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ABSTRACT Lung cancer is one of the deadliest cancer types whose 84% is non-small cell lung cancer
(NSCLQ). In this study, deep learning-based classification methods were investigated comprehensively to
differentiate two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC).
The study used 1457 '8F-FDG PET images/slices with tumor from 94 patients (88 men), 38 of which were
ADC and the rest were SqCC. Three experiments were carried out to examine the contribution of peritumoral
areas in PET images on subtype classification of tumors. We assessed multilayer perceptron (MLP) and
three convolutional neural network (CNN) models such as SqueezeNet, VGG16 and VGG19 using three
kinds of images in these experiments: 1) Whole slices without cropping or segmentation, 2) cropped image
portions (square subimages) that include the tumor and 3) segmented image portions corresponding to tumors
using random walk method. Several optimizers and regularization methods were used to optimize each
model for the diagnostic classification. The classification models were trained and evaluated by performing
stratified 10-fold cross validation, and F-score and area-under-curve (AUC) metrics were used to quantify
the performance. According to our results, it is possible to say that inclusion of peritumoral regions/tissues
both contributes to the success of models and makes segmentation effort unnecessary. To the best of our
knowledge, deep learning-based models have not been applied to the subtype classification of NSCLC in PET
imaging, therefore, this study is a significant cornerstone providing thorough comparisons and evaluations
of several deep learning models on metabolic imaging for lung cancer. Even simpler deep learning models
are found promising in this domain, indicating that any improvement in deep learning models in machine
learning community can be reflected well in this domain as well.

INDEX TERMS Convolutional neural networks, deep learning, PET imaging, subtype classification, non-
small cell lung cancer.

I. INTRODUCTION

84% of lung cancers are non-small cell lung cancer
(NSCLC) [1]. Adenocarcinoma (ADC) and squamous cell
carcinoma (SqCC) are the two major subtypes of NSCLC.
While 40% of lung cancers are ADC, 25-30% are of
SqCC [2]. Understanding the effects of cytotoxic and biolog-
ical agents suggests that subtype-specific treatment methods
may be developed in the future. From this point of view,
it shows the importance of the differentiation of ADC and
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SqCC [3]. Small lung biopsies (bronchoscopic, needle or core
biopsies) and cytology specimens are used for lung can-
cer diagnosis. In general, standard morphological criteria
by routine microscopy are essential to differentiate these
two subtypes. However, bad morphology, especially in small
specimens, can sometimes lead to difficult differentiation of
tumors. On the other hand, sampling error that may occur
during the biopsy procedure would be problematic in repre-
senting intratumoral heterogeneity.

Positron emission tomography (PET) is a functional imag-
ing approach that has been widely used in medicine, and
provides significant diagnostic benefits. It is also a very
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effective and efficient method for staging and therapy of
tumors. According to radiomics, medical images carry more
information than obtained by visual examination [4]. With
high-resolution PET images, it has become possible to obtain
inferences with image processing methods. In this regard,
it has become possible to recognize tumor characteristics
using PET images.

Machine learning examines the algorithms that recognize
complex patterns, and make predictions from the available
data (such as the medical images in our case) to come up with
intelligent decisions. In oncology, machine learning methods
are used in different applications such as cancer prognosis
and prediction [5], survival analysis [6], drug response [7],
gene expression [8] and subtype differentiation [9]. As a
machine learning methodology, artificial neural networks
(ANN) based approaches involve learning and prediction
algorithms that mimic the human brain in terms of recogni-
tion and decision-making. ANN methods are used in oncol-
ogy in different applications such as tumor detection [10] and
diagnosis [11]. Deep learning (DL) is an advanced neural
network type with more layers to allow higher levels of
abstraction. Deep convolutional neural networks (CNN) have
brought breakthroughs in image-based studies [12]. They are
highly successful in solving difficult problems such as recog-
nizing objects in real world images [13], [14]. In recent years,
there have been increasing number of cancer related studies
using deep learning such as cancer detection and gene iden-
tification [15], skin cancer classification [16], histopatholog-
ical diagnosis [17]. In addition, there are several studies [18],
[19] showing that deep learning approaches are more effec-
tive and successful when compared to other machine learning
methods in cancer-related classification problems. Diagnosis
and classification studies using CT images [20], [21] are
also available for lung cancer. However, CT images do not
reflect the metabolic and heterogeneity information about the
tumor which is highly critical in tumor subtype determination
and is accessible when PET imaging is used. We should
note that there are limited number of DL-based studies using
PET images aiming lung cancer diagnosis [22]. Especially,
subtype classification in NSCLC has not been explored using
PET images and DL. Moreover, no studies have examined
the contribution of peritumoral regions in this problem so
far.

In this study, three different experiments were carried out
to examine the contribution of peritumoral tissue in PET
images/slices in subtype classification of tumors. Firstly,
the success of classification was investigated by using PET
images without any segmentation or cropping. Secondly,
region-of-interests (ROIs) were cropped as square subimages
including the tumors and peritumoral tissue. And finally,
images containing only tumor tissue (no peritumoral tissue)
obtained as a result of the segmentation study performed
using ‘“‘random walk” method were employed [23].

PET images or subimages including different amounts
of peritumoral tissue obtained using three abovementioned
approaches were employed as the training and test datasets
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in the classification of two subtypes of NSCLC. The
multilayer perceptron (MLP) and convolutional neural net-
work (CNN) based deep learning models were evalu-
ated. As the CNN-based models we studied SqueezeNet,
VGG16 and VGG19. SqueezeNet is used to reduce the model
size, and the number of parameters while maintaining com-
petitive accuracy. To achieve this, there are three main strate-
gies used in SqueezeNet architecture [24].

Strategy-1: Smaller network by replacing 3 x 3 filters with
1 x 1 filters.

Strategy-2: Limited number of input channels (3 x 3
filters).

Strategy-3: Delayed downsampling for higher classifica-
tion accuracy of large activation maps.

VGG model got the first place in the localization and
classification part of the ImageNet Challenge in 2014 [25].
This model with 16- and 19-layer versions is described as
very deep convolutional networks. At the end of the models,
fully connected layers are followed by softmax. In addition
to SqueezeNet and VGG models MLP models with different
number of hidden layers with 64 neurons were examined.
Studies published in 1986 [26] and 1987 [27] proposed the
MLP architecture that has more than one hidden layer. While
choosing these models, we tried to provide a variety of com-
plexity. In this way, we aimed to investigate hyperparameter
optimizations on different complexities. VGG models were
used as deep architectures with varying depths. On the other
hand, we have included SqueezeNet because it is an ambi-
tious model for achieving success with fewer parameters by
offering a structure different from the standard CNN archi-
tecture. In addition to the CNN models, the number of hidden
layers in the MLP model was gradually increased to provide
a controlled depth of complexity.

In summary, this study consists of subtype classification
studies of NSCLC with deep learning using PET images.
While doing this, models used for deep learning have been
improved to achieve the most successful results by perform-
ing 10-fold stratified cross validation and hyperparameter
optimization studies. It can be very useful to apply hyper-
parameter optimization and cross-validation techniques to
increase the success of the models and prevent overfitting.
For instance, as a recent study, in identification of clathrin
proteins [28], 10-fold cross validation and different opti-
mization methods were performed to improve a CNN-based
model. Here, various optimization and regularization tech-
niques were used and success of the models for all three
experiments were compared. As a result, these evaluations
were very important to see how deep learning methods are
promising in subtype classification studies and to examine
the contribution of peritumoral regions in PET images to the
classification performance.

Il. MATERIALS AND METHODS
A. PATIENT POPULATION AND PET/CT IMAGING

This study was performed using '8F-FDG PET / CT images
of 94 patients with NSCLC. The images were obtained in the
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Nuclear Medicine Department of Acibadem Kayseri Hospital
in Kayseri between March 2010 and April 2014. The PET /
CT imaging device was Siemens Biograph 6, HiRez. 10 to
15 mCi of "8F-FDG was injected to the patients and PET /
CT acquisitions were performed approximately 60 minutes
after the injection. At 8 or 9 bed positions PET scanning
was performed for 2 to 3 minutes at each position. Three-
dimensional iterative reconstruction algorithm was used for
the reconstruction of the images. Two nuclear medicine
experts evaluated the images and 3D whole body projection
using the e-Soft software platform (Siemens, USA). This
study was approved by the Research Ethics Committee of
the Kayseri Research and Training Hospital (KRTH) with
protocol number 20.02.2013/55. All procedures performed
in studies involving human participants were in accordance
with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards.
Informed consent was obtained from all individual partici-
pants included in the study. Five of the patients were female,
and 88 were male (mean age was around 63, age interval
was 39-84). Until now, no studies were published regarding
the tumor variability among male or female NSCLC patients.
Thus, we have designed this study without considering the
effect of gender on cancer subtype characteristics. Thirty-
eight patients were diagnosed with ADC, and the rest were
diagnosed with SqCC. For the diagnosis, the specimens were
obtained with fine needle or excisional biopsy, and the sub-
type evaluations were performed in the pathology department
of KRTH.

B. IMAGE PREPROCESSING

For this study, three different datasets were prepared to be
used in three experiments. In the first experiment, FDG-PET
images containing 168 x 168 pixels obtained from the scans
were determined as the first dataset without any process-
ing. For the second experiment, each FDG-PET slice was
manually cropped to include tumor and peritumoral tissue,
and these ROIs formed our second dataset. Here, instead
of specifying a standard bounding box size, the boxes were
manually cropped to the extent that the tumor could fit inside.
Since tumors did not have a standard shape, the amount
of peritumoral areas varied in different slices. For the last
experiment, the tumors were segmented on each slice using
a standard “random walk™ algorithm comprising our last
dataset. It was used to distinguish tumor from background
semi-automatically. In an unpublished preliminary study,
we have tested the performances of segmentation approaches
suggested for PET images such as Otsu’s, active contour
and random walk methods. We found random walk approach
to perform the best among these approaches when com-
pared to manual drawing of a nuclear medicine expert.
Finally, we worked with a total of 1457 images that consisted
of 516 ADC and 941 SqCC subtypes for all experiments.
Figure 1 shows sample images from different patients with
ADC and SqCC.
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FIGURE 1. (A) Images from different patients with ADC and (B) SqCC.
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FIGURE 2. Schematic representation of three experiments studied in this
work.

In order to feed the images with a uniform size to deep
learning models as the input, we had to specify a common
and appropriate image size. In the first experiment, all images
had already a fixed size, as there was no need for further
processing. The datasets prepared for the second and third
experiments, we considered the largest subimage size as 64 x
64 pixels that all the tumors in all slices could fit inside. In the
bounding box, zero padding was performed by setting all
pixel values to zero except ROIs for the second experiment
and except segmented regions for the last experiment. At the
end of all these processes, the datasets were fed to deep
learning models and the training and test procedures were
performed. Figure 2 depicts the schematic representation of
abovementioned experiments.

C. DATA SPLITTING AND TRAINING

In the literature, 10-fold cross validation method has been
commonly used. However, there is no rule on this issue yet.
In this study, the dataset was randomly split for stratified
10-fold cross validation which was used in many deep and
conventional machine learning based bioimage and biosignal
studies [29]. CNN and MLP models were trained from scratch
starting with random weights using NVIDIA DGX-1 with
NVIDIA Tesla V100 GPUs at Abdullah Giil University, High
Performance Computing (HPC) Laboratory. The number of
epochs for each training process was 100, and early stopping
approach was used to prevent overfitting.

D. HYPERPARAMETER OPTIMIZATION
For each model mentioned above several regularization
and optimization techniques were used during the training
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TABLE 1. Hyperparameters.

TABLE 2. Tuned CNN Architectures.

Hyperparameters Values
Optimizers Momentum / RMSprop / Adadelta / Adam
Regularizations None /L1 /L2 / Elastic
Dropout None /0.5
Batch Size 16 /32
Learning Rate 1/0.1/0.01/0.001/0.0001
Hidden Layer (only MLP) | 3/7/11/15

process. The parameters were optimized to increase the clas-
sification success, and are listed in Table 1.

In the training process, stochastic gradient descent (SGD)
approach helped us to find the optimum direction for mini-
mizing the cost [30]. The aim of momentum, which is based
on an advanced SGD logic, was to accelerate the progression
in cases where the gradient did not change direction, and to
slow the progression for situations where it changed direc-
tion [26]. In addition, some popular optimization methods,
such as RMSprop [31], Adam [32], and Adadelta [33], which
are similar to momentum, were used to estimate the optimum
direction and speed for cost to move towards global minima.

The regularization methods we used were lasso [34], ridge
regression [35] and elastic net [36] approaches. Lasso and
ridge regression are also known as L1 and L2, respectively.
As the penalty term, L1 dealt with the sum of the absolute
values of the model parameters, and L2 dealt with the sum of
their squares. Elastic net was a convex combination of lasso
and ridge regression.

The main idea of the dropout regularization, which is
known to prevent overfitting problems [37] especially for
deep and complex networks with large number of parameters
(such as VGG models), is to randomly drop nodes on the
network during training, based on a certain ratio. In this
study, the dropout with the ratio of 0.5 was used for the fully
connected layers at the end of the models.

Table 2 shows the tuned CNN architectures where 64 x 64
images were used as the input. As can be seen in this table,
the total number of parameters was directly proportional to
the depth of the network.

In this study, MLP models with different number of hidden
layers with 64 neurons were examined. The classification
performance of MLP model was optimized by making its
structure much deeper. For this purpose, MLP versions with
3,7, 11 and 15 hidden layers have been generated and opti-
mization studies have been performed. In the literature there
is no rule of thumb for the number of neurons used in MLP
architectures. While optimizing the number of hidden layers
by using different values, we tried to optimize the number of
neurons by the dropout method which randomly drops nodes
from the network during the training process, based on the
0.5 ratio.

To evaluate the performances of models, the F-score and
area-under-curve (AUC) metrics were used in terms of correct
detection of NSCLC subtype.

VOLUME 8, 2020

SqueezeNet

VGG16 VGG19

Layer | Output [Param.| Layer | Output | Param. | Layer | Output | Param.

Input | 64x64x1 Input | 64x64x1 Input | 64x64x1

Conv. |31x31x64| 640 [2XConv.| 64x64x64| 37568 [2XConv.| 64x64x64 | 37568

Max Max Max

Pooling| | 315%64 Pooling | 3232364 Pooling | 3232x64
Fire [15x15x128| 11408 [2XConv.[32x32x128| 221440 |2XConv.|32x32x128| 221440
Fire |15x15x128) 12432 | M3 11616x128 Max 0 1 6x128

Pooling Pooling

Max

Pooling| 7X7X128 3XConv.|16x16x256| 1475328 [4XConv.|16x16x256| 2065408
Fire | 7x7x256 | 45344 | M8 | gygias6 Max | ¢ 6x256
Pooling Pooling

Fire | 7x7x256 | 49440 [3XConv.| 8x8x512 [5899776 |4XConv.| 8x8x512 | 8259584

Max Max Max
Pooling 3x3x256 Pooling 4x4x512 Pooling 4x4x512
Fire | 3x3x384 [104880[3XConv.| 4x4x512 | 7079424 [4XConv.| 4x4x512 | 9439232
Fire | 3x3x384 |111024] M2 | 2504512 Max | axs12
Pooling Pooling
Fire | 3x3x512 [188992| Flatten 2048 Flatten 2048
Dropout| 3x3x512 FC 4096 [8392704| FC 4096 | 8392704
Fire | 3x3x512 [197184|Dropout| 4096 Dropout| 4096
Dropout| 3x3x512 FC 4096 (16781312 FC 4096 16781312
Conv. | 3x3x2 1026 |Dropout| 4096 Dropout| 4096
Global
[Average| 2 FC 2 8194 FC 2 8194
Pooling

Total Parameters |722370] Total Parameters |39895746] Total Parameters [45205442)

Ill. RESULTS AND DISCUSSION

The results of three experiments carried out within the scope
of this study are shown in Table 3. The first experiment
was performed on PET images of 168 x 168 size without
any processing. The aim was to observe the success of deep
learning models when the images were subject to classifi-
cation without any extra effort. The purpose of the last two
experiments was to examine the contribution of peritumoral
regions and segmentation effort to subtype classification.
Table 3 shows the performance and run time values of the
SqueezeNet, VGG16, VGG19 and MLP models.

According to the results of the first experiment shown
in Table 3, it requires significantly high run time due to the
size of the images. Here, we may conclude that the model per-
formances were relatively low due to extra tissues unrelated
to the tumor.

According to the results of all experiments, the most
successful classification performances were obtained in
the second experiment in which peritumoral areas were
included. Here, VGG19 was the most successful model with
74% F-score and 69% AUC. In order to demonstrate the train-
ing process of this model, the graphs of average accuracy and
average loss in 10-fold cross-validation are shown in Figure 3.
Although the number of epochs were adjusted as 100, it can
be seen in the figure that maximum 60 epochs were run for
VGG19 due to early stopping. VGG16 and MLP have an
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TABLE 3. Results From Three Experiments Showing Classification
Performance of the Models.

Experiment-1 Experiment-2 Experiment-3

Run Run Run
Model Time F-score AUC Time F-score AUC Time

PO IRNCON R OB CON b

F-score AUC
(%) (%)

SqueezeNet | 572 54 52 | 508 71 66 | 459 70 69
VGGl6 2906 68 63 [ 1165 73 68 | 523 73 69
VGG19 3758 68 65 [ 1384 74 69 | 779 71 70

MLP 287 65 62 | 231 73 69 | 72 70 66

VGG19
Average Accuracy in 10-Fold Cross-Validation

—Train Accuracy
Validation Accuracy

0,600

Epochs

VGG19
Average Loss in 10-Fold Cross-Validation

—Train Loss
Validation Loss

0 10 20 30 40 50 60 70
Epochs

FIGURE 3. The average accuracy and loss of training and validation in the
10-fold cross-validation for VGG19 model in the second experiment.

F-score of 73%, followed by SqueezeNet with an F-score
of 71%. Also, it is seen that MLP can achieve the success
of complex CNN models with less run time thanks to the
positive effect of peritumoral areas. When the second and
third experiments were compared, the effect of the number
of pixels containing information on run time is revealed.
In the second experiment, due to the inclusion of tumor tissue
as well as peritumoral areas, run time values were slightly
higher than those of the third experiment. When the second
and third experiments were evaluated together, it is possible
to say that peritumoral regions both contribute to the success
of models and make segmentation effort unnecessary. Here,
the positive effect of peritumoral regions on the classification
performance means an important contribution in this field.
In a recent prostate study using MRI, the contribution of
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TABLE 4. Hyperparameter Values Yielding Performances Given in Table 3.

Model Optimizer |Regularization |Dropout B;itzceh Le;l::ieng
SqueezeNet | Adadelta L2 0.5 32 0.1
VGG16 Momentum None 0.5 16 0.001
VGGI19 Momentum None 0.5 16 0.001
MLP Momentum None None 32 0.1

peritumoral areas was emphasized [38]. Therefore, we think
that the effect of peritumoral areas in medical image analysis
will be studied more in the future.

The hyperparameter values that led to the results given
in Table 3 are shown in Table 4. According to this table,
Adadelta was successful as an optimizer for SqueezeNet,
while Momentum was successful on all other models. While
SqueezeNet used L2 regularization to achieve the best perfor-
mance, all other models reached the optimum point without
using any of L1, L2 or Elastic regularization approaches.
While dropout method worked for all CNN models, for MLP
it did not work. The optimal batch size and learning rate
values were 32 and 0.1 respectively for SqueezeNet and MLP,
16 and 0.001 for VGG models. In addition, it is not surprising
that the same combinations succeeded on both VGG16 and
VGG19 models, which do not differ except for the number of
layers.

We recognize that we have only considered the classifica-
tion of subtypes as ADC and SqCC which constitute approx-
imately 70% of lung cancer, and neglected other possible
subtypes such as large cell carcinoma (LCC). However, LCC
accounts for only 5-10% [39]. That is why we have limited
subtypes to the first two categories.

Since the variety of models used in the study can con-
tribute to the comparative evaluation of the results, it may
be useful to examine different models such as ResNet and
DenseNet in addition to the deep learning models tested here.
Furthermore, it is thought that expanding the datasets using
data augmentation techniques may be useful for increasing
the subtype classification success.

A study on PET images [40] revealed that noise reduction
and partial volume correction (PVC) methods improve the
segmentation accuracy. Improvements in segmentation may
indirectly lead to an increase in classification performance.
Therefore, these methods have the potential to be examined
in future classification studies with segmented images. More-
over, the effect of different segmentation approaches may also
be investigated in this context. In random walk approach the
selection of seed points, one of which should be at a represen-
tative background region and the other be on the tumor region,
may have an impact on the segmentation accuracy. It is clear
that when the semi/automatic approach segments the tumor
region incorrectly and misses critical image features related
to the subtype then the classification performance would be
diminished.
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Currently, biopsy is still needed to characterize lung cancer
subtypes. In this study, we investigated the feasibility of using
PET images directly without the need for pathological studies
to classify the subtypes of NSCLC which is a common effort
put forward by many researchers working in this field.

IV. CONCLUSION

The importance of this study is to perform subtype tumor
classification (NSCLC) from only PET images without the
need for a pathological procedure. We investigated the feasi-
bility of several popular deep learning methodologies. To the
best of our knowledge, deep learning-based models have not
been applied to subtype classification of NSCLC in PET
imaging domain. Therefore, this study is a significant con-
tribution providing thorough comparisons and evaluations of
several deep learning models on metabolic imaging for lung
cancer. Even simpler deep learning models were found to be
promising in this field, indicating that any improvement in
deep learning models in machine learning community can be
reflected well in this domain as well. In addition, no studies
investigating the contribution of peritumoral areas to sub-
type classification of NSCLC using deep learning on PET
images were found in the literature. From this perspective,
this study includes reviews that shed light on similar studies
in the future. This study was carried out on 1457 PET slices
obtained from 94 patients. In the future, we aim to increase
the success by applying data augmentation methods, and plan
to make further contributions to this topic by using various
deep learning models such as ResNet and DenseNet, as well
as multi-task learning studies. In addition, we aim to examine
the performance of deep learning models by making seg-
mentation improvements such as noise reduction and partial
volume correction. Finally, we think that better performances
can be obtained by combining PET and CT images when
compared to using solely PET or CT images. In our research
laboratory we plan on such a study in the near future.
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