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ABSTRACT
Cyberattacks are increasingly becoming more complex, which makes intrusion detec-
tion extremely difficult. Several intrusion detection approaches have been developed
in the literature and utilized to tackle computer security intrusions. Implementing
machine learning and deep learning models for network intrusion detection has been a
topic of active research in cybersecurity. In this study, artificial neural networks (ANNs),
a type of machine learning algorithm, are employed to determine optimal network
weight sets during the training phase. Conventional training algorithms, such as back-
propagation, may encounter challenges in optimization due to being entrapped within
local minima during the iterative optimization process; global search strategies can
be slow at locating global minima, and they may suffer from a low detection rate. In
the ANN training, the Artificial Bee Colony (ABC) algorithm enables the avoidance
of local minimum solutions by conducting a high-performance search in the solution
space but it needs some modifications. To address these challenges, this work suggests
a Deep Autoencoder (DAE)-based, vectorized, and parallelized ABC algorithm for
training feed-forward artificial neural networks, which is tested on the UNSW-NB15
and NF-UNSW-NB15-v2 datasets. Our experimental results demonstrate that the
proposed DAE-based parallel ABC-ANN outperforms existingmetaheuristics, showing
notable improvements in network intrusion detection. The experimental results reveal a
notable improvement in network intrusion detection through this proposed approach,
exhibiting an increase in detection rate (DR) by 0.76 to 0.81 and a reduction in false
alarm rate (FAR) by 0.016 to 0.005 compared to the ANN-BP algorithm on the UNSW-
NB15 dataset. Furthermore, there is a reduction in FAR by 0.006 to 0.0003 compared to
the ANN-BP algorithm on the NF-UNSW-NB15-v2 dataset. These findings underscore
the effectiveness of our proposed approach in enhancing network security against
network intrusions.
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INTRODUCTION
Advancements in intelligent technologies have significantly increased the number of
internet users and applications. However, this rise in internet usage has also brought serious
security challenges. According to the Cisco Cybersecurity Threat Trends Report (Cisco,
2023), in the previous year, cybercriminals launched an increased number of cyberattacks
that were not only highly coordinated but also more advanced than ever before. These
attacks aim to access sensitive data, steal credit card credentials, and disrupt information
services. To address these vulnerabilities, various security mechanisms like firewalls, data
encryption, and user authentication are implemented. Despite their effectiveness, they
lack comprehensive packet analysis, making it challenging to detect all types of attacks.
As a solution, network intrusion detection systems (NIDS) have been developed. NIDS
continuously monitors networks for malicious activities and promptly alerts users to any
intrusions or attacks, serving as an important line of defense against network threats.

Intrusion detection systems (IDS) and machine learning (ML) are two powerful
technologies that are often combined to enhance the security of computer networks
and systems. Artificial neural networks (ANNs) are a type of machine learning algorithm
inspired by biological neural networks that mimic the learning and processing abilities
of humans. The concept of ANN was initially introduced by McCulloch & Pitts (1943)
in 1943, and since then, ANNs have been widely applied in various applications due to
their capability for non-linear parameter mapping. ANNs are highly effective at modeling
non-linear relationships. However, designing an appropriate network structure and finding
ideal weight values pose significant optimization challenges. The conventional approach
for training ANNs involves error back-propagation and weight adjustment using gradient
descent (GD)-based algorithms. Due to the dependence of error surfaces on initial weights
and parameters, these algorithms frequently get stuck in local minima.

Numerous studies in the literature have demonstrated successful outcomes by integrating
various metaheuristic approaches with ANNs. Although the Artificial Bee Colony (ABC)
algorithm is one of the most highly successful metaheuristic algorithms, a prevalent issue
with this algorithm is its extended training time, leading many studies in the literature
to focus on small datasets. Studies that employ the ABC-ANN algorithm with large
datasets often lack detailed information regarding training time. To address this challenge,
this study proposes a novel approach, i.e., a vectorized and parallelized Deep Autoencoder
(DAE)-based hybrid ABC-ANN algorithm for binary classification tasks. This methodology
leverages the respective strengths of DAE, the ABC algorithm, and parallel computing
techniques to expedite the training process. In this respect, our study shows that ABC
algorithm, with some modifications, can avoid local minimum solutions by conducting a
high-performance search in the solution space.

In this study, our main contributions can be summarized as follows:

• As the sizes of storable and actively usable data continue to increase every day, the
importance of GPU parallelization cannot be overlooked. Despite the ABC algorithm
being a highly successful metaheuristic algorithm, there are deficiencies and gaps
concerning its applicability. Table 1 summarizes studies that apply ABC-ANN and
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other metaheuristics, highlighting gaps such as applicability to large datasets and the
lack of information about training times even when large datasets are used. This study
develops an ABC-based ANN model that is simplified to work efficiently on modern
hardware, reducing computational complexity as much as possible (vectorization) and
making it suitable for GPU execution (parallelization). The model is tailored for binary
classification tasks.
• This study introduces a novel approach by proposing a DAE-based, vectorized, and
parallelized ABC-ANN algorithm for binary classification. The aim is to enhance
classification accuracy and detection rate. By employing the DAE, the algorithm extracts
relevant and distinctive features from the input data, leading to amore effective detection
process.
• An XGBoost-based feature selection approach has been implemented to reduce
significant computational costs associated with typical ANN-based models using ABC
algorithms. This technique effectively decreases the number of dimensions in the input
data, therefore reducing the computing cost.
• Different evaluation metrics, such as accuracy, f1-measure, detection rate, false alarm
rate, and training time, were used to test and compare how well the proposed method
works with existingmachine learning techniques. This detailed assessment offers valuable
insights regarding the efficiency of the suggested approach.
• To automatically optimize the hyperparameters of the proposed ABC-ANN approach
and the metaheuristics, the Bayesian parameter optimization method is utilized. This
optimization method intelligently explores the hyperparameter space, facilitating the
selection of the best hyperparameter configurations for each model.
• By incorporating these advancements, the proposed approach outperforms some
metaheuristics in terms of precision, f1-measure, detection rate, false alarm rate, and
training time.

The rest of this paper is organized as follows: ‘Related Work’ provides an overview of
related work, encompassing topics such as ABC-ANN, NIDS, and metaheuristics on NIDS.
‘Proposed Method’ offers a detailed explanation of the proposed DAE-based parallel
ABC-ANN method. Experimental results on two datasets, along with discussions, are
presented in ‘Experimental Results’. Lastly, ‘Conclusion’ presents the conclusions of this
study.

RELATED WORK
To enhance the clarity of the literature review in this study, we have organized it into three
sub-sections.

ABC-ANN literature review
The ABC technique is utilized to estimate the weight and bias values of the neural network
model by minimizing the mean square error between the target and the output of the
ANN. Numerous studies in the literature utilize ANNs to address a wide range of problems,
including the field of IDS.
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Table 1 Related works that apply ABC-ANN and other metaheuristics.

Reference Problem Method Optimized
components

Data size ttime

Ali, Dewangan & Dewan-
gan (2018)

DDos attack detection ABC-ANN weights X X

Karaboga & Akay (2007) XOR, 3-Bit Parity and
4-Bit Encoder-Decoder

ABC-ANN weights X X

Ozturk & Karaboga (2011) XOR, 3-Bit Parity and
4-Bit Encoder-Decoder

ABC-LM-ANN weights X X

Zhou et al. (2020) prediction of the heating
and cooling loads of
residential buildings

ABC-MLP
PSO-MLP

weights 8 features
768 samples

X

Jahangir & Eidgahee (2021) FRP-concrete bond
strength evaluation

ABC-ANN weights 656 samples X

Taheri et al. (2017) forecasting the blast-produce
ground vibration

ABC-ANN weights 89 samples X

Hajimirzaei & Navimipour
(2019)

intrusion detection
for cloud computing

ABC-ANN weights 41 features
7 million samples

X

Ghanem et al. (2020) network intrusion
detection

ABC-DA-ANN weights (big data) UNSW-NB15,
ISCX2012 KDD Cup 99,
NSL-KDD

X

Karuppusamy et al. (2022) network intrusion
detection

SSA-DBN weights (big data) KDD cup,
BoT-IoT

X

Ahmad et al. (2022) IIoT network
intrusion detection

PSO-SQP, RaNN hyperparameters (big data) DS2OS,
UNSW-NB15,
ToN_IoT

X

Elmasry, Akbulut & Zaim
(2020)

network intrusion
detection

PSO, LSTM-RNN,
DNN and DBN

no. of features
and hyperparameters

(big data) CICIDS201
and NSL-KDD

X

Kanna & Santhi (2022) network intrusion
detection

ABC , BWO
CNN, LSTM

no. of features
and hyperparameters

(big data) NSL-KDD,
ISCX-IDS UNSW-NB15,
CSE-CIC-IDS2018

X

Saif et al. (2022) network intrusion
detection

ABC-DA-ANN no. of features (big data)
NSL-KDD

X

Ghanbarzadeh,
Hosseinalipour & Ghaffari
(2023)

network intrusion
detection

HOA no. of features (big data) NSL-KDD
and CSE-CIC-IDS2018

X

Malibari et al. (2022) network intrusion
detection

QPSO, DWNN hyperparameters (big data)
CICIDS2017

X

Ponmalar & Dhanakoti
(2022)

network intrusion
detection

WOA-Tabu CNN hyper parameters (big data) NSL-KDD,
KDD-Cup99,
UNSW-NB15

X

Proposed method network intrusion
detection

DAE-ABC-ANN weights (big data) UNSW-NB15
and NF-UNSW-NB15-v2

X

Notes.
ttime, training time.

Ali, Dewangan & Dewangan (2018) employ ABC for both feature selection and ANN
weight optimization in order to detect DDoS attacks. They use a back-propagation neural
network architecture that feeds inputs and adjusts weights simultaneously. However, there
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is no implementation and the performance evaluation metrics are not provided for any
dataset.

Karaboga & Akay (2007) suggests training an ANN using ABC and comparing its
performance with other population-based algorithms.Ozturk & Karaboga (2011) proposes
a hybrid model that combines ABC and Levenberg–Marquardt (LM) algorithms for
training an ANN model. Both studies evaluate their models using XOR, 3-Bit Parity,
and 4-bit Encoder-Decoder problems. They highlighted the potential of using the ABC
algorithm as an optimization technique for training ANNs. In training the ANN, in
agreement with earlier studies, Ozkan, Kisi & Akay (2011) showed that the ABC approach
outperformed the back-propagation algorithm.

Zhou et al. (2020) combine particle swarm optimization (PSO) and ABC algorithms to
optimize the weights of a multi layer perceptron (MLP) for predicting the heating and
cooling loads of residential buildings using 768 samples. Anuar, Selamat & Sallehuddin
(2015) proposes the ABC-ANN method for crime classification using a crime dataset with
128 attributes and 1,994 instances. They evaluate the performance of ANN-ABC using only
the accuracy metric.

Other related studies include ANN trained by ABC for FRP-concrete bond strength
evaluation (Jahangir & Eidgahee, 2021) using 656 samples, forecasting blast-produced
ground vibration (Taheri et al., 2017) with 89 blasting events, determining the vibration
period of reinforced concrete infilled framed structures (Asteris & Nikoo, 2019) with 4,025
samples, and intrusion detection using a combination of fuzzy clustering, MLP, and
ABC (Hajimirzaei & Navimipour, 2019) on the NSL-KDD and CloudSim datasets.

Mahmod, Alnaish & Al-Hadi (2015) used the ABC-ANN model for intrusion detection
and achieved 87% accuracy on the NSL-KDD dataset. However, their study did not focus
on time and speed considerations or the use of a hybrid approach combining the Deep
Autoencoder and the ABC-ANN model.

In summary, the ABC algorithm is used in literature for training ANN models to avoid
local minimum solutions. However, it suffers from long training times to find global
solutions. Existing studies that use the ABC approach for ANN training are often trained
on small datasets. To address these challenges, this study proposes a novel hybrid approach
combining Deep Autoencoder and ANN models trained by a parallel Artificial Bee Colony
algorithm with Bayesian hyperparameter optimization.

Network intrusion detection systems (NIDS) literature review
Anomaly detection, especially in NIDS, has remained a long-standing yet dynamically
evolving research domain across various research communities for decades (Pang et al.,
2021). Most studies utilize machine learning and deep learning techniques, and hybridize
them with various techniques such as fuzzy logic-based decision systems (Javaheri et al.,
2023), to detect network anomalies.

Some studies employ different concepts to detect anomalies in network traffic data.
One of these studies, Jain, Kaur & Saxena (2022), uses concept drift to detect attacks in
network flows by monitoring changes in the network traffic distribution or alterations
in the characteristics of the network traffic. They use the support vector machine (SVM)

Hacılar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2333 5/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2333


algorithm for classification and obtain satisfactory performancemetrics on TestbedDataset,
NSL-KDD and CIDDS-2017.

Zhong et al. (2020) introduces a novel anomaly detection framework that integrates
multiple deep learning techniques, including the Damped Incremental Statistics algorithm
for feature extraction from network traffic, the Autoencoder for assigning abnormal
scores to network traffic, LSTM for classification, and a weighted method for obtaining
the ultimate abnormal score. Analyzing the mirai dataset (Mirsky et al., 2018), the authors
show that the HELAD algorithm demonstrates good adaptability and accuracy compared to
other state-of-the-art algorithms. Another study (Chen et al., 2022) comprises two primary
steps. Firstly, a Deep Belief Network (DBN) is employed for nonlinear feature extraction,
automatically extracting features from the data while reducing its dimensionality.
Subsequently, a lightweight long short-termmemory (LSTM) network is utilized to classify
the extracted features, thereby generating classification results. The researchers tested their
model on the KDD99 and CICIDS2017 benchmark datasets, obtaining satisfactory results.

Detecting abnormal patterns and attacks using graph-based anomaly detection is
another area of focus. In a study conducted by Deng & Hooi (2021), a graph deviation
network (GDN) approach based on graph neural networks (GNNs) has been proposed,
yielding significant results in detecting anomalies and attacks in the sensor data of cyber-
physical systems. In another study, Ding et al. (2021) address the issue of few-shot network
anomaly detection by proposing a novel family of graph neural networks called GDN.
These networks can utilize a limited number of labeled anomalies to enforce statistically
significant deviations between abnormal and normal nodes in a network.

Metaheuristics on NIDS
In literature, metaheuristics are commonly used for different objectives, such as
feature selection (Najafi Mohsenabad & Tut, 2024; Sanju, 2023; Donkol et al., 2023) and
hyperparameter optimization. Only a few researchers have utilized metaheuristics with
the aim of training neural networks and deep learning architectures (Kaveh & Mesgari,
2022). Ghanem et al. (2020) has constructed an NIDS model for training MLP using a
hybrid metaheuristic that combines the Artificial Bee Colony (ABC) algorithm and the
Dragonfly Algorithm (DA). This study has obtained significant results in terms of DR, FAR,
and accuracy on different public network datasets. Karuppusamy et al. (2022) has offered
a method based the Chronological Salp Swarm Algorithm for the weight optimization of
DBN for the detection of intrusions. They have performed experiments on the KDD cup
and the BoT-IoT datasets and reported significant results.

Ahmad et al. (2022) has developed a RaNN model whose hyperparameters are tuned by
hybrid PSOwith sequential quadratic programming (SQP). In the study ofElmasry, Akbulut
& Zaim (2020), they have utilized PSO for both the purposes of feature selection and
hyperparameter optimization. Subsequently, they have tested this pre-trained model using
three deep learning algorithms: DNN, LSTM-RNN, and DBN. Kanna & Santhi (2022), in
the first stage, have applied feature selection by the ABC algorithm and hyperparameter
optimization by Black Window Optimization (BWO) algorithms. Subsequently, they have
applied Convolutional and LSTM neural networks to intrusion detection. Saif et al. (2022)
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has tried to reduce the computational cost of intrusion detection systems for IoT based
healthcare systems via metaheuristic algorithms. They have employed algorithms such
as PSO, Genetic Algorithm (GA), and differential evolution (DE), attaining substantial
outcomes on the NSL-KDD dataset. Ghanbarzadeh, Hosseinalipour & Ghaffari (2023) has
employed a novel approach called the Horse Herd Optimization Algorithm (HOA) that
mimics horse behaviors within a herd to select relevant features for detecting intrusions.
It has obtained significant results on the NSL-KDD and CSE-CIC-IDS2018 datasets. On
the other hand, the study by Malibari et al. (2022) has employed a metaheuristic called
quantum-behaved particle swarm optimization (QPSO) to optimize hyperparameters of
the deep wavelet neural network (DWNN) model. This model is designed to construct
intrusion detection systems for secure, smart environments. Ponmalar & Dhanakoti (2022)
has optimized CNN hyperparameters via a hybrid metaheuristic approach, which is a
combination of both the whale optimization algorithm and the local search of the Tabu
optimization algorithm.

In spite of the fact that all studies have different contributions to network intrusion
detection research, they may have some limitations, such as higher computational
complexities, longer training times, and lower detection rates. This study suggests
overcoming the above-mentioned limitations.

PROPOSED METHOD
This section comprehensively explores various aspects crucial to the development and
implementation of an effective network intrusion detection system (NIDS). In this context,
our threat model encompasses the following components:

• Assets: The elements within the network that need protection, including data, network
infrastructure components (such as routers and switches), servers, and endpoints (such
as computers and IoT devices).
• Threat actors: Malicious hackers, insider threats, or other entities attempting to
compromise the network’s security.
• Attack vectors (Hindy et al., 2020): Network attacks including DoS, backdoors, generic
attacks, analysis attacks, exploits, shell code, fuzzers, reconnaissance, and worms
(Detailed in Table 2).
• Attack surface: Network protocols, communication channels, network devices, and
endpoints.
• Security controls: These are the measures put in place to detect and mitigate anomalous
behavior and potential security threats within the network. Security controls in our study
include intrusion detection systems (IDS) and anomaly detection algorithms based on
DAE and parallel ABC algorithms.

Along this line, Fig. 1 illustrates the workflow of our study. Beginning with feature
extraction via Deep Autoencoder (DAE) and feature selection via the extreme gradient
boosting (XGBoost) algorithm, these components handle the critical processes of data
preprocessing and feature engineering. Subsequently, the Artificial Bee Colony (ABC)
algorithm and its adaptation to the artificial neural network (ANN) framework are
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Table 2 Attack types and their short descriptions in the UNSW-NB15 and the NF-UNSW-NB15-v2
datasets.

Type Description

Normal Network traffic that is expected under regular operating
conditions.

Fuzzers Attempting to cause a program or network to suspend
or crash by feeding it randomly generated data (Thanh &
Van Lang, 2020; Sarhan et al., 2023).

Analysis Examining network traffic patterns to gather sensitive
information and infer activities without intercepting or
decrypting the actual data. Includes attacks like port scans,
spam, and HTML file penetrations (Moustafa & Slay, 2015;
Dada et al., 2019).

Backdoors A technique that stealthily bypasses a system’s security
mechanism to gain access to a computer or its data
(Moustafa & Slay, 2015; Li et al., 2022).

DoS Aims to make a computer or network service unavailable
to its intended users by overwhelming it with a flood of
illegitimate requests or exploiting vulnerabilities to crash
the system (Moustafa & Slay, 2015; Yuan, Li & Li, 2017;
Douligeris & Mitrokotsa, 2004).

Exploits Methods or tools used by attackers to take advantage of
vulnerabilities or flaws in software, hardware, or operating
systems to gain unauthorized access or cause damage
(Singh, Joshi & Kanellopoulos, 2019).

Generic A technique that targets all block ciphers with a specific
block and key size, regardless of the block cipher’s internal
structure (Moustafa & Slay, 2015; Alsariera, 2021).

Reconnaissance Includes all strikes capable of simulating information-
gathering attacks (Uma & Padmavathi, 2013).

Shellcode Small piece of code used as the payload in exploiting
software vulnerabilities, designed to grant the attacker
control over the compromised system (Arce, 2004; Onotu,
Day & Rodrigues, 2015).

Worms A self-replicating malware that spreads across networks by
exploiting vulnerabilities, often without user intervention.
It can cause harm by consuming bandwidth, overloading
systems, and delivering payloads such as additional malware
(Freund & Schapire, 1997).

detailed, highlighting the innovative approach taken to optimizemodel training.Moreover,
the section discusses the significance of data vectorization and parallel computation on
GPUs, shedding light on the computational strategies employed to enhance efficiency and
scalability. Lastly, it addresses the utilization of Bayesian optimization, offering insights into
the techniques employed for fine-tuning model parameters and maximizing classification
performance. Through an in-depth examination of these key components, this section
proposes a DAE-based parallel ABC-ANN method, contributing to advancements in
network intrusion detection methodologies.
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Figure 1 The workflow of the proposed network intrusion detection methodology, including the preprocessing, feature extraction and selec-
tion, model construction, andmodel evaluation processes highlighted in red, orange, blue, and green, respectively.

Full-size DOI: 10.7717/peerjcs.2333/fig-1

Figure 2 Illustration of an example of Deep Autoencoder architecture.
Full-size DOI: 10.7717/peerjcs.2333/fig-2

Feature extraction via Deep Autoencoder (DAE)
Deep Autoencoders (DAE) are a form of deep neural network, which is used to reduce
dimensionality and extract attributes. The main purpose of a DAE is to discover a
compressed representation of input data while minimizing information loss. This is
done by training the network to reproduce the input in the output layer. Figure 2 shows
an example of the architecture of a DAE consisting of an encoder that converts input data
to a compressed version and a decoder that recreates the original input from the encoded
data. Encoders compress the data into a lower-dimensional space and effectively capture
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the most important features of the input in a non-linear way. In this study, a new encoded
representation of the input data is extracted using DAE.

This investigation utilized Bayesian optimization (‘Bayesian Optimization’).
Hyperparameters were optimized for both datasets. Encoded data capturing the most
important features of original data has been combined with original data for further
analysis. This consolidated data set was then used as an input for the feature selection step.

By using a DAE for feature extraction, this study aims to obtain a more compact and
informative representation of the data, which can potentially improve the performance of
the following analysis tasks, such as classification or anomaly detection. The encoded
features can help reduce the dimensionality of the data while retaining important
information, thus aiding in more efficient and effective feature selection processes.

Feature selection via extreme gradient boosting algorithm
Ensembles of decision tree approaches, such as extreme gradient boosting (XGBoost), have
the advantage of being able to automatically generate feature importance scores from a
trained model. These scores indicate the relative importance or usefulness of each feature
in the model’s decision-making process. Features that are consistently used to make crucial
decisions in the ensemble of decision trees will have higher importance scores.

This study aims to find the optimal set of features from the UNSW-NB15 and the
NF-UNSW-NB15-v2 datasets by considering both the original features and the encoded
features obtained from the DAE. To achieve this, the feature importance scores provided
by XGBoost are utilized. To calculate the feature importance scores and to select the most
informative features, a five-fold cross-validation is employed. Then, the F1-scores and
accuracy scores for different combinations of selected features, including both the original
and encoded features, are examined.

Our preliminary analyses showed that the best results in terms of accuracy and F1-score
are obtained when the encoded features and original features are concatenated. In the
UNSW-NB15 dataset, only the top 30 features are selected based on the XGBoost feature
importance scores, while in the NF-UNSW-NB15-v2 dataset, only 40 features are selected.
Therefore, the further experiments are carried out using the subsets of 30 and 40 selected
features, respectively. This approach allows us to focus on the most relevant features and
potentially improve the accuracy of the findings.

Artificial Bee Colony algorithm
The Artificial Bee Colony (ABC) algorithm operates by simulating the behavior of honey
bees. In the ABC algorithm, each food source represents a potential solution to the
optimization problem, and the quantity of food source indicates the quality or fitness of
the solution.

The ABC algorithm consists of three main phases: the employed bee phase, the onlooker
bee phase, and the scout bee phase. These phases collectively form an iterative process to
search for optimal solutions.

In the employed bee phase, there are the same number of employed bees as there are
food sources. Each employed bee examines a new food source in the neighborhood of its
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current food source. If the quantity (fitness) of the new source is higher than that of the
previous source, the employed bee updates its memory by recording the new food source
and forgets the previous one. The employed bees then perform a dance within the colony
to communicate the quantity and quality of their food sources.

In the onlooker bee phase, the onlooker bees observe the dance of the employed bees and
choose their food sources based on the quality of the food source. The higher the quantity
and quality of a food source, the more likely it is to be chosen by the onlooker bees. Each
onlooker bee assesses a new food source in the neighborhood of the chosen food source,
similar to what the employed bees do.

In the scout bee phase, abandoned food sources that have not been improved for a certain
number of iterations are identified, indicating that they are not promising solutions. These
abandoned food sources are replaced with new and unexplored food sources found by
scout bees, which explore new areas of the search space.

These three stages are repeated iteratively until the termination criteria or requirements
of the optimization problem are met. The ABC algorithm aims to find the optimal
solution by continuously exploring the search space based on the information shared
among employed bees, onlooker bees, and scout bees. Through this iterative process, the
algorithm can efficiently search for high-quality solutions in the optimization problem
domain.

Artificial neural network
Artificial neural network (ANN) models are computational systems inspired by the neural
structure of the human brain, aiming to replicate the information processing mechanisms
of biological systems. These models consist of interconnected nodes, called neurons,
organized into layers, enabling them to learn and adapt from data. Data is received by
the input layer and propagated through weighted connections to hidden layers, ultimately
generating an output. Throughout the training process, the network adjusts these weights
based on the provided dataset, enhancing its predictive or classification capabilities.

The effectiveness of ANNs lies in their ability to extract hierarchical features and perform
nonlinear mapping, enabling them to capture intricate relationships within data. In this
study, to address this capability, the ABC algorithm is employed during the training phase
of ANNs. This integration aims to prevent the occurrence of local minima and explore
high-performance solutions within the solution space, thereby enhancing the robustness
and effectiveness of the ANN model for various optimization tasks.

Adaptation of ABC to ANN
In this study, the ABC algorithm, a population-based optimization technique, is customized
for use with ANNs to optimize the weights and biases. The original ABC algorithm’s
primary drawback is its long training times, especially when attempting to locate global
solutions. To tackle this issue, this study suggests utilizing a vectorized and parallelized
ABC-ANN algorithm. This proposed approach combines the advantages of the ABC
algorithm with parallel computing techniques, effectively expediting the training process
(‘Data Vectorization and Parallel Computation on GPU’).
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Figure 3 Illustration of proposed ANN architecture that follows a standard ANN structure.
Full-size DOI: 10.7717/peerjcs.2333/fig-3

The proposed neural network structure, as depicted in Fig. 3, consists of an input layer
where each neuron represents a feature from the intrusion dataset along with a bias value.
The sigmoid function (shown in Eq. (1)) is used for the activation of all weights. The
hidden layer neurons and connections between the input and output layers imitate and
simulate the structure of the human brain. Equation (2) calculates the values of the hidden
layers to produce the probability value in the subsequent step. The output layer produces
binary outcomes according to Eq. (3), where 0 is used for normal and 1 is used for attack,
using the probability function shown in Eq. (4).

The proposed parallel ABC-ANN algorithm (Algorithm 1) combines the ABC
optimization technique with ANN to create an effective classification method, termed
as the ABC-ANN classification method. It combines the collective and global search
intelligence of bees to optimize the weight parameters of an ANN for classification tasks.
Initially, the algorithm calculates the total number of weights and biases using the formula
(presented in line 1 of the Algorithm 1): D = (N + 1) ×HLS + (HLS + 1)) in the ANN
model based on the number of neurons in the input and hidden layers, as well as the output
layer. In the formula, N represents the number of neurons in the input layer and includes
a bias term, while HLS denotes the number of neurons in the hidden layer. This sets the
dimensionality of the solution space for the ABC algorithm.

Following the generation of the weight matrix, a matrix of food sources, defined by
dimensions PxD, is generated for the solution space (Algorithm 2). Here, P represents the
number of food sources (solutions), and D refers to the dimensionality of each solution.
The fitness values of these solutions are computed based on their performance in the
classification task (line 4).

In this study, two versions of the fitness function were implemented, taking into
account the necessary adjustments for optimization across two different network datasets.
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The UNSW-NB15 dataset has a low class imbalance ratio; thus the mean absolute error
(MAE) (Algorithm 3) was optimized. On the other hand, the NF-UNSW-NB15-v2 dataset
exhibits a significantly high class imbalance ratio; therefore the F1-score (Algorithm 4) was
prioritized for optimization.

Taking into account the classification results from the output layer (Algorithm 5), F1
or accuracy scores are calculated for each food source, and then the fitness values are
computed by averaging them.

Employed bees perform local searches around food sources (Algorithm 7), and if a new
solution offers improvement, it replaces the old one. Onlooker bees select food sources
based on their fitness values (Algorithm 8), conducting searches preferentially around
better-performing solutions. If a solution’s limit counter exceeds a predefined threshold,
indicating no improvement, a scout bee generates a new solution (Algorithm 9). The
best solution found represents the optimal or near-optimal set of weights for the ANN
(Algorithm 10). The algorithm iterates over the search process until the maximum number
of evaluations (MEN) is reached (lines 7-31 in Algorithm 1).

By combining the exploration capabilities of the ABC algorithm with the learning and
optimization capabilities of ANN, the proposed parallel ABC-ANN algorithm aims to find
optimal weight values for the neural network to accurately detect network anomalies.

σ ( x)=
1

1+e(−x)
(1)

hi= σ
(
x1w ′1i+x2w

′

2i+ ...+xnw
′

ni+w
′

bi
)

(2)

y = σ
(
h1w ′′11+h2w

′′

21+ ...+hmw
′′

m1+w
′′

b1
)

(3)

p=

{
1, if y ≥ 0.5
0, otherwise.

(4)

Data vectorization and parallel computation on GPU
The ABC-ANN algorithm requires a robust acceleration mechanism to effectively handle
big data challenges and achieve faster convergence to a global solution. To address this
need, the vectorization and GPU parallelization have been employed to enhance the
computational efficiency of the optimization process.

Vectorization involves transforming mathematical operations into vector form,
leveraging the computational capabilities of modern processors for parallel execution.
By leveraging the NumPy library, which is widely used for numerical computing in Python,
the code is designed to perform array operations efficiently and in parallel. The use of
vectorized operations in NumPy eliminates the need for explicit looping and indexing,
allowing shorter and more readable code. This method not only reduces the number of
lines of code but also reduces the possibility of occurrence of bugs and errors. Additionally,
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Algorithm 1 Proposed ABC-ANN classification method
1: Determine the input parameters: Input matrix XM×N , target EyM , number of food
sources P , position of the food sourcesWP×D, maximum evaluation numberMEN , lower
bound lb, upper bound ub, limit , modification rateMR, hidden layer size HLS
Output:

1: D← (N +1)×HLS+ (HLS+1)
2: GENERATE_FOOD_SOURCES()
3: W

′

←W
4: Efit←CALC_FIT (W )
5: Eτ← zeros(P) F P-dimensional zero vector
6: evaluation_number← 0
7: while evaluation_number <MEN do
8: SEND_EMPLOYED_BEES()
9: Esfit←CALC_FIT (W

′

)
10: Eind← Esfit > Efit
11: Erind← Esfit ≤ Efit
12: Eτ [ Eind]← 0
13: W [ Eind]←W

′

[ Eind]
14: Efit [ Eind]← Esfit [ Eind]
15: Eτ [ Erind]← Eτ [ Erind]+1
16: CALC_PROBABILITIES()
17: SEND_ONLOOKER_BEES()
18: Esfit←CALC_FIT (W

′

)
19: for i← 1 : P do
20: t← EtmpID[i]
21: if Esfit [i]> Efit [t ] then
22: Eτ [t ]← 0
23: W [t ,:]←W

′

[i,:]
24: Efit [t ]← Esfit [i]
25: else
26: Eτ [t ]← Eτ [t ]+1
27: end if
28: end for
29: SEND_SCOUT_BEES()
30: MEMORIZE_BEST_SOURCE()
31: end while
32: return Egpar F return global params
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Algorithm 2 Create Food Source Positions
1: procedure generate_food_sources
2: for i← 1 : P do
3: for j← 1 :D do
4: W [i,j]← lb+ rand(0,1)× (ub− lb)
5: end for
6: end for
7: end procedure

Algorithm 3 Calculate Mean Absolute Error based Fitness Function
1: procedure CALC_FIT (φ)
2: ps←CALCOutputLayer(φ)
3: ε← absolute(ps−EyM )
4: f ←mean(ε,axis= 0)
5: evaNumber← evaNumber+ len(f )
6: return f /(1+ f )
7: end procedure

Algorithm 4 Calculate F1-score based Fitness Function
1: procedure CALC_FIT (φ)
2: ps←CALCOutputLayer(φ)
3: ps← round(ps)
4: f ← F1_score(EyM ,ps)
5: evaNumber← evaNumber+ len(f )
6: return f
7: end procedure

Algorithm 5 Calculate Output Layer
1: procedure CALCOutputLayer(φ)
2: M ,N←X .shape
3: P←φ.shape[0]
4: ps← zeros(M ,P) F output neurons
5: ps← ps+φ[:,−1] F bias addition
6: for i← 0 :HLS do
7: W←φ[:,i×N : (i+1)×N ]T

8: b←φ[:,N ×HLS+HLS+ i]T

9: zi← σ (X .dot (W )+b) F σ is sigmoid func
10: ps← ps+zi ∗φ[:,FVS×HLS+ i]
11: end for
12: ps← σ (ps)
13: return ps
14: end procedure
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Algorithm 6 Calculate Probabilities
1: procedure calc_probabilities
2: maxfit←max( Efit )
3: prob← (0.9× ( Efit/maxfit ))+0.1
4: end procedure

Algorithm 7 Employed Bee Phase
1: procedure send_Employed_Bees
2: for i← 1 : P do
3: Ear← rand(low = 0,high= 1,size= (D))
4: Eρ← Ear <MR F param to change
5: η← randint (1,P), η 6= i F choose neighbour
6: W

′

[i,:]←W [i,:]
7: vec←W

′

[i,Eρ]
8: vec← vec+ rand(−1,1)× (vec−W [η,Eρ])
9: vec[vec < lb]← lb
10: vec[vec > ub]← ub
11: W

′

[i,Eρ]← vec
12: end for
13: end procedure

vectorization provides significant performance enhancements. Utilizing the underlying C
implementation of NumPy enables efficient parallel execution of array operations. This
provides faster execution times compared to sequential processing, where traditional loops
are used. The main benefits of vectorized code are enhanced readability, decreased code
complexity, and increased computational efficiency. It allows for code that is cleaner,
making it simpler to understand and maintain. Moreover, parallel execution of operations
can result in significant performance improvements, particularly when dealing with large
datasets or problems with high computational costs.

With the rapid advancement of GPU technologies, researchers are increasingly turning
to parallel computing to boost algorithm speed. In this regard, the CuPy library for Python,
developed by Nishino & Loomis (2017), has gained prominence. CuPy is an open-source
Python library designed to harness NVIDIAGPUs to accelerate matrix operations. It is fully
compatible with NumPy and enables the utilization of modern GPU capabilities through
a compatible interface.

In this study, all data used in the training phase of the ABC-ANN algorithm were
condensed into minimal matrices and converted into first NumPy and then Cupy arrays to
optimize calculation speed. Overall, the utilization of vectorization and GPU parallelization
via the CuPy library in the ABC optimization code of this study enhances the efficiency
and readability of the implementation, rendering it a valuable tool for scientific computing
and optimization tasks.
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Algorithm 8 Onlooker Bee Phase
1: procedure send_OnLooker_Bees
2: i← 0
3: t← 0
4: while t < P do
5: if rand(0,1)< prob[i] then
6: Ear← rand(low = 0,high= 1,size= (D))
7: Eρ← Ear <MR F param to change
8: η← randint (1,P), η 6= i F neighbour
9: W

′

[t ,:]←W [i,:]
10: vec←W

′

[t ,ρ]
11: vec← vec+ rand(−1,1)× (vec−W [η,Eρ])
12: EtmpID[t ]← i
13: vec[vec < lb]← lb
14: vec[vec > ub]← ub
15: W

′

[t ,Eρ]← vec
16: t← t+1
17: end if
18: i← i+1
19: if i≥ P then
20: i← 0
21: end if
22: end while
23: end procedure

Algorithm 9 Scout Bee Phase
1: procedure send_Scout_Bees
2: index← argmax(Eτ )
3: if Eτ [index] ≥ limit then
4: for j← 1 :D do
5: W [index,j]← lb+ rand(0,1)× (ub− lb)
6: W

′

[index,j]←W [index,j]
7: end for
8: fit [index]←CALC_FIT (W [index,:])
9: Eτ [index]← 0
10: end if
11: end procedure
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Algorithm 10Memorize Best Source
1: procedure memorize_best_source
2: index← argmax( Efit )
3: if Efit [index]> gmax then
4: gmax← Efit [index] F global maximum
5: Egpar←W [index,:] F global params
6: end if
7: end procedure

Bayesian optimization
Bayesian optimization is a technique that leverages Bayes’ theorem to efficiently search for
the global optimum of an objective function. It involves constructing a probabilistic model,
known as the surrogate function, which represents the objective function. This surrogate
function is then iteratively evaluated and updated based on the observed results.

In the context of machine learning, Bayesian optimization is commonly used for
hyperparameter tuning. Hyperparameters are configuration settings of a model that
are not learned from the data but need to be specified by the user. Finding the optimal
combination of hyperparameters is crucial for achieving the best performance of a machine
learningmodel on a given dataset. Hyperparameter tuning is a challenging task as it involves
searching through a large space of possible hyperparameter values. The objective function,
which is typically the performance metric of the model on a validation set, is often complex
and computationally expensive to evaluate.

Bayesian optimization provides a systematic approach to efficiently search for the
optimal hyperparameters. Unlike random or grid search methods, Bayesian optimization
maintains a record of previous evaluation results. These results are utilized to construct a
probabilisticmodel thatmaps hyperparameters to the likelihood of achieving a certain score
on the objective function. It constructs a probabilistic model of the objective function based
on the observed evaluations and uses this model to guide the search process. By iteratively
selecting promising hyperparameter configurations based on an acquisition function,
Bayesian optimization gradually explores the hyperparameter space and converges towards
the optimal solution. Bayesian optimization can explore a larger search space compared
to more traditional hyperparameter optimization techniques like grid search and random
search, thereby achieving more effective results in relatively shorter time frames.

In this work, one of the Python libraries called Hyperopt (Bergstra et al., 2015) is used
to perform Bayesian optimization. Hyperopt is a library for Bayesian optimization that
can implement the Tree-structured Parzen Estimator (TPE), which is more advanced than
other optimization algorithms. There are four components in Bayesian optimization:
1. Objective function (F(x)): The function that one aims to minimize.
2. Domain space (X): The range of parameter values overwhich the objective isminimized.
3. Hyperparameter optimization function (TPE): This function creates the surrogate

function and selects the next values to assess.
4. Trials: Each instance where the objective function is evaluated, recording the score and

parameter pairs.
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5. Max_eval: maximum evaluation number.
TPE is a bayesian-based approach that tries to build a probabilistic model. TPE implies

that hyperparameter space exhibits a tree-like structure: the selection of a value for one
hyperparameter determines the subsequent selection of another hyperparameter and the
range of values available for it. TPE algorithm works as follows:
1. Create a randomly chosen initial point from domain space X: x∗.
2. Compute F(x∗). (The function F corresponds to the objective function, which in our

case is the negative of accuracy.)
3. Utilizing the trial history, construct the conditional probability model P(F |x).
4. Select based on P(F |x), anticipating an improvement in F(x∗).
5. Calculate the actual value of F(x∗).
6. Iterate through steps 3-5 until one of the stopping criteria is met, such as i>max_eval.

The goal is to find the global minimum of F(x) over X.
Table 3 displays the hyperparameter ranges for various algorithms, encompassing the

newly proposed ABC_ANN method alongside other comparative techniques.

RESULTS AND DISCUSSION
Datasets and data preprocessing
This study utilizes the UNSW-NB15 and the NF-UNSW-NB15-v2 datasets to build the
NIDS model. The UNSW-NB15 dataset consists of a combination of actual modern
normal network activities and synthesized current network attack activities. It serves
as an alternative to older benchmark datasets and is widely adopted for evaluating the
performance of Network Intrusion Detection Systems (NIDS).

The NetFlow-based format of the UNSW-NB15 dataset, referred to as the NF-UNSW-
NB15-v2 (Sarhan, Layeghy & Portmann, 2022), has been expanded with supplementary
NetFlow attributes and labeled with corresponding attack categories. The dataset comprises
a total of 43 features and 2,390,275 data flows, with 95,053 classified as attack samples and
2,295,222 as benign. To avoid and mitigate bias in model training, as part of the data
pre-processing procedure, six attributes are removed from the dataset. These include
minimum or maximum traffic Time to Live (TTLs), port numbers, IPv4 source, and
destination addresses that do not significantly contribute to the classification performance
and are highly correlated with class labels. Since this dataset does not provide users with
pre-existing training and test sets, the experiments split the data into partitions containing
an equal proportion of samples from both the benign and attack classes. Specifically, 33%
of the data is allocated for testing, while the remaining portion constitutes the training set.

The training set of the UNSW-NB15 dataset contains 175,341 samples with 45 features.
Among these samples, 56,000 are labeled as ‘‘normal’’ traffic, while 119,341 samples are
labeled as ‘‘abnormal’’ traffic, representing various types of attacks. The testing set consists
of 82,332 samples with the same feature size as the training set.Within the testing set, 37,000
samples are categorized as ‘‘normal’’ traffic, and the remaining 45,332 samples represent
‘‘abnormal’’ traffic with different attack types, including DoS, backdoors, generic attacks,
analysis attacks, exploits, shell code, fuzzers, reconnaissance, and worms. UNSW-NB15

Hacılar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2333 19/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2333


Table 3 Hyperparameter ranges of Bayesian optimization based on different classification algorithms.

Model Parameters Range

learning rate [10e−8.10e−1]
hidden size 1 [100,150] and [25,35]
hidden size 2 [30,100] and [10,25]

DAE dropout rate 1 [0,0.3]
dropout rate 2 [0,0.3]
batch size [1,1024]
epochs [1,100]
act. func. {tanh,sigmoid}
no. of particles [3,20]
c1 [ 0.5,3]
c2 [0.5,3]

PSO_ANN no. of iter. [5,100]
w [0.1,2]
hidden size [5,100]
act. func. {tanh,sigmoid,relu}
no. of solutions [10,20]
no. of generations [ 10,100]

GA_ANN hidden size [3,20]
no. of parents mating [1,10]
act. func. {tanh,sigmoid,relu}
batch size { 8,16,32,64,128,256 }
epoch [50,200]
hidden size [3,50]

SGD_ANN dropout rate [0,0.4]
learning rate [0.01,0.5]
momentum [0.1,1]
act. func. {tanh,sigmoid,relu}
batch size { 8,16,32,64,128,256 }
epoch [50,200]
hidden size [3,50]

Adam_ANN dropout rate [0,0.4]
learning rate [0.01,0.5]
act. func. {tanh,sigmoid,relu}
HLS [2,20]
lb [−30,0]
ub [0,30]

Proposed ABC_ANN evaluation number [10000,120000]
limit [10,200 ]
P [10,200]
MR [0.01,0.2]
threshold [0.2,0.8]
act. func. {tanh,sigmoid}

Hacılar et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2333 20/36

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2333


Table 4 Confusionmatrix.

Predicted normal Predicted abnormal

Actual normal True negative (TN) False positive (FP)
Actual abnormal False negative (FN) True positive (TP)

dataset contains categorical features. A category encoder technique is utilized to convert
these categories into numerical values. Specifically, ‘‘service’’, ‘‘state’’, and ‘‘proto’’ are the
three categorical features found in the dataset. Following the encoding process, the total
number of features expands from 45 to 197.

To minimize the impact of different scales across features and to reduce computational
costs and training time, normalization techniques are applied to both datasets. Several
normalization strategies exist in the literature, such as the Max-Abs scaler, the Standard
scaler, and the Min-Max scaler. Considering the sparsity analysis of both datasets, which
indicates a significant proportion of zeros, theMax-abs scaler is found to be appropriate for
these datasets. The Max-abs normalization technique scales each feature by its maximum
absolute value while preserving all zeros. This normalization approach is used to scale all
values in the dataset to the range of [0, 1]. By applying the Max-abs scaler, datasets are
prepared for the following processing and analysis in the NIDS model construction.

Evaluation metrics
Evaluation metrics play an important role in evaluating the performance of machine
learning algorithms. In addition to accuracy, it is important to take into account the F1-
score, the FAR and the DR for a comprehensive understanding of the model’s performance.
A confusion matrix (as shown in Table 4) is a table that summarizes the performance of a
classification model. It provides a detailed breakdown of correct and incorrect predictions
made by themodel across different classes (Rainio, Teuho & Klén, 2024). Evaluationmetrics
and confusion matrix play crucial roles in assessing the performance of machine learning
models, providing insights into their predictive capabilities and helping in the refinement
and optimization of models for better performance.

In the context of the proposed network anomaly detection system, we define the
performance metrics shown in Table 4 as follows:

• True positive (TP): The number of instances where the IDS model correctly identifies
network anomalies.
• True negative (TN): The number of instances where the system correctly identifies
normal network traffic or behavior, meaning no anomalies were present and none were
detected.
• False positive (FP): The number of instances where normal network traffic is incorrectly
flagged as anomalous by the IDS model.
• False negative (FN): The number of instances where actual network anomalies were
present but not detected by the IDS model.

Some common evaluation metrics derived from the confusion matrix include accuracy,
precision, recall, F1-score, DR, and FAR. The definition of accuracy is the ratio of correctly
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estimated samples to all samples (Eq. (5)). It provides a basic performance measure but
may not be sufficient, especially in the case of unbalanced datasets. As is often the case with
problems with network intrusion detection, imbalance occurs when there is an insufficient
number from one class (eg. abnormal). In such cases, the importance of metrics such as the
F1-score becomes even more apparent. The F1-score is a statistical measure of precision
and recall (Eq. (8)). Precision measures the ratio of true positives (correctly predicted
abnormal samples) to the total number of predicted positives, while recall measures the
ratio of actual positives to the overall actual positive number. The F1-score is the harmonic
mean of precision and recall, providing a balancedmeasure of accuracy, taking into account
both false positives and false negatives.

DR, also known as true positive rate (TPR) or Sensitivity, is the ratio of true positive
samples to the total number of actual positive samples (abnormal samples in the dataset)
(Eq. (6)). It indicates the ability of the model to correctly identify positive instances. FAR,
also known as false positive rate (FPR), is the ratio of false positive samples to the total
number of actual negative samples (normal samples in the dataset) (Eq. (7)). It represents
the proportion of normal instances that are incorrectly classified as abnormal.

By considering these evaluation metrics, including F1-score, DR, and FAR, alongside
accuracy, a more comprehensive assessment of the model’s performance can be obtained,
particularly in the presence of imbalanced datasets. In such cases, the focus is not only on
overall accuracy but also on correctly identifying abnormal instances while minimizing
false alarms.

Accuracy =
TP+TN

TN +FP+FN +TP
(5)

Detection Rate (DRorTPR)=
TP

FN +TP
(6)

False Alarm Rate (FPR)=
FP

TN +FP
(7)

F1 score=
2∗TP

2∗TP+FP+FN
. (8)

Experimental setup
The proposed methods were implemented utilizing the Colab platform offered by Google,
which provides access to NVIDIA T4 GPUs. The GA, PSO and ANN with SGD and Adam
optimization algorithms were conducted using PyGAD (Gad, 2021), pyswarms (Miranda,
2018), and Tensorflow (Abadi et al., 2015) libraries, respectively.

Experimental results
The experimental setup of this study encompasses three primary processes.
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The first objective is to evaluate the contribution of newly extracted features that are
obtained via Deep Autoencoder (DAE), to the classification task. These features were
derived utilizing a deep learning technique, and their effect on the classification outcomes
was assessed.

Secondly, an exploration into the impact of the number of selected features on the
classification performance is conducted using XGBoost with five-fold cross-validation,
which ensures the selection of the most appropriate features. This investigation entails
applying the proposed DAE-based ABC-ANN algorithm with default hyperparameter
settings to three distinct feature sets:

• Original features
• Encoded features obtained from the DAE
• Concatenation of the original and encoded features

To ascertain the optimal number of features, we employ a five-fold cross-validation
approach, augmented by XGBoost feature selection. The objective is to systematically
vary the number of selected features and evaluate their impact on classification metrics,
including accuracy, F1-score, DR, and FAR.

During this procedure, a total of 30 features are selected from the UNSW-NB15 dataset
(shown in Table 5), and 40 features are selected from the NF-UNSW-NB15-v2 dataset
(shown in Table 6) based on the five-fold cross-validation XGBoost feature selection
technique, as detailed in ‘Feature Selection via Extreme Gradient Boosting (XGBoost)
Algorithm’.

Ablation studies were conducted with the aim of evaluating the individual contributions
of each process, including feature extraction, feature selection, and the effects of
parallelization and vectorization on training times. Figs. 4 and 5 present the accuracy
and F1 results derived from various configurations for the UNSW-NB15 dataset. These
configurations include:
• Without using feature extraction and selection, which generates accuracy and F1-scores
of 0.81 and 0.86, respectively.
• Solely using extracted encoded features, yielding accuracy and F1-scores of 0.81 and
0.85, respectively.
• The accuracy and F1-scores, that are obtained using different feature sets.

Similarly, Figs. 6 and 7 encompass the accuracy and F1 results derived from various
configurations for the NF-UNSW-NB15-v2 dataset. These configurations include:
• Without using feature extraction and selection, which generates accuracy and F1-scores
of 0.98 and 0.79, respectively.
• Solely using extracted encoded features, yielding accuracy and F1-scores of 0.99 and
0.81, respectively.
• The accuracy and F1-scores are obtained using different feature sets.

Thirdly, the performance of the proposed DAE-based ABC-ANN method has been
compared with benchmark metaheuristics, namely the Genetic Algorithm (GA) and
particle swarm algorithm (PSO). Furthermore, we have compared the performance of the
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Table 5 Selected 30 features using the five-fold cross-validation XGBoost method obtained from a
combination of the UNSW-NB15 original features and encoded features. The sum of all importance
scores equals 1.

Feature name Format Feature importance scores

sttl integer 0.37267
ct_srv_dst integer 0.06874
ct_dst_src_ltm integer 0.04268
encoded f42 float 0.03717
synack float 0.02834
sbytes integer 0.02769
ct_state_ttl integer 0.02617
encoded f16 float 0.02571
service=- categorical 0.02395
ct_srv_src integer 0.02207
ct_dst_sport_ltm integer 0.019221
encoded f43 float 0.01834
encoded f15 float 0.01737
smean integer 0.01649
encoded f48 float 0.01343
proto=tcp categorical 0.01192
encoded f24 float 0.01173
encoded f52 float 0.01146
encoded f49 float 0.01140
dbytes integer 0.01131
dmean integer 0.00886
encoded f18 float 0.00838
encoded f27 float 0.00788
encoded f26 float 0.00782
service=http categorical 0.00700
encoded f21 float 0.00691
service=dns categorical 0.00642
service=ftp categorical 0.00619
encoded f32 float 0.00482
encoded f40 float 0.00482

proposed DAE based ABC-ANNmethod with a conventional ANN approach that involves
error back propagation and weight adjustment using a Stochastic Gradient Descent
(SGD) and Adam optimization algorithms. In this study, with the goal of minimizing
computational load, all matrices referenced in the Algorithm 1 were vectorized utilizing
the python programming language and numpy library, as opposed to Python lists and loops
(detailed explanation can be found in ‘Data Vectorization and Parallel Computation on
GPU’). This represents a significant contribution to the literature. Thus, the computational
load is substantially reduced to a minimum. In consideration of the big datasets as in
this study, it became crucial to accelerate the model. In order to accomplish this, GPU
parallelization has also been utilized for vectorized loops, which significantly increased
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Table 6 Selected 40 features using the five-fold cross-validation XGBoost method obtained from a
combination of the NF-UNSW-NB15-v2 original features and encoded features. The sum of all impor-
tance scores equals 1.

Feature name Format Feature importance scores

MIN_IP_PKT_LEN integer 0.67513
TCP_WIN_MAX_IN integer 0.18188
SHORTEST_FLOW_PKT integer 0.02189
DNS_QUERY_TYPE integer 0.01588
LONGEST_FLOW_PKT integer 0.01269
encoded f29 float 0.00533
RETRANSMITTED_OUT_BYTES integer 0.00418
SERVER_TCP_FLAGS integer 0.00395
L7_PROTO float 0.00391
PROTOCOL integer 0.00390
encoded f21 float 0.00380
encoded f22 float 0.00363
TCP_FLAGS integer 0.00359
OUT_BYTES integer 0.00296
encoded f17 float 0.00289
NUM_PKTS_UP_TO_128_BYTES integer 0.00270
RETRANSMITTED_OUT_PKTS integer 0.00249
encoded f13 float 0.00223
OUT_PKTS integer 0.00220
encoded f5 float 0.00219
FTP_COMMAND_RET_CODE integer 0.00205
CLIENT_TCP_FLAGS integer 0.00192
DST_TO_SRC_SECOND_BYTES float 0.00190
SRC_TO_DST_AVG_THROUGHPUT integer 0.00182
encoded f12 float 0.00172
IN_PKTS integer 0.00170
TCP_WIN_MAX_OUT integer 0.00164
encoded f10 float 0.00139
encoded f4 float 0.00137
DST_TO_SRC_AVG_THROUGHPUT integer 0.00133
encoded f14 float 0.00132
NUM_PKTS_128_TO_256_BYTES integer 0.00127
SRC_TO_DST_SECOND_BYTES integer 0.00126
RETRANSMITTED_IN_BYTES integer 0.00124
encoded f9 float 0.00121
encoded f3 float 0.00121
IN_BYTES integer 0.00116
encoded f8 float 0.00110
encoded f18 float 0.00107
encoded f11 float 0.00107
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Figure 4 Accuracy of the classification model based on the different number of feature subsets ob-
tained from the five-fold cross validation XGBoost algorithm, applied on the UNSW-NB15 dataset.

Full-size DOI: 10.7717/peerjcs.2333/fig-4

Figure 5 F1-scores of the classification model based on the different number of feature subsets ob-
tained from the five-fold cross validation XGBoost algorithm, applied on the UNSW-NB15 dataset.

Full-size DOI: 10.7717/peerjcs.2333/fig-5

the overall speed and efficiency. The utilization of CuPy (Nishino & Loomis, 2017), an
open-source library specifically developed for accelerating matrix operations on NVIDIA
GPUs, enabled this acceleration.
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Figure 6 Accuracy of the classification model based on the different number of feature subsets ob-
tained from the five-fold cross validation XGBoost algorithm, applied on the NF_UNSW-NB15_v2
dataset.

Full-size DOI: 10.7717/peerjcs.2333/fig-6

Figure 7 F1-scores of the classification model based on the different number of feature subsets ob-
tained from the five-fold cross validation XGBoost algorithm, applied on the NF_UNSW-NB15_v2
dataset.

Full-size DOI: 10.7717/peerjcs.2333/fig-7

All aforementioned classification algorithms were applied to the optimal set of 30 and
40 features selected in the previous step using XGBoost feature selection.
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Table 7 presents the optimal parameters achieved after 150 iterations using the Bayesian
optimization algorithm. In order to demonstrate the effectiveness of the Bayesian
optimization algorithm, its performances were compared with the randomized search
algorithm. It can be seen in Table 8 that although the randomized search algorithm was
run for 250 iterations, it could not pass the Bayesian optimization algorithm in terms of
evaluationmetrics including F1-score, accuracy, DR, and FAR. After Bayesian optimization
has been conducted on all classification algorithms with 150 iterations, the optimum results
of this comparison are presented in Tables 9 and 10. The experimental results demonstrate
a significant improvement in network intrusion detection with the proposed approach.
DR increased from 0.76 to 0.81, and FAR decreased from 0.0016 to 0.005 when compared
to the ANN-BP algorithm on the UNSW-NB15 dataset. Additionally, FAR decreased from
0.006 to 0.0003 compared to the ANN-BP algorithm on the NF-UNSW-NB15-v2 dataset.
It is observed that the test results of PSO and GA on the NF-UNSW-NB15-v2 dataset
are not satisfactory, indicating that they require more time and hardware resources to
reach the optimum. These findings highlight the effectiveness of our proposed approach
in enhancing network security against intrusions.

Furthermore, in order to ensure the reliability of the results, by executing the models 20
times for the UNSW-NB15 and the NF-UNSW-NB15-v2 datasets, the best, worst, average
training time, and standard deviation values were recorded for each classifier. Table 11
summarizes the best, worst, average, and standard deviation values obtained after repeating
the best model achieved in the UNSW-NB15 dataset 20 times. Table 12, on the other hand,
provides a summary of the same results obtained for the NF-UNSW-NB15-v2 dataset.

Overall, the experimental setup has involved evaluating the contribution of DAE-
extracted features, exploring the influence of the number of selected features, comparing
the performance of the proposed hybrid DAE-based ABC-ANN method with benchmark
metaheuristics, and contrasting it with conventional ANN approaches with SGD and Adam
optimization using the sklearn TensorFlow library.

The results demonstrate that the proposed hybrid DAE-based ABC-ANN approach
outperforms state-of-the-art algorithms in terms of accuracy, F1-score, detection rate (DR),
false positive rate (FPR), and training time on the UNSW-NB15 and NF-UNSW-NB15
datasets.

CONCLUSION
This study combines DAE with vectorized and GPU-parallelized ABC-ANN to efficiently
address big data problems by searching for global solutions in a faster manner. While
existing methods may achieve high accuracy, they may suffer from high training times, low
detection rates, and computational complexity. In this study, the ABC algorithm has been
vectorized and coded to run in parallel on GPUs to address these issues. Additionally, DAE
and feature selection have been conducted to obtain a more robust dataset representation.

The proposed DAE-based ABC-ANN method is compared with the conventional
ANN backpropagation (ANN-BP), ANN-PSO, ANN-GA and ANN-Adam optimization
algorithms, and the results are thoroughly analyzed. The ABC algorithm in the ANN
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Table 7 The optimal parameters found by the Bayesian hyperparameter optimization algorithm on
the UNSW-NB15 and NF-UNSW-NB15-v2 datasets.

Model Parameters Opt.values
UNSW-NB15

Opt.values
NF-UNSW-NB15-v2

DAE learning rate
hidden size 1
hidden size 2
dropout 1
dropout 2
batch size
epochs
act. func.

0.3
100
53
0.1
0.0
256
90
sigmoid

0.24
31
25
0.1
0.1
37
12
sigmoid

PSO_ANN no. of particles
c1
c2
w
hidden size
act. func.
no. of iter.

11
1.36
1.88
0.38
3
sigmoid
49

8
1.25
2.3
0.48
3
sigmoid
37

GA_ANN no. of solutions
no. of generations
hidden size
no. of parents mating
act. func.

14
24
3
8
tanh

6
1
9
2
tanh

SGD_ANN batch size
epoch
hidden size
dropout rate
learning rate
momentum
act. func.

16
108
35
0.1
0.08
0.35
relu

128
190
42
0.3
0.003
0.02
tanh

Adam_ANN batch size
epoch
hidden size
dropout rate
learning rate
act. func.

32
88
25
0
0.17
sigmoid

128
113
15
0.1
0.058
relu

proposed ABC_ANN HLS
lb
ub
evaluation number
limit
P
MR
threshold
act. func.

3
-20
20
60,008
50
40
0.054
0.5
sigmoid

4
-14.6
13.8
58,567
69
68
0.04
0.5
sigmoid

training phase allows for the avoidance of local minimum solutions by conducting a
high-performance search in the solution space.

This study investigated the XGBoost algorithm for feature selection, and the DAE for
feature extraction in conjunction with numerous approaches, including PSO, GA, SGD,
and Adam optimization, to develop reliable, efficient, and accurate IDSs. In order to
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Table 8 The best performance evaluation results of the UNSW-NB15 dataset with 30 selected features
and the NF-UNSW-NB15-v2 dataset with 20 selected features, calculated using the Bayesian hyperpa-
rameter optimization algorithmwith 150 iterations and the randomized search strategy with 250 itera-
tions.

Dataset Model Optimization
strategy

No. of
iterations

Accuracy F1 DR FPR TTime

UNSW-NB15 proposed
ABC_ANN
(GPU)

Randomized
Search
Bayesian
Optimization

250

150

0.82

0.86

0.86

0.88

0.75

0.81

0.008

0.005

6 min
16 s
3 min
23 s

NF-UNSW-
NB15-v2

proposed
ABC_ANN
(GPU)

Randomized
Search
Bayesian
Optimization

250

150

0.99

0.99

0.84

0.89

0.73

0.81

0.0008

0.0003

9 min
58 s
8 min
41 s

Notes.
TTime, Training Time.

Table 9 The best performance evaluation results of the UNSW-NB15 dataset with 30 selected features,
calculated using the Bayesian hyperparameter optimization algorithm after 150 iterations.

Model Accuracy F1 DR FPR Training time

GA_ANN 0.75 0.81 0.72 0.15 54 min 23 s
PSO_ANN 0.81 0.85 0.74 0.006 34 min 31 s
SGD_ANN 0.82 0.86 0.76 0.016 7 min 25 s
Adam_ANN 0.84 0.87 0.79 0.032 4 min 14 s
proposed ABC_ANN (CPU) 0.86 0.88 0.81 0.005 23 min 47 s
proposed ABC_ANN (GPU) 0.86 0.88 0.81 0.005 3 min 23 s

Table 10 The best performance evaluation results of the NF-UNSW-NB15-v2 dataset with 40 selected
features, calculated using the Bayesian hyperparameter optimization algorithm after 150 iterations.

Model Accuracy F1 DR FPR Training time

GA_ANN 0.96 0.02 0.36 0.035 2 hr 38 min
PSO_ANN 0.96 0.0013 0.002 0.036 4 hr 40 min
SGD_ANN 0.99 0.86 0.875 0.006 50 min 42 s
Adam_ANN 0.99 0.87 0.84 0.003 9 min 28 s
proposed ABC_ANN (CPU) 0.99 0.89 0.81 0.0003 2 hr 16 min
proposed ABC_ANN (GPU) 0.99 0.89 0.81 0.0003 8 min 41 s

evaluate the effectiveness of these techniques, the benchmark UNSW-NB15 and up-to-
date NF-UNSW-NB15-v2 datasets were trained and tested. Firstly, the DAE-based feature
extraction method was conducted with bayesian hyperparameter optimization on datasets
in order to extract themost representative features, and it resulted in 53 encoded features on
the UNSW-NB15 and 24 encoded features on the NF-UNSW-NB15-v2 datasets. Secondly,
the XGBoost-based feature selection method was used to select the best features from
the combination of original and encoded features. Thirdly, an ABC-ANN is proposed
with CPU and GPU parallelization, which allows the use of ABC intelligence in big data
problems. The computational costs of the proposed ANN-ABCmethod impose limitations
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Table 11 The time in seconds required to train each classifier on the UNSW-NB15 dataset.

Model Best time Worst time Avg time Std.

GA_ANN 5,454 6,169 5,698.68 251.96
PSO_ANN 4,326 4,499 4,407.37 51.78
SGD_ANN 272 791 431.63 142.05
Adam_ANN 209 552 316.63 79.77
Proposed ABC_ANN (CPU) 1,412 1,533 1,442.42 34.32
Proposed ABC_ANN (GPU) 144 176 146.68 7.14

Table 12 The time in seconds required to train each classifier on the NF-UNSW-NB15-v2 dataset.

Model Best time Worst time Avg time Std.

GA_ANN 8,760 9,507 9,080.8 339.386
PSO_ANN 16,816 17,625 17,206 433.615
SGD_ANN 2,951 4,394 4,519.33 544.72
Adam_ANN 519 857 636.25 104.549
Proposed ABC_ANN (CPU) 8,040 8,160 8,086 49.98
Proposed ABC_ANN (GPU) 504 509 506.94 1.545

on the GPU. Lastly, a Bayesian-based hyperparameter optimization technique is conducted
on all experimental algorithms and the proposed ABC-ANN algorithm in order to find the
best hyperparameter combinations that improve detection accuracy and F1 score.

To place our findings in context, this study has conducted a comprehensive literature
analysis. In addition, it has created a summary of the performance results acquired by
the various algorithms and compared them using the proposed method. Consequently,
the results have demonstrated clearly that the proposed DAE-based ABC-ANN method is
superior to alternative approaches across all evaluation metrics mentioned in ‘Evaluation
Metrics’. The experimental results reveal a notable improvement in network intrusion
detection through this proposed approach, exhibiting an increase in DR by 0.76 to 0.81
and a reduction in FAR by 0.016 to 0.005 compared to the ANN-BP algorithm on the
UNSW-NB15 dataset (Table 9). Furthermore, there is a reduction in FAR by 0.006 to
0.0003 compared to the ANN-BP algorithm on the NF-UNSW-NB15-v2 dataset (Table
10). These findings underscore the effectiveness of our proposed approach in enhancing
network security against network intrusions.

However, there are still certain aspects of the DAE-based ABC-ANN that need
improvement. Our proposed approach surpasses conventional methods in computational
efficiency and classification metrics by leveraging the proposed optimization technique.
Nevertheless, themodel encounters limitations in acceleration due to insufficient hardware,
notwithstanding its high hardware requirements. Exploring additional hardware resources
may lead to improved results. Future work includes the investigation of hybrid models
to improve the anomaly detection performance. By incorporating the ABC algorithm
for tuning hyperparameters in the proposed method, we can simultaneously optimize
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parameters and ANN weights. This dual optimization process contributes to the
enhancement of the overall methodology.
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