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Abstract: In this paper, we investigate the existence of positive solutions for nonlinear multipoint boundary value
problems for p-Laplacian dynamic equations on time scales with the delta derivative of the nonlinear term. Sufficient
assumptions are obtained for existence of at least twin or arbitrary even positive solutions to some boundary value
problems. Our results are achieved by appealing to the fixed point theorems of Avery-Henderson. As an application, an

example to demonstrate our results is given.
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1. Introduction
The theory of dynamic equation on time scales was pioneered by Stefan Hilger in his Ph.D. thesis in 1988
[12] as a process of combining construction for the research of differential equations in the continuous situation
and research of finite difference equations in the discontinuous situation. In recent years, it has found a
considerable amount of attraction and captivated the concentration of numerous researchers. It is still a fresh
field, and investigation in this field is speedily flourishing. The research of time scales has led to various crucial
practices, e.g., in the research of insect population samples, heat transfer, neural systems, phytoremediation of
metals, injury treating, and prevalent samples [3, 13, 21, 22]. The familiar symbols and phraseology for time
scales can be found in [2, 3, 9].

In [6], Dogan investigated the following p-Laplacian multipoint boundary value problem (BVP) on time
scales

(@)Y +a®)f (L u®) =0,  te(0,T)r,

m—2 m—2
u(0) = Z aiu(&;), op(u(T)) = Z bip(u®(&;)).

We obtained the existence of at least three positive solutions by using a Krasnosel’skii’s fixed point theorem.

In [19], Su and Li studied the following multipoint BVPs on time scales

(ep(@(1)))Y +alt) f(u(t)) =0, t€[0,T]r,
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subject to boundary conditions (BCs)

or

— Bo (Wi aiuA(fi)> = O7 ’U,A(T) =0

u®(0) =0, u(T) + By (752 biUA(fi)> =

=1

By using the five functionals fixed-point theorem, they showed that the BVP has at least three positive solutions.

In [24], Zhu and Zhu studied the following p-Laplacian multipoint BVP on time scales

(pp(u(@)Y + al(t) f(tult) =0, t€ (0,7,

Z aipp(u® (&) w(T) = z_: biu(&s)-

They obtained some new results for the existence of at least two positive solutions by using fixed point index.

Recently, there is an increasing attention paid to question of positive solution for multipoint BVPs on

time scales [5, 6, 8, 11, 15-20, 23, 24]. However, little work has been done on the existence of positive solutions

for p-Laplacian multipoint BVPs on time scales with the first-order derivative of nonlinear term [4, 7, 14].

or

In this paper, we study the following p-Laplacian multipoint BVPs on time scales

(ep(@ ()Y + alt) f(t, u(t),u(t)) = 0, t €10,T]r, (1.1)

= Z_ aiu(&)a Z bv‘ﬂp 1 (12)

m—2

Z Q; 9012 gz U(T)

3 b)) (1.3

where ¢,(s) = [s|P71s, p > 1,(pp) " = g, 1/p+1/qg =1, &,& €0, T]T, and satisfy 0 < & < & < ... <
Ema < p(T), 0(0) <& <& <...<&hH o<T, aj,b; €[0,00), 0<3"%a; <1, and 3% b; < 1.

(H1)

(H2)

(H3)

The main assumptions in this paper are as follows.

f:[0,T]t x RT x R = R is ld-continuous, and does not disappear similarly on any closed subinterval
of [Oa T]T

a:T — R is left dense continuous (i.e., a € Cia(T, R+)) and does not disappear similarly on any closed
subinterval of [0, T]r. Here Cy4(T,R") indicates the set of all left dense continuous functions from T to
R*.

For the BVP (1.1) and (1.2), let us assume that if &,,_o > 0, then let 0 < v = &,,,_9; if &2 = 0, then
let v =min{t € T:t > L}, and there exists ¢ € T such that v < ¢ < T is satisfied. For the BVP (1.1)

and (1.3), let us assume that if & < T, then let £ = &f; if & =T, thenlet { =max{t e T:0<t < T},
and there exists [ € T such that 0 < < £ < T is satisfied.
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Inspired by the conclusions communicated earlier, in this paper, we prove the existence of at least twin
positive solutions to the BVPs (1.1), (1.2) and (1.1), (1.3). To the best of our comprehension, there appear to
be no such results for the existence of positive solutions to BVPs (1.1), (1.2) and (1.1), (1.3) by using the fixed
point theorem. Our results generalize the paper by Li, Su and Feng [14] and an example is also included to

clarify the significance of the results obtained.

2. Preliminaries

We display some background materials from the theory of cones in Banach space and we express the fixed point

theorems.

Definition 2.1 Suppose that B is a real Banach space. Recall that a nonempty closed convex set K C B is

a cone if it satisfies the following assumptions:
(a) well, X>0 implies \u € K;
(b)) wekl, —uc K implies u=0.

Suppose that B is a real Banach space which is partially ordered by a cone K C B, i.e. u; < us if and only
if ug —uy € K.

Definition 2.2 Let K be a cone in a real Banach space B. A function ¢ : K — R is called to be increasing
on K, if Y(uy) < (ug) for all ui,us € K with uy < us.

Definition 2.3 A map « is called to be a nonnegative continuous concave function on a cone K provided that

a: KK —[0,00) is continuous and
a(tr + (1 —t)y) = ta(z) + (1 - t)a(y),

for all z,y € K and 0 <t < 1. Correspondingly, we state the map [ is a nonnegative continuous convex

function on a cone KC provided that B : KK — [0,00) is continuous and

Btz + (1 —t)y) <tB(z) + (1 —1)B(y),

forall z,y e K and 0 <t < 1.

Definition 2.4 Let ® CB. If r: B — D is continuous with r(z) = x for all x € D, then we say that the set
D is a retract of B and the map r a retraction.

The convex hull of a subset © of a real Banach space X can be written by

k k
conv(D) = {Z)\j;vj tx; €9, A €[0,1], Z)\j =1, and k € N}
j=1

j=1
Furthermore, we shall give the three lemmas to confirm our main results.

678



DOGAN/Turk J Math

Lemma 2.5 ([10]). Assume that K is a cone in a real Banach space %B. Let B and W be a bounded, relatively

open subset of K. If A: W — K is a completely continuous operator and there exits a ug such that u— Au # \u,
for all w e OW, XA >0, then i(A, W,K) = 0.

Let ¢ be a nonnegative continuous function on a cone K of a real Banach space B. For each r4 > 0,
we describe

K(y,re) = {u € K :y(u) <ry}.

Lemma 2.6 ([1]).Assume that K is a cone in a real Banach space B. Let a, [ be increasing, nonnegative,

continuous functions on IC, and let 1 be a nonnegative continuous function on KC with ¥(0) = 0 such that, for
some r3 >0, M > 0,

a(u) <P(u) < Bu),  lull < Ma(u) for all ue K(a,rs).
Assume that A : K(a,r3) — K is completely continuous and 0 < < 19 < r3 salisfy
W) < Mp(u) for A e[0,1], u e (P, ),
(a) a(Au) >rs, forall uec dK(a,rs);
(b)  Y(Au) <ra, for all ue€ IK(P,ry);
(¢c) K(B,m1)#0, B(Au)>r for uedK(B,r).

Then A has at least two fized points ui,us € K(a,r3) such that
r1 < Blur),  Y(ur) <rq, ro<W(uz), alug) <rs.

Lemma 2.7 ([14]).Assume that K is a cone in a real Banach space B.Let o, be increasing, nonnegative,

continuous functions on IC, and let 1 be a nonnegative continuous function on KC with ¥(0) =0 such that, for
some r3 >0, M > 0,

a(u) <) < Bu),  ul < Ma(u) forall ue K(a,rs).
Assume that A : K(a,r3) — K is completely continuous and 0 < | < 1o < r3 salisfy
W) < Mp(u) for A e[0,1], u € (P, ),
(a) a(Au) <rs, forall uec dK(a,rs);
(b)  Y(Au) >y, for all u € IK(P,ry);
(¢c) K(B,m)#0, B(Au)<r for uedK(B,r).

Then A has at least two fized points ui,us € K(a,r3) such that

r1 < Blur),  Y(ur) <rq, ro<W(uz), alug) <rs.

679



DOGAN/Turk J Math

3. Positive solutions for BVP (1.1) and (1.2)

In this section, we will investigate the existence of at least twin or arbitrary even positive solutions of BVP
(1.1) and (1.2) by applying Avery and Henderson fixed point theorems [1].

Let
B = C14([0,0(T)],R),

endowed with the norm

||u|:max{ sup |u(t)], sup |uA(t)}.

te[0,T)r te[0, Tt

Let us define the cone K C B as follows

K = {u eB: ut)>0, for [0,0(T)]r, wAV(t)<0,ud(t)>0, te [o,T]T}.

Lemma 3.1 Suppose (H1) and (H2). Let 1fmz_2ai 40 and 1 ffbi £0. Then u is o unique solution
of the BVP - o
(ep(u ()Y + a(t) f(t, ult), u? () = 0, te[0,T]r, (3.1)
u(0) = Saiu(&), pp(u(T)) = gbi@p(uA(fi)) (3.2)
if and only if
ul(t) = /Ot y (/T a(T)f(T,u(T),uﬂ(r))vT+c]> As+GCo,  te[0T), (3.3)

where

. S b [ a(r) f(r,u(r),ut (1) VT

Ci = : :
1 1=

o T e (a0l ud ()Vr + G As
S =Y e |

Proof First, we prove the necessity. Integrating the dynamic equation (3.1) from ¢ to T gives

o (U (1)) = /t () f (7 u(r), ud () V7 + G, te0,1], (3.4)

ie.,
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A final integration yields

t T
u(t) = /0 90!1 (/ a(T)f(Tvu(T)auA(T))VT + él) As + é?;

Setting t =T and ¢t =¢&; in (3.4) gives

te[0,7]. (3.6)

and

T
er(u26)) = [ a)fru(r) w ()7 + G
Setting ¢ =0 and t = &; in (3.6), we have

u(O) = C~2,

u(&:)

&i T N -
/ ©q (/ a(T)f(T,’LL(T)7UA(T))VT + Cl> As + Cs.
0 s
Applying BCs (3.2) gives

o bl am)fm ) vt )V
= m—2 ’
1- Zz’:l bi
NI e ([ (), wt (7)Y + G ) As
G 1— Zm_2 a

To prove sufficiency,

and

T
(1)) = / a(r) f (7 u(r),u® (7)Y + G,

Taking the nabla derivative of this expression, we find

(pp(w®(1)))Y = —a(t) f (¢, u(t), u™ (1)), te[0,T].

Standard calculations verify that u satisfies the BCs in (3.2), so that u given in (3.3) is a solution of
BVP (3.1)-(3.2). It can be readily seen that the BVP

G @)T =0, w0)= Y aw@), e 1) = Y bipp(u(E)
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has only the trivial solution if

m—2 m—2
1—2%‘750 and 1_Zbi7é0'
i=1 i=1
Thus, « in (3.3) is the unique solution of BVP (3.1)-(3.2), and this completes the proof of the lemma. O

Lemma 3.2 Suppose (H1), (H2), 1-Y7" *a; >0 and 1—2?;;2 b; > 0. Then the solution of BVP (1.1)-(1.2)
fulfills u(t) > 0, fort e [0,T]r.

Proof Set

Then, we have

7),u®(T))\VT + C,

20 [T a(r) (7 (), ul (7)) Ve

LTdﬂfWU()
- zTMﬂfWU()

A
7),u= (7)) VT + >0, s€0,T].
) = 0.7]
It follows that (s) > 0. According to Lemma 3.1, we obtain
. alf
u(0) = Gy = 2= =1 >0
© ’ 1 - 2212 @ B
and
T R T a/?,f
u(T):/ (5)As + Cy / (s)As + Lizt ®>o.
0 0 _Z =1 az
If te€(0,T), we have
t ~ t azf
u(t):/ gp(s)As—l—ng/ w(s)As + Licy 70.
0 0 _Z =1 az
Therefore, u(t) >0, te€[0,T)r. O

Lemma 3.3 (/5]). If u € K, then
(a) u(t) > 7u(T) = £ sup;cjo,r), u(t) for t € [0,T]r;
(b) su(t) > tu(s) for s,t €[0,T]r with t<s.
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Lemma 3.4 Suppose (H1), (H2), 1 =37 %a; >0 and 1 — 7" *b; > 0. If u € K, then

sup u(t) <L sup u(t),
te[0,T]r tel0,T)r

m—2
where L = max{l,M —I—T}.
1 _Zizl Z

Proof Because u(t )+ fo s)As, one has

sup u(t) <u(0)+T sup u(t).
te[0,T)T tel0,T)r

On the other hand,

=1 =1
= Y a[u(€) — u(0)]
< azfz ( 1)

where p; € (0,&;), so

m—2 m—2
U(O) < Z =1 alfj 5 (H’l) S Zz 1 C,legl sup ’LLA(t)
1->" a 1—>"" " a; tefo,T)r

Thus, we have

Define the operator S : K — B as follows

t T
Su(t) = /0 ©q (/ a(T) f(r,u(r), u™ (1)) VT + C~'1> As + Cy.

(3.7)

Lemma 3.5 (/7]). Suppose (H1), (H2), 1 — Y " _1 a; >0 and 1 — 221_12 b > 0. S:K — K is completely

continuous.
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Note that each fixed point of S is a solution of the BVP (1.1)-(1.2). For u € K, define the nonnegative,

increasing, continuous functions «,, 8 as follows

A . A
= t t) = 0 )
R i A i R
Y(u) = € max u®(t)+ max u(t) = eu(0)+u(v),
te[0,T)t telo,v]T
A A
Al = e, gy, w0+ gy ult) = eu(0) 4 ulo)

where € is an arbitrary positive number.

It is clear that
a(u) < Y(u) < B(u) for each u e K.

By Lemma 3.4, we can find

L L L
lul| < Lu®(0) < =eu®(0) + =u(v) = Za(u) forall ue K.
€ € €

Moreover, for the positive constant r3, one has
PY(Au) = AY(u) for 0 <A <1 and u € IK(Y,r3).

Introduce the following notations.

e T 2y [La(r)Vr
A = <V+M>§Dq</ a(T)VT+ Zl:l bzf& ( )v >’

-y a 1=
m-2 ¢ T @7261- T a(r)Vr
B = 14+ Zz:lmcjfz P4 / a(T)VT + Zz_l fi’:_; ) 7
1= ai 0 1= b
m—2 o e T 2@72 b Ta(T)VT
C = 14q+ % ©q / a(T)VT + i=1 j;ii_Q .
1= ai q L= b

Theorem 3.6 Suppose (H1), (H2), 1 — Z:’:ﬁ a; >0 and 1 — Z:ZQ b; > 0. Let € be an arbitrary small

positive number and there exist positive numbers r7,r%5, and r3 with 0 < ri < ng < T?’T%C such that the

following conditions are satisfied:

(H4) f(t,hk) > <pp<%), for (t,h,k) € v, T)r x [r5 — e, Lr3] x [0, %]7
(H5) f(t7h7k) < @p(%), fOT’ (t,h, k) = [O7T]T X [O’ %7’5] X [0’ %L

(H6)  f(t,h,k) > ¢y (78), for (t.hk) € [0, T]z x 0, Zri] x [0, 1]
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Then the BVP (1.1)-(1.2) has at least two positive solutions uy,us satisfying

¥ <e max uf(t) + max wui(t), € max uS(t)+ max wuq(t) <L
1 tel0,T)r 1 ( ) te[0,q]r 1( ) tel0,T)r ! ( ) te[0,v]r 1( ) 2
r <e max u5(t) + max us(t e max u5(t)+ min ud(t) < ri.
2 <€ max u (t) [ 2(1), [ U (t) (Sl iz (t) <73

Proof We will show that the operator S satisfies all conditions of Lemma 2.7.
Firstly, we show that if u € OK(«, r}), then a(Su) > rj.
If uw € OK(a,7%), then

A : A *
= t t = 0 = Ta.
o(u) € dnax U ()+ter[ryl}g]TU() eu”(0) + u(v) =r3

Because

u?(t) >0 and u(t) >0 for te[0,T]r,

one has

From Lemma 3.3, we get

Now, (3.10) implies

u(t) >r; —e, tev,T|r.

*
a(u) = 5 ofor te [0,T]r.
€

(3.10)
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Using assumption (H4) in Theorem 3.6, we find
a(Su) = €(Su)®(0) + Su(v)

= € TaT T, U\T UAT T
- so</ (r) f(r u(r), u (7)V

S ) () A )V
1300

v T
—|—/0 <pq</s a(T)f(T,’U,(T),uA(T))VT+C~1>AS

Y ai [y e (fST a(r) f (1, u(),u (1)) VT + 51) As
_|_

221_12 a; f(f’ ©q ( ng a(r) f(r,u(r), u®(7))VT + C~'1> As
11—y %

222_2 a;&; r A
<1/ + %) ©q (/V a(7)f(r,u(r),u>(7))VT
LS b )l ()9

L=

> <u + 1%%,2,1(125;)% </VT a(T)@p(%)VT

=1

+

Vv

+Z;1_12 b fg a(T)pp (%3) \3
L= Y%

* m-—2 ¢ T ™2, [T a(r)Vr
- B,y 727":1,;?2& ©q / a(T)VT + 2izi ffnf; )
A 1= v 1=300b

= .
Secondly, we show that 1 (Su) < 73 for u € OK(¢,r3). If u € OK(¢),r3), then one has

= At t) = AO = *;
Y(u) = e max u?(t)+ max u(t) =eu™(0) +u(v) =r3

which leads to

max u(t) =u(v) <r%, e max u”(t) <ri.
hax (t) =u(v) <r3 A (t)<r3
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Therefore,

From Lemma 3.3, one has

Hence, we deduce that

Using (H5), we find

U(Su) = (Su)>(0) + (Su)(v)

T
= ¢q</ a(T)f(ﬂU(T),uA(T))VT+(51>

0

v T
Jr/0 Pq (/S a(T)f(Tﬂu(T)7uA(T))VT + él) As

S ai [y g (fST a(7) (7, u(7),u (1)) VT + é1> As

]. — ZZT;IQ a;

+
T ~
< <pq</o CI,(T)f(T,u(T),uA(T))VT—‘y—Cl)
T ~
+Vg0q</0 a(T)f(T,u(T),UA(T))VT+Cl>

ZZIQ aifi@q (fsT (Z(T)f(T, U(T)a 'UJA(T))VT + él)

11— a
S aik (/T 5
< ([1+v+-~==F— a(r (—
( 1_227;120/7; ‘pq 0 ( )@P B

N 22—12 b; ng a(T)ep (TB;)VT>

+

vt

N——

DYy
() S aiks /T )7y 4 et bide AT
= S|14+v+ =7 a(T)VT + !
B 1724 )7\ o 1y 72,
= 7.

Finally, we show that
K(B,r1) # 0,
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and

B(Su) > ry for all ue IK(B,r]).

Indeed, we have % € K(B,ry) and for u e OK(5,r]), one has

A A *
ﬂ(u) Eter[%fix] U ( ) te%?;]( u( ) €U ( ) u(q) =T

which leads to

*

0<u(t)<ry for t€[0,qly, 0<us(t)< N ofor te [0, T]T.
€

In light of Lemma 3.3, one has

T
t) < — <
hax u(t) < . u(q) <

whereby

Employing (H6), one has
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B(Su) = (Su)(0) + (Su)(q)

= T(ZT T, U\T UAT T g
- @(/ (r) (. u(r), u (7)) +cl>

+/oq%([C‘(”f(w(f)auﬁ(ﬂ)w+ a)As

1 alf (f T)f<7_7u<7—)7uA(T>)VT+C~’1>A3

+
1= a

T
> ¥Pq </0 a(T)f(Tv U(T)v uA (T))VT + él)

q T B
+/0 %(/q a(T)f(ﬂU(T),uA(T))VT+01>As

2 1 alf (f T)f(T7u(T>7uA(T))VT+C~’1>AS

1-3"
Zm 12 azgz /T TI
1 ==l > 1
> ( +q+1_zi:1 o ©q i a(T)(pp(C>VT

"2, fET a(T)ep (E)VT>

-7,

X m—2 T Zﬁiﬂ b [F a(T)VT
= 61 1+q+ % ©q / a(r)VT + i=1 ff,;_Q
- Z a; q 1-— Zi:l b7

_ *
= T

+

Hence, all the conditions of Lemma 2.6 hold. We conclude that the BVP (1.1)-(1.2) has at least twin

positive solutions uq,us € K(a,r3), and such that (3.8)-(3.9) are satisfied. Thus, this completes the proof of
the lemma. O

Next, we will discuss the existence of arbitrary even positive solutions of BVP (1.1) and (1.2).

Theorem 3.7 Suppose (H1), (H2), 1 — 1" "a; >0 and 1 - er:f b, > 0. If there exist positive numbers

.75, , and 3, with

C vC
* * * *
< .. .<rf < =1 < ="
1n 2n ]BSTL

C
0<r, <+ =

B’ <

14
*
< 7p"h <t < 7h < 75T

(i=1,2,...,n, n € N) such that the following conditions are satisfied:
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T

A

(H) f(t.hk) > oy (55, for (Lhok) € . Tlr x [13, — & g ] x [0, 2]

1

&), for (thk) € [0, T)r x [0, Lrf] x [0, 22,

(H9) f(t.h.k)> o,

(%
(HS) f(t.h, k) <<pp(TB’) for (t,h,k) € [0, )7 x [0, Lrg] x [0, 22];
(

Then the BVP (1.1)-(1.2) has at least 2n positive solutions.

Proof Note that when ¢ = 1, in view of Theorem 3.6 it is correct that BVP (1.1), (1.2) has at least twin
positive solutions ui,us € K(a,r3 ). By induction, we conclude that the BVP (1.1), (1.2) has at least 2n

positive solutions.This completes the proof.

Let
T b
A* — 1+2777nl2§l+y 90(] / CL(T)VT+ 2 1 ffn - ’

=300 0 1—=3 b

Lk T ™2 b "a(r)Vr
B - (sz W) %< [ atryee+ T B I o0 )
1- Zi:l a; v 1— Zi:l bz

m—2 T ™2 (T a(r)Vr
c* = |1+ 72’ L o +q | @q / a(T)VT+ 2iz1 ffgﬂ( ) .
-7 0 =300 b

As we have proved Theorem 3.6 and Theorem 3.7, one can prove the following results.

Theorem 3.8 Suppose (HI) (H2), 1 =" I a; >0 and 1 — Z?;Q b, > 0. If there exist positive numbers

1,75, and r3 with 0 <7} < Fry < %i* r3 such that the following conditions are satisfied:

(H10) f(t,h,k)<<p,,(;—€), for (t,h,k) € [0,T)7 x [0,73] x [0, Z&;

*

(H11)  f(thk) > op(35), for (t.hF) € [, Tlr x5 — &, Zr] x [0, 2];

(H12)  f(t.h,k) < @p(25), for (4.0,k) € [0,T]a x 0, Zri] x [0, %)

Then the BVP (1.1), (1.2) has at least twin positive solutions ui,us such that (3.8) and (3.9) hold.

Theorem 3.9 Suppose (H1), (H2), 1 — 1" _1 a; >0 and 1 — er:f b; > 0. If there exist positive numbers

i, 75, and 3, with

¢ 9B . _ . _ 4. 4B . o _ 4. _aB
O<T11 < T 21 < TA*T?)I <T‘12 < TTQZ < TA*T?)Z < o .. <7,.1n < TTQ'IL < TA*T'?)n

(i=1,2,...,n, n € N) such that the following conditions are satisfied:
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*
T3

(H13) f(th,k) < oy (%), for (t.h,1) € [0, T)rx 0,73 x [0, ;

(H14) ft.h k) > gp(52). for (t.h ) € 0 Thrx 13, — e Lry] x [0, ")

(H15)  f(t,h, k) < ¢,

/-\
*

gt)s Jor (t.hk) € 0.7 x 0. Zr1 ] x [0, ).

Then the BVP (1.1), (1.2) has at least 2n positive solutions.

4. Positive solutions for BVP (1.1) and (1.3)

In this section, one shall investigate the existence of at least twin or arbitrary even positive solutions of BVP
(1.1)-(1.3) by using Lemma 2.6 and Lemma 2.7.
Define the cone K1 C B as follows

Ky = {u €B: u(t) >0, for [0,0(T)]r, uwdV(t) <0,uP(t) <0, te [o,T]T}.

m—2 m—2
Lemma 4.1  Suppose (H1), (H2). Let 1— Z a; #0 and 1-— Z b; # 0. Then u is a unique solution
i=1 i=1
of the BVP
(p(@ ()Y +alt) f(t u(t), u (1) =0, t€[0,T]r, (4.1)
m—2
Z aipp(u® (€]) u(T) = biu(€]) (42)
i=1
if and only if
T s B _
u(t) = / ©q (/ a(T) f(r,u(r), u? (7)) VT + C3> As + Cy, (4.3)
t 0
where
b - TEa S (). @)V
1- 21212 @i ’
S ea (5 ) f(ru(), (7)) 9 + Gy As
Cy, = : — )
1- Zi:l bi

Lemma 4.2 Suppose (H1), (H2), 1 —>"" _1 a; >0 and 1 — 27:12 b; > 0. The solution of BVP (1.1)-(1.3)
fulfills u(t) >0, forte[0,T]r.

Lemma 4.3 (/5]). If u € Ky, then
(a) u(t) > T= Sup[o, 77, u(t) = I=tu(0) for t € (0,71
(b) (T —s)u(t) > (T —t)u(s) for s,t €[0,T]r, with s<t.
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Lemma 4.4 Suppose (H1), (H2), 1 — > 12 a; >0 and 1 — Z::IQ b > 0. If u € K1, then

sup |u(t)] < Ly sup |uA(1€)|7
te[0,T)r te[0,T)r

T *
where Lq :max{L ZZ 1 bil &) +T}.

1- 21'112 bi
Define the operator S : K1 — B as follows
T s B B
Siu(t) = / 04 < / a(T) f(r,u(T), u? (1)) VT + 03> As + Cy. (4.4)
t 0

Note that S; : K1 — Ky is completely continuous and each fixed point of Sy is a solution of the BVP

(1.1), (1.3).

For u € K1, define the nonnegative, increasing, continuous functionals «q,7, and 31 as follows

A . A
= )|+ t) = T)| 4 u(€),
a1 (u) | Jhax v ( teﬂ%f?h“() elu™(T)| + u(§)
A A
Yy (u) €| Jhax u (t) +t€m[§%TU() elu™(T)| + u(§),
ﬁl(U) - ¢ tEr[ré%TUA(t) +t€rﬁf¥]{TU(t):6|UA(T)|+u(l).

We have
aq(u) <y(u) < Bi(u) for each u € K;.

By Lemma 4.4, we find

Ly

L
|u|| < Liju®(T)| = ; Zelu®(T)| < %al(u) for all u e K;.

Moreover, we have

P1(Au) = Mp1(u) for A €[0,1],u € OK(,13).

Set

_ iy bi(T =€) ¢ mlafya
A = (T £+ 1—2’7121;1- ><pq</0 a(T)VTJr —Zjlaz )

=1

S b (T — £F) T Y2 a [5 a(r)Vr

Bl = <1+T §+ 1_22112 bl )@q(/o a(T)VT+ 1_2?;_12 a s
_ I —g) Loy Ty a(r) VT

Gy = <1+T I+ s, )cpq</0 a(T)VT + s, ,

As we have proved Theorem 3.6 and Theorem 3.7, one has the following results.
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Theorem 4.5 Suppose (H1), (H2), 1 -7 *a; >0 and 1 — 27;2 b; > 0. If there exist positive numbers

r7,r5 and r3 with 0 <ri < gl s < (T;§)101

r3 such that the following conditions are satisfied:

(H16) f(t,h,k) > oy (3), Jor (thik) € [0,€]r x [ — e fers] x [0,

(H17) ft,h,k) < (5 ), Jor (6hk) € [0,T)z x [0, 7er3] x [0, 2];
) for (t,h,k) € [I,T) 1 x [0, 7577] x [0, ﬁ]_

(HI8) f(t,h k) > wp(c—f

Then the BVP (1.1), (1.3) has at least twin positive solutions uy,us such that

<€l max u(t)] 4+ max wuq(t el max u®(t)|+ max wuq(t) <ri;
! te[0,T]r ! ( ) te[l,T)r ( ) te[0,T)r ! ( ) tel¢,T)r 1( ) 2
ry < €| max uAt‘—i— max us(t €| max uAt‘—i— min wus(t) < r3.
2 <f dax e ()] + max wa(®), a2 (0] 2t ualt) <

Theorem 4.6 Suppose (H1), (H2), 1 — 37" ®a; >0 and 1 — Z:i_lz b; > 0. If there exist positive numbers
.75, and r3, with

1 (T - Ch (T -¢§C
0<r, <p 2 < 7p & <TL<p'R< 15 Tk

C T-¢C
<<t <B—15n<%r§n (i

such that the subsequent assumptions are fulfilled:

=1,2,...n, n€N)

(H19) f(t, h,k) >¢p( ) for (t,h,k) € 0,87 x [, — € 7Ler5.] x [0, Z2);

(H20) f(t,h k)<<pp< for (t,h,k) € [0,T)7 x [0, 7222r3.] x [0, 22];

3

2). for
(H21) f(t,0,8) > 0y (), for (6,0 k) € L T]r % (0, 755r8] x [0, 75,
Then the BVP (1.1), (1.3) has at least 2n positive solutions.

Denote

* T a;
AT = <1+T £+Zl_zfnsz§ )><Pq</0 a(T)VT + 2= 1_2‘:[0 7, >7
* Zm 2 l(T_gf) TCLT - z 1 alfO
B1 = <T §+ 17211_121)2 )S@](/g ( )V + 72 = al )7

* T a;
cr = <1+T Z+Z_Z(T Q)%(/O a(T)Vr + 111_2{9712, )

i=1 @i

We have the following results.
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Theorem 4.7 Suppose (H1), (H2), 1 —>7" *a; >0 and 1 — 27;2 b; > 0. If there exist positive numbers
r7,r5 and r3 with
T_Cf,r* (T_CI)BTT*

T 2 TAr 3

0<ry<

such that the following conditions are satisfied:

*

(H22) [(thK) < oy (%), for (th,k) € [0, ] x [0, 72¢r3] x [0, Z;

(H23) f(th k) > o (5
) *

). for (
(H24) [f(t,h k) < wp( 11) for (t,h,k) € [0,T]r x [0, 7Z57%] x [0, 1],

for (t,h,k) € [&, T]r x [r5 — & 773] x [0, 2];

Then the BVP (1.1), (1.3) has at least twin positive solutions ui,us satisfying

r* < e max uf(t)] 4+ max ug (¢ el max u®(t)|+ max wui(t) <l
e ! ®) tell.T]r 1(®) tel0. 717 ®) tele.Tlr 1) <73
7y < €| max uAt‘—l— max us(t €| max uAt‘—i— min wus(t) < r3.
2 tel0,T)r 2 ( ) tel¢,T)r 2( tel0,T)r 2 ( ) te[0,€]r 2( ) 3

Theorem 4.8 Suppose (H1), (H2), 1 -3 " 12 a; >0 and 1 — ZZT;Q b; > 0. If there exist positive numbers
1,13, and r3, with

. _T-0 (T — CT)Bir3, T -Cf (T — C})Bjr3
ry < ry, < TAT <ry, < T 3, < TA; 2

! T

T-Cf | (T — Cl)Bﬂ?, (
T TA; ’

<...<rj, < =1,2,...n, n€N)

such that the following conditions are satisfied:

(H25) (k) < op(52), for (6,5 k) € 0,T)z x [0, 72r3,] x [0, ")

7€

(H26) [(t,1 k) > (), for (6.1 0) € [6,TIr x [15, — e 7ers] x [0, 2

>—->1»

%

(H27) f(t, h,k) <¢p(cr) for (t.h.k) € [0,T] g x [0, 22574 ] x [0, 1],

Then the BVP (1.1), (1.3) has at least 2n positive solutions.

5. An example

In this section, we present an example to explain our results. Let T = {2— (%)N0 } U {O, %7 11195 % %, 2} U

[2—10, %], and T = 2. Let us consider the following BVP on time scales with k € Ng and p = 7:
(iop(u® { > tF(p(t) ’“}tvf(t,U(t),uA(t)) =0, te[0,2]r, (5.1)
11 1 /3 A 1 arl 1 Al3
u(0) = 2“(4) + 6“(4)’ pr(u™(2)) = 3‘/’7(“ (4)) + 6%(“ (4))’ (5:2)
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where
t+2+ 5k, te0,2lr 0<h<24, 0<k< o0,
FEhoE) = t+p(h, k), tef0,2lr, 24<h <40, 0<k < oo,
M) t+5x 1054+ k, te[0,2]r, 40<h <80, 0<k<oo,
t+ s(h, k), t €10,2]t, h >80, 0< k< oo,

where p(h, k) and s(h, k) satisfy the following conditions.

p(24,k) =2 + 1—601@ p(40,k) =5 x 10° +k,  s(80,k) =5 x 10° + k,

p(h,k),s(h, k) : RT x RT — R" are continuous.

Let a(t) = Z;zo t*(p(t))" . Let g(t) = 3. Then one has gV (t) = ZZ:O t*(p(t))"*. Let us take v =1, a; =

%, as = %, by =%, by = %, & = i, & = %, q= % By direct computation, we obtain

Sy
Il
~/
=
+
—_
_|_
N|—=
—
| X
—F
D= _|_
+ NI
ol | X
—
N[N
N——
/N
O\;\7
—N
[~
~
>~
)
=
e
|
=~
—
<
~

k=0
éf{ Zotk<p<t>>7-k}w+éf§{ Zotk<p<t>>7-k}w :
+ ~ 7.77813,
() )

2 7 - 2 7 -
3 { Yk=o t* (o))" k}w +5 /s { Y=ot (p(1)) ’“}Vt :
— <l+l> ) ~ 9.11404.
3756
Now, we choose r] = 2,75 = 12 and r3 = 40. Then we have that

C C
0<ry < §r§< ;—Brg

By the definition of f, one has that
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(1) flthk)=t+2+ 5k < %(% ~ 13.4845,

for ¢ € [0,2], 0<h< 2oy 0<k<™=12,

v

(2) flt,hk) =t +5x 1o5+k>¢p(§ ~ 2.79 x 10°,
T

I3 — g0, 40 < k< 4 oo;

v

for t € [1, 2], 40—e<h<

(3) flthk)=t+2+ 5k > %(%) ~ 1.1166 x 10~*,
Try

for t € [3,2], 0<h< =1t =2667, 0<k<C®

"“»—Ax-
|
oo

Hence, the conditions of Theorem 3.6 hold. By Theorem 3.6, the BVP (5.1) and (5.2) has at least twin positive

solutions u; and us that satisfy

2 <e max ul(t)+ max wuq(t ¢ max ut(t)+ max uq(t) < 12;
t€[0,T] r(®) te[0, 3] 1(#), t€[0,2]T () te[0,1]T 1) ’

12<emaqut—|—mauxut7 e max u5(t)+ min ub(t) <40
2, w2 (0 F max ua(l), e max up(f)+ min up'(t) <40,

some values for e.
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