieve a significant performance improvement when
we combine ensemble learning architecture and deep learning techniques with raw input
connection.

When we examine the results in Table 5.1 in detail, we see that the error
differences between the two models are not large. However, we can say that there is a
slight improvement. To give a few examples of this, for example, for time horizon 2
hours, the Ensl model has 0.0899 MSE and 0.1889 MAE values, while for Ens2 these
values are 0.0862 and 0.1840, respectively. While the Ens1 model has 0.2165 MSE and
0.2911 MAE values for the time horizon 12 hours, these values for Ens2 are 0.2079 and
0.2847, respectively.

5.4 Comparison of all Models via Residual Plots

Figure 5.4 shows the residual plots of our proposed model and the models we
compared The residual plot shows the difference between actual values and predicted

values. The closer the points forming the graph are to the starting point, the better the
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developed model. When these graphs are examined in detail, the superiority of our

proposed model over other models is clearly seen.
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Figure 5.4 Residual Plots

5.5 Two-tailed Z-test

We want to see whether the improvements obtained by the proposed ensemble
model over the base-learners are statistically significant or not. To this end, we perform
two-tailed Z-test between the proposed model and the best base-learner model for each
time horizon. Table 5.3 shows the p-values that are computed during the Z-test
experiment that compares our deep ensemble model and the best base-learner model.
According to two-tailed Z-test results for all time horizon, the performance
improvements of our deep ensemble model are statistically significant because all p-

values less than 0.05.

Table 5.3 Two-tailed Z-test results for the best base-learner and the proposed

model for each time horizon

Time Horizon Base Model p-Value

1 CNN 7.483790763285578e-21

2 CNN 3.0300077486715994e-115
3 GRU 0.0
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4 CNN 3.4729959685477615e-159
5 GRU 4.0339859311062113e-134
9 CNN 8.987073830610557e-08
12 LSTM 0.00021070979763453582
24 LSTM 7.930674522337066e-217

5.6 Experiments to Find Optimum Time-Lag

In many studies, it has been stated that the time-lag value is one of the important
parameters affecting the performance of the forecast model in time series problems and
it is emphasized that it should be optimized. For this reason, we optimized the time
window parameters of the LSTM, GRU, CNN models, which we used as the basic
learner in the ensemble model we proposed in this study, separately for each time
horizon. For this, we set 5 time window values: 5, 10, 15, 20, 24. Using these time
windows, we conducted 5 experiments for each base learner and each time horizon.
That is, we reconstructed the traffic flow matrix for training, validation and test sets
according to the time window value each time. Using these data sets, we trained 5
separate LSTM, 5 separate GRU and 5 separate CNN models for each time horizon. So,
since we built 5 separate prediction models for each time horizon, we trained 8 * 5 = 40
different prediction models for a base learner. Since we trained these 40 prediction
models separately for 3 base learners, we developed a total of 120 different prediction
models. we compared the performance of the forecast models separately for each time

horizon.

We used MSE and MAE metrics to compare. We determined the time window
value of the forecast model that give the lowest MSE and MAE values as the best time
window value.

We present the results of all the experiments we conducted in Table 5.4.
According to these experiment results, the best time window value for all time horizon
values is 24, as seen in Table 5.4. And this value is the same for 3 base learners. In other

words, as a result of our experiments, we found the best time window value to be 24 for
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the LSTM, CNN and GRU deep learning models that we use as the base learner in our

proposed model and for all time horizon values

Table 5.4 Optimum Time-Lag for each time horizon.

Horizon Time-Lag Metrics CNN

5 MSE  |0.0983 0.0964 0.0993

MAE |0.2050 0.2059 0.2100

10 MSE  |0.1098 0.0932 0.0913

1 MAE |0.2266 0.2011 0.1993
15 MSE  |0.0849 0.0858 0.0940

MAE |0.1905 0.1928 0.2024

20 MSE  |0.1008 0.0885 0.0897

MAE |0.2175 0.1972 0.1972

24 MSE |0.0676 0.0676 0.0687

MAE |0.1675 0.1656 0.1657

5 MSE  |0.1852 0.1681 0.1756

MAE 0.2967 0.2805 0.2836

10 MSE  |0.1792 0.1426 0.1448

MAE 0.2933 0.2560 0.2628

15 MSE [0.1551 0.1379 0.1328

2 MAE [0.2761 0.2471 0.2364
20 MSE |0.1210 0.1351 0.1358

MAE |0.2252 0.2426 0.2403
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24 MSE  ]0.0989 0.1139 0.1095
MAE |0.2039 0.2252 0.2166
5 MSE ]0.2160 0.2230 1.0323
MAE |0.3153 0.3176 0.8726
10 MSE  |0.1588 0.1606 0.1559
MAE 0.2628 0.2675 0.2607
15 MSE 0.2018 0.1600 0.1570
MAE |0.3272 0.2660 0.2620
20 MSE 0.2113 0.2097 0.1614
MAE |0.3435 0.3214 0.2677
24 MSE  0.1271 0.1499 0.1195
MAE ]0.2296 0.2401 0.2168
5 MSE  10.2660 0.2966 0.3001
MAE |0.3514 0.3879 0.3828
10 MSE  |0.2985 0.2636 0.2725
MAE |0.3952 0.3571 0.3713
15 MSE  |0.2233 0.2402 0.1950
MAE |0.3259 0.3537 0.2981
20 MSE |0.2411 0.2466 0.1741
MAE ]0.3441 0.3492 0.2866
24 MSE  ]0.1406 0.2330 0.1506
MAE ]0.2449 0.3412 0.2560
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5 MSE |0.3153 0.2875 0.2793
MAE ]0.3940 0.3691 0.3616
10 MSE ]0.2404 0.2052 0.2125
MAE |0.3537 0.3097 0.3127
15 MSE |0.2315 1.0000 0.2072
MAE |0.3190 0.8685 0.3068
20 MSE  0.1888 0.1968 0.1912
MAE |0.2991 0.2910 0.2944
24 MSE |0.1881 0.1517 0.1515
MAE ]0.2911 0.2455 0.2438
5 MSE 0.3412 0.3865 0.3464
MAE 0.4097 0.4399 0.4196
10 MSE  0.2863 0.2562 0.2524
MAE 0.3647 0.3413 0.3479
15 MSE 0.2510 0.2399 0.2362
MAE ]0.3443 0.3272 0.3265
20 MSE 0.2196 0.2148 0.2582
MAE |0.3033 0.3046 0.3441
24 MSE 0.2066 0.2090 0.2214
MAE ]0.2923 0.3018 0.3071
5 MSE  |0.3583 0.3407 0.3465
MAE 10.4149 0.4112 0.4146
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10 MSE  |0.2866 0.2760 0.2865
MAE |0.3626 0.3542 0.3690
15 MSE  ]0.2860 0.2900 0.3249
1 MAE |0.3649 0.3728 0.3822
20 MSE |0.2781 0.2712 0.3492
MAE |0.3546 0.3466 0.4
24 MSE 0.2117 0.2160 0.3016
MAE |0.2938 0.3021 0.3725
5 MSE  0.4001 0.3940 0.4411
MAE 0.4615 0.4302 0.4678
10 MSE 0.3191 0.3131 0.3392
MAE |0.3900 0.3842 0.3971
24 15 MSE  0.2955 0.2921 0.2860
MAE 0.3715 0.3593 0.3561
20 MSE  0.2840 0.2898 0.3298
MAE |0.3566 0.3659 0.3948
24 MSE 0.2754 0.2598 0.2683
MAE 0.3467 0.3224 0.3396

5.7 Comparison of Two Dataset Splitting Approaches

As we emphasized before, the continuity of the data set is very important for time

series problems. However, in order to create a prediction model, dividing the existing
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data into train, validation and test sets is a commonly used strategy. However, unlike
data sets of other problems, time series data sets have features (such as seasonality) that
can significantly affect forecasting performance. For this reason, we can say that
forecasting models developed using classical data set division approaches for time
series problems have a high risk of being underfit or overfit.

For this reason, we think that new data set partitioning approaches should be
developed for time series, which can be an alternative to classical methods. For this
purpose, in this study, we carried out a series of experiments using two different data set
partitioning methods for time series.

The first method is a very simple method. We call this method as Splitl. In this
approach we divide the entire data set as 60% train, 20% validation, 20% test set

Since continuity is important in time series datasets and in order not to disrupt this
continuity when dividing the dataset, the second splitting method follows this
approach: Instead of dividing the entire data set as 60% train, 20% validation, 20% test

set, we divide each month in the dataset as 60% train, 20% validation and 20% test set

(We named this alternative method Split2). Thus, it contains data from 12 months in
certain proportions in 3 sub-datasets (i.e. train, validation, test).

We conducted 5 separate experiments to measure the performance of this method.
For each experiment, we selected one station with different road types from the total
data set. First of all, we divided each station separately into train, validation and test sets
using the Split2. And we trained 3 base deep learning models (i.e. LSTM, CNN, GRU)
using this dataset. We did this process separately for each station. We then conducted a
second experiment using data sets from the same 5 stations. Using the entire dataset of
each station, we divided it into 60% train, 20% validation, and 20% test set, and using
these datasets, we trained 3 base deep learning models (i.e. LSTM, CNN, GRU)
separately for each station. As a result, we compared the results of these two
experiments with each other. We used MSE and MAE metrics to compare. We present
the comparison results in Table 5.5.

As seen in Table 5.5, we used datasets from 5 different road types for the
experiments. Three of these belong to the “Urban” road category and two belong to the
“Rural” road category. The MSE and MAE values we obtained as a result of the
experiments are presented separately in the table. When we examine these values, we

can see that the Splitl method produces better results. However the alternative method,
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that is Split2, produces more erroneous predictions. Indeed, when we look at the error
values, we can see that the difference between the two methods is quite large. The
results are the same for all 5 stations. For example, while the CNN model of the Split2
method for station “110177” has an MSE value of 0.2364, for Splitl this value is only
0.0950. For another station (50272), the CNN model of the Split2 method has an MAE
value of 0.4964, while for Split1 this value is only 0.2926.

The reasons why the performance of the Split2 method is so bad may be as
follows: Since we divide the months in the dataset into 3 as train, test and validation, we
actually use the future data to predict the past data when training the model. This may
cause erroneous results. Because in time series problems, normally future data can be
predicted using past data.

We think these results are interesting and do not mean that the alternative method
is useless, but we can say that more experiments are needed to find the underlying

reason for these results.

Table 5.5 Comparison of two dataset splitting approaches

Station_id Road_Type Split_Type Metrics
MSE 0.2364 10.2430 |0.2167
Split2
MAE |0.3063 |0.3576 0.3216
110177 Urban: Principal
Arterial - Other MSE 0.0950 10.1353 |0.1224
Splitl
MAE 0.2271 0.2788 0.2527
Urban: Principal MSE 0.3114 ]0.3341 ]0.2902
Arterial - Other .
Freeways or SPh2  IMAE 03242 03832 0.3316
970407 Expressways
MSE 0.1020 |0.1870 |0.2085
Splitl
MAE |0.1973 ]0.3001 ]0.2825
30191 Urban: Principal MSE 0.3196 10.3198 |0.3236
Arterial - Interstate Split2
MAE |0.3693 0.3848 0.3704
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MSE 0.1191 ]0.2320 |0.2516
Splitl

MAE 10.2320 [0.3669 0.3676

550349 Rural: Principal MSE 0.2132  ]0.2616 0.2035
Arterial - Other Split2

MAE 0.3016 |0.3758 0.3082

MSE 0.0632 0.1393 |0.0991
Splitl

MAE |0.1825 ]0.2823 10.2386

50272 Rural: Minor MSE 0.4120 ]0.3646 |0.3300
Arterial Split2

MAE 04964 0.4543 04171

MSE 0.1638 ]0.2101 |0.2281
Splitl

MAE 0.2926 |0.3609 0.3807

5.8 The Results of Model Averaging Approach
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Figure 5.5 Model Averaging Approach

48

RZ\ , “
(R1+R2+R2+ ... .+RN)YN




As we emphasized before, when developing an ensemble model, several strategies
have been proposed to determine how much each base learner contributes to the final
result. The simplest of these is the model averaging approach.

As can be seen in Figure 5.5, in this approach, the final prediction result is
obtained by taking the arithmetic average of all base learners’ results. In other words,
each base learner contributes equally to the result. This approach ignores the individual
performances of base learners. That is, a very successful base learner and a highly
unsuccessful base learner contribute to the final prediction result at the same rate.

Our purpose in conducting this experiment is to understand the contribution of the
meta-learner we developed to the performance of our model. For this, we repeated all
prediction experiments with the model averaging approach. We present our
experimental results in Table 5.6. As seen in this table, we calculated MSE and MAE
values for all time horizons. When we compare these results with the results of our
proposed model (Ens2) and our alternative model (Ens1), we can say that the model we

proposed is more successful for all time horizons.

Table 5.6 Results of Model Averaging

Time ' Model
. Metrics Ens1 Ens2
Horizon Averaging
MSE 0.0662 0.0641 0.0613
1 Hour
MAE  |0.1632 0.1590 0.1553
MSE 0.0956 0.0899 0.0862
2 Hours
MAE  |0.2031 0.1889 0.1840
MSE 0.1307 0.1141 0.1119
3 Hours
MAE  |0.2274 0.2102 0.2065
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MAE .2600 .2408 .2302
MSE .1643 .1408 .1388
> Hours MAE .2537 .2329 .2300
MSE .1996 .1893 .1904
9 Hours MAE .2793 L2767 .2752
MSE .2264 .2165 .2079
12 Hours MAE .3018 .2911 .2847
MSE .2633 .2548 .2539
2 N MAE .3247 .3186 .3180
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Chapter 6

Conclusions and Future Prospects

6.1 Conclusions

Long-term traffic flow forecasting is essential for traffic management issues such
as congestion control and better route selection. This importance will become more
evident in the future with the development of related technologies.

However, compared to studies on short-term traffic flow forecasting, there are few
studies in the literature on long-term traffic flow forecasting. In addition, the prediction
performances of existing studies are not sufficient.

Therefore, it is critical to try to improve long-term traffic flow forecasting
performance. That’s why, this study proposed a novel ensemble model for long-term
traffic flow prediction. The proposed model is a deep ensemble model built by properly
combining 3 different deep learning techniques as base models. We designed our model
that can dynamically produce the weights of the base models based on both each base
model’s performance and traffic condition. Experimental results show that the proposed
approach outperforms all the models compared.

The main purpose of this thesis is to develop an effective deep learning-based
prediction model for the traffic flow prediction problem, and this study has achieved its
purpose. In addition, since our model uses basic deep learning methods as the base
learner, we compared these basic deep learning methods among themselves as a result
of our experiments. As a result of these comparisons, we reached potentially interesting
results.

In our opinion, the most important of these is that CNN is more successful than
other basic deep learning models in terms of both calculation speed and prediction
accuracy. This result is interesting because it is the opposite of what was expected.

Because CNN is not a method developed for time series forecasting.
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On the other hand, LSTM and GRU are methods developed for time series.
However, we think that this result largely depends on the dataset we used. Because there
are other studies in the literature that compare these methods using different datasets,
but none of them reached a conclusion that supports our results. We think this is due to
the different data set we use.

Another reason for the lower performance of LSTM and GRU may be overfitting
or underfitting. The number of data may have been relatively small for these models and
may have caused the models not to reach the optimum. However, if this is true, we can
say that CNN can produce more successful predictions even with less data than GRU

and LSTM.

6.2 Societal Impact and Contribution to Global

Sustainability

It is of vital importance for all stakeholders in different areas to be able to know
traffic flow information in advance. Especially the rapid development in smart city and
smart traffic applications has enabled the traffic flow prediction problem to become a
critical element in research. If we consider the social, economic and environmental
effects of traffic congestion, smart systems in which traffic flow prediction applications
will be integrated will minimize traffic congestion and make transportation planning
and management more efficient.

The main goal of traffic forecasting applications is to reduce the time spent in
traffic due to traffic congestion. Because as the time spent in traffic increases, all
problems increase exponentially. We can collect these problems under the following 3
main headings:

Environmental Problems: As time spent in traffic increases, the amount of fuel
consumed will increase. This can cause serious problems, especially air pollution, with
increased carbon emissions in the long run. These problems, which we know as climate
change and whose future effects we cannot even predict, arise as a result of the increase
in human carbon footprint in nature, and as a result, it is predicted that the world may
experience major disasters in the near future. This shows us how important it is for new

generation electric vehicles to become widespread.
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Economic Problems: We stated that fuel consumption will increase as time spent
in traffic increases. We would like to emphasize that this has not only environmental but
also economic consequences. This means that natural resources cannot be used
efficiently as fuel costs increase. We can understand how serious this problem is,
especially when we consider that the energy used by transportation vehicles today is not
renewable. Studies carried out to use renewable energy resources in this field are very
valuable in this respect. The natural resources in the world are not inexhaustible.
Therefore, we would like to emphasize that in terms of global sustainability, even a
traffic application that recommends shorter and more efficient routes to drivers is more
than a simple navigation tool.

Social Problems: Especially in big cities, the traffic problem has become an
inextricable situation due to the rapidly increasing number of vehicles, roads whose
capacity cannot be increased, and unpredictable traffic jams. Many medium-sized cities
experience traffic problems at least as much as large cities due to traffic infrastructure
that is not properly planned and managed.

Many social problems arise due to increased traffic, especially on certain days and
hours. Both people using public transportation and people using their own vehicles
complain about not being able to reach the places they want to go on time. We know
that this causes many different individual problems. It is a fact that as the time spent in
traffic increases, people become more angry and experience mental burnout, and
therefore their productivity decreases both at work and at school. However, it is also
known that with the change in the mood of people in traffic, the probability of drivers

having an accident increases and more accidents occur.
6.3 Future Prospects

In future research, we plan to investigate the effectiveness of our model with
using different base models and data-sets. We will also implement a 1D-CNN followed
by a recurrent neural network (such as LSTM or GRU) as base learner and investigate
the effect of including this network into our ensemble model. In addition, the fact that
the CNN-based prediction model we developed was quite successful compared to other
DL models motivated us to conduct more research in this area.

As a future work, we plan to make more experiments to compare the forecasting

performance of CNN using different time series datasets. More than that, we will try to
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understand why CNN is performing better. We also plan to address the issue of
interpretability of DL-based models. Although deep learning algorithms provide high
prediction performance, the interpretability of DL-based models is very low. This is also
true for our model. Therefore, as a future study, we plan to analyze the outputs of the
base learners of our model separately. Thus, we will try to discover the critical hours
that affect the outcome for each model.

It would also be beneficial to try to understand the temporal and spatial
components to which our ensemble model gives more weight. We used only temporal
features in this study, but we know that spatial information also affects prediction
performance. For this reason, we plan to conduct new studies to see its contribution to
the deep ensemble learning model we developed by providing the most appropriate
representation of spatial information.

In addition, it has been stated in many studies that the variables we call auxiliary
variables (e.g., weather, public holidays, traffic accidents, sports or concert events)
increase the prediction performance. However, the data set we used in this study does
not contain this information. If we can access a dataset containing this information,
testing the model we developed with this dataset and measuring how much its
performance has changed may be guiding for future studies.

In addition to all these, we can list the experiments and analyzes that can be done
in the future to expand this study as follows:

e Model performance can be tested by using the some attributes in Table 4.1
appropriately.

¢ Model performance can be increased by optimizing the batch size.

e Ensemble models that use only two base learners, such as CNN+LSTM,
CNN+GRU or GRU+LSTM, can be tested and performance comparisons can be
made..

¢ During the preprocessing step, different methods can be tried and how these
methods affect the model performance can be investigated.

¢ Different methods such as reinforcement learning can be used

e The prediction performance of the model for different road types can be

analyzed.
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