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A B S T R A C T

For diagnosing and monitoring the progress of cancer, detection and quantification of tumor cells is utmost
important. Beside standard bench top instruments, several biochip-based methods have been developed for this
purpose. Our biochip design incorporates micron size immunomagnetic beads together with micropad arrays,
thus requires automated detection and quantification of not only cells but also the micropads and the im-
munomagnetic beads. The main purpose of the biochip is to capture target cells having different antigens si-
multaneously. In this proposed study, a digital image processing-based method to quantify the leukemia cells,
immunomagnetic beads and micropads was developed as a readout method for the biochip. Color, size-based
object detection and object segmentation methods were implemented to detect structures in the images acquired
from the biochip by a bright field optical microscope. It has been shown that manual counting and flow cyto-
metry results are in good agreement with the developed automated counting. Average precision is 85 % and
average error rate is 13 % for all images of patient samples, average precision is 99 % and average error rate is
1% for cell culture images. With the optimized micropad size, proposed method can reach up to 95 % precision
rate for patient samples with an execution time of 90 s per image.

1. Introduction

During the cancer therapy, the detection and the quantification of
tumor cells are required to monitor the progress of the treatment.
Chemotherapy is one of the widely used standard treatment methods,
however it has severe side effects, and it does not show the same effect
on every patient e.g. refractory, relapse, complete remission (DeSantis
et al., 2014; Sun et al., 2018). Personalized optimal dose of che-
motherapeutics can minimize the risk of harmful toxicity and maximize
the effectiveness of the treatment (Gao et al., 2008). Some cancer cells
can be resistant to chemotherapy, and can cause relapses and repeat the
cancer which is known as minimal residual disease (MRD) (Hauwel and
Matthes, 2014). In order to monitor MRD and adjust the dosing of
chemotherapeutics, flow cytometry (FC) and polymerase chain reaction
(PCR) based molecular or immunological assays have been widely used
(Böttcher et al., 2008; Neale et al., 2004). As an alternative to FC and
PCR, microfluidic platforms have been developed (Jackson et al.,
2016).

A large amount of data is produced when microscopes and attached

cameras are used to record images from microfluidic chips, and pow-
erful processors and algorithms are required to analyze the data (Faley
et al., 2008). The techniques used to detect and segment microscopy
and pathology images were reviewed broadly in (Xing and Yang, 2016).
Compared to fluorescence (Mata et al., 2019), phase contrast and
electron microscopy, unstained bright-field microscopy has the lowest
cost and easiest method to implement. As a result of the optical prop-
erties of the cells, it is difficult to identify them in bright-field images
(Georgantzoglou et al., 2015); to overcome this limitation, the cells are
first stained and then automated image processing methods based on
segmentation (Putzu et al., 2014) and thresholding (Hazwani et al.,
2011) are applied. Fiji (Schindelin et al., 2012) and Icy (De Chaumont
et al., 2012) are very useful open access software tools for image ana-
lysis, cell segmentation and cell detection. In addition, automated de-
tection of cells from bright-field images was performed by machine
learning-based methods (Long et al., 2006; Mualla et al., 2013). In
(Long et al., 2006), non-living and living cells from bright-field images
were detected by using support vector machines (SVM) method which
includes training and test steps. In (Mualla et al., 2013), the detection of
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unstained cells in bright-field microscopy images was achieved by
scale-invariant feature transform (SIFT), random forests and hier-
archical clustering. Automatically, unstained cell and vacuole seg-
mentation and quantification in bright-field images were developed in
(Chiang et al., 2018). Advanced level set, active contour or watershed
methods, or combinations of them were applied for cell segmentation
(Padfield et al., 2009; Tse et al., 2009; Li et al., 2007). Another open
access image processing software is PIACG (Georg et al., 2018), which
is able to estimate the total area of the viable cells in fetal bovine serum
from the microscopy images of microfluidic chips. This software is
Python based and it can detect and segment large number of unstained
cells that are on uneven surfaces. The software also recognizes the
objects that are not cells, such as the boundaries of the microfluidic
channels. Generally, thresholding and filtering operations are per-
formed in the image processing methods for this Python based software.
PIACG does not require pre-processing steps, and is able to measure the
cell area. However, it was proposed as a tool to quantify the area of a
specific cell type in cell cultures. It is not capable of detecting and
quantifying different cell types, and also other objects in the image.

In our previous work (Uslu et al., 2019), we have developed ma-
chine learning based image analysis algorithms to detect and quantify
cells and immunomagnetic particles using bright-field microscopy
images. We compared the impact of 20X and 40X objectives on the
performance of the system. The images included only cells and im-
munomagnetic beads but not any microfabricated structures. We
achieved 91.6 % precision for the images acquired with a 40X objective
and 79.7 % precision for images acquired with a 20X objective. The
average processing time for one image by using a computer which has
Intel i7−7820HQ, 2.90 GHz processor and 8 GB RAM was found to be
300 s. We also have investigated the impact of the image quality on the
performance of the algorithm such as precision and detection error.

In this study, we introduce an automated detection and quantifi-
cation method as a readout mechanism of the microfluidic platform.
The purpose of the microfluidic platform is to monitor the patient re-
sponse to chemotherapy. The aim of the developed image processing
algorithm is to be able to count patient leukemia cells, im-
munomagnetic beads and micropads from the images acquired by using

a bright-field microscope with 20X objective. To reduce the processing
time, we developed the image processing algorithm which benefit from
color, size and shape identification. A maximum of 90 s is required to
analyze a single image.

In the microfluidic platform, immunomagnetic beads and micropads
were functionalized with different types of antibodies which enables
screening target cells for multiple antigens in the cell membrane. In
affinity-based biosensors, generally sandwich assays incorporating two
antibodies are used. One antibody is immobilized on the surface as
capture antibody and the second antibody is usually used as detection
antibody (Masdor et al., 2017). In this study, the antibody functiona-
lized micropads serve the purpose of capturing target cells in the mi-
crofluidic platform and thus, target cells were quantified.

2. Materials

2.1. Immunomagnetic capture of B lymphoblast cells

The details of the experimental procedure for capturing B lympho-
blast cells were reported in our previous work (İçöz et al., 2019). Briefly
two types of immunomagnetic beads (micron size CD19 antibody
coated and nano size CD10 antibody coated) sequentially separated the
target cells. The gold coated micropads in the biochip was functiona-
lized with CD45 antibody by following the procedures reported in (Icoz
et al., 2018). The separated target cells were introduced to the biochip,
and the cells in the microfluidics were imaged for automated cell
quantification.

2.2. Image acquisition and processing

Images were captured using a bright-field optical microscopy
system, that includes DS-Ri 1 model CCD color camera and 20X ob-
jective (Nikon Instruments, Melville, NY). The captured images were of
size 3116× 4076 pixels. General view of the system is shown in
Fig. 1.a. The system acquired images from the MRD biochip. The cells
inside the MRD biochip were unstained and no fluorescent dyes were
used.

Fig. 1. a) Optical microscopy system with 20X objective and the microfluidic platform b) 20X objective biochip microscopy image which has small micropad. c) 20X
objective biochip microscopy image which has bigger micropad areas than a. d) 20X objective biochip microscopy image which has larger micropad area than b and
c. Blue arrow indicates cells attached to a micropad, purple arrow indicates a single cell, yellow arrow indicates two single cells with attached bead, red arrow
indicates fully covered cells with beads as cluster, and green arrow indicates square pads. In addition, white arrow indicates the part of the biochip for capturing the
image (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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Image analysis algorithms were developed on Matlab (R2018b, The
MathWorks Inc., Natick, MA), running on PC system with Intel
i7−7820HQ, 2.90 GHz CPU and 8 GB RAM on it.

To compare the results of manual counting and automated counting
methods, SPSS software (IBM) was used for non-parametric Mann-
Whitney U test

2.3. Ethical approval

This study was approved by the Clinical Research Ethics Committee
of the Erciyes University Faculty of Medicine (Approval date: 09/01/
2015, Decision no:2015/21, Kayseri, Turkey). Written informed con-
sent was obtained from all patients or legally authorized representatives
of patients. The Declaration of Helsinki was followed throughout the
study.

3. Methods: Detection of micropads, immunomagnetic beads,
cells and counting process

The purpose of the proposed methods is to count cells, im-
munomagnetic beads, and micropads in the images which are acquired
by a bright-field microscopy with 20X objective (Fig. 1.a). In a typical
image, there are 3 objects: cells, immunomagnetic beads and micropads
(Fig. 1.b.c.d). Beads and micropads have uniform shapes and sizes
whereas cells have various shapes and sizes (Long et al., 2006; Mualla
et al., 2013). The fabrication of the micropads and manufacturing the
microfluidic platform were explained in details in another article
(manuscript submitted). We tested micropads in various sizes in order
to determine the optimum micropad size for detection. In Fig. 1.b, the
yellow arrow indicates that some cells and immunomagnetic beads are
almost at the same size of 4.5 μm in diameter. Some cells in the images
appear as isolated cells as in Fig. 1b, c, d by blue arrows, whereas some
of them are fully or partially covered by immunomagnetic beads as in
Fig. 1b, c, d (red and yellow arrows respectively). This means that, if
immunomagnetic beads bind to the same cell and form a cluster, this
cluster indicates an underlying cell even if the cell is not visible.
However, all bead clusters do not always indicate an underlying cell,
because magnetized immunomagnetic beads can attract to each other
and form a chain like structures without covering any cell (Mzava et al.,
2016a). An example of immunomagnetic beads in chain formation is
shown in Fig. 1c indicated by an orange arrow. The developed algo-
rithm considers clustered beads as an indicator of an underlying cell
and chain like structures as beads only. All of the different situations are
indicated in Fig. 1 with colored arrows.

The goal of the proposed algorithm is the precise detection and
counting of immunomagnetic beads even though the beads might ap-
pear in various forms e.g. beads might bind to a cell, or to a micropad,
beads might form a cluster or beads might appear as a floating single
bead or a chain of beads (Fig. 1b, c, d).

In order to count beads and cells the algorithm has to identify mi-
cropads which might appear as a single micropad or a micropad that
bound to cells/beads or both of them (Fig. 1b, c, d).

The afore mentioned cases are covered in the developed algorithm
and explained in the next sections.

3.1. Micropad detection and quantification

Micropads have regular square shape and are placed in a grid order
(Fig. 2). Micropad sizes can be different in each experiment depending
on the production of the biochip. The micropads used in this study have
sizes in between 15 μmx 15 μm–35 μmx 35 μm range. Micropads are
larger than immunomagnetic beads and significantly opaquer than cells
(Fig. 2b). Since our primary objective is to detect cells, we can identify
micropads by considering the distinct features. This goal can easily be
achieved by using morphological operations. It is known that, if closing
operation is applied to the image with a structuring element larger than

small objects, those small objects will be removed (Gonzalez and
Woods, 2007). To find the size of the structuring element for closing
operation, one micropad pixel edge length must be determined. One
micropad pixel edge length was estimated manually and used as a
parameter for closing. The result of closing was a gray scale image
(Fig. 2c). To convert it to a binary image, Otsu’s Threshold method was
applied (Smith et al., 1979). As a result, a binary image, Bp, that has
only micropads is obtained (Fig. 2d).

3.2. Bead detection and quantification

Main steps of immunomagnetic bead detection and counting steps
are depicted in Fig. 3.

Beads generally have regular circular shape. However, if they at-
tract to each other and form a cluster, the cluster shape is not uniform.
Besides, micropads may overlap and cover some part of the beads, in
that case beads lose their circular shape. As it is mentioned early, beads
might join to each other because of magnetization. It was reported that
micron size superparamagnetic beads show higher hysteresis than nano
size superparamagnetic beads of the same material (Duriagina et al.,
2018). Also, we did not employ any Faraday Cage to block the external
magnetic fields in the environment. In our previous work, we showed
that the line formation of magnetic beads is due to external magnetic
field (Mzava et al., 2016b). Consequently, we decided that when the
accumulation of beads is along a line, it was due the magnetization.

Beads are also significantly opaquer than cells. Since our main
purpose is to detect cells, we can also detect and remove beads by
taking those distinctive features into consideration. To eliminate beads
from the images, mainly, filtering, thresholding, segmentation and
morphological operations were mainly applied. However, another
purpose of this work is to find the amount of the beads in the image, so
we need an image only consists of beads. Quantifying the number of
beads can help to determine and optimize the initial concentration of
added beads. In the case of excessive number of unbound beads in the
microfluidics, the initial concertation of beads for immunomagnetic
separation step can be reduced. Initially, on the image, micropads and
beads were identified together. To detect beads, which are attached to
micropads, borders of micropad and beads were recognized. In addi-
tion, to quantify total number of beads, borders of each bead were
identified. For those cases, watershed algorithm was implemented
(Meyer, 1994). Instead of applying watershed algorithm on the original
RGB image, RGB was first converted to a gray-scale image, Igray, then to
clear noises Gaussian filter with 3 pixels (in both x and y directions) as
the standard deviation of the Gaussian distribution was applied, finally
Otsu’ Threshold method was employed.

= ⎧
⎨⎩

>
<

⎫
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I x y
τ I x y
τ I x y

( , )
1, if ( , )
0, if ( , )mask

otsu gray

otsu gray (1)

In Eq. (1), τotsu was the threshold value which was found by using
Otsu’s Threshold algorithm, and x y( , ) is the pixel position in the image.
The binary image I x y( , )mask had only micropads and immunomagnetic
beads. Before applying the watershed algorithm only to im-
munomagnetic beads and micropads, gray-scale image of the original
image was masked with I x y( , )mask . At the end of this step, gray-scale
image contains only immunomagnetic beads and micropads and ev-
erything else including background were black, Imasked. After gen-
erating the Imasked, by applying the Otsu’s Threshold, binary image with
bead and micropad, Bbp, was obtained. Then a distance map (Idistance)
was generated. For the distance measurement, Euclidean method was
implemented (Danielsson, 1980). After that, by using watershed seg-
mentation objects in the image were labeled (Ol).

⟵O IWatershed ( )l distance (2)

In Eq. (2), l ={1,2,…,N} shows index of the labeled objects. The
purpose of the watershed segmentation was demarcating between
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objects which were appeared as combined in the image. After that, to be
able to obtain only beads on image, Bp was subtracted from theOl. Final
image only contained beads, B ,b was in binary format. Images during
each step of Fig. 3. are shown in Fig. 4.

3.3. Cell detection and quantification

Cells have irregular shapes and sizes in the image. They may present
as a single cell, bounded to single bead or more beads, bounded to
micropads or bounded to both beads and micropads together. Here our
main purpose was to detect only the cells in the image. Initially, var-
iance matrix of the original RGB images that was converted to double
format was found using Eq. (3). Window size for calculating the var-
iance matrix was determined to be 11 as a result of a trial and error
process. Variance matrix detected the edge of each object on the
background (Variance, 2020).

∑=
−

−
=

V 1
N 1

|A μ|w

i 1

N

w
2

(i)

(3)

Where Aw was a small size matrix made up of N scalar observations,
and μ was the mean of Aw. To be able to identify cells, im-
munomagnetic beads and micropads on the variance matrix clearly,
threshold value was applied to the matrix. The threshold value was 2.7x

−10 4 and image segmenter tool was used to determine the optimum
threshold by a trial and error process (Image Segmentation Using the
Image Segmenter App - MATLAB and Simulink, 2020). Then, binary
image which contains cells, micropads and immunomagnetic beads,
B ,cbk was obtained. After that, our aim was to remove immunomagnetic
beads and micropads from the image, and obtain an image consisting of
only cells.

3.3.1. Bead and micropad detection for cell finding steps
During the bead detection step, after the watershed segmentation,

segmented beads, micropads and some cell pieces, which are similar to

Fig. 2. a) Original RGB image, b) a micropad from the original image, c) result of micropad extraction algorithm, image is in gray-scale, and d) binary image obtained
by using Otsu’s threshold on gray-scale image in c. Scale bars= 20 μm.

Fig. 3. Flow diagram of immunomagnetic bead detection and quantification steps.
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beads and micropads, are obtained (Fig. 5). It can be seen from the
Fig. 5 that some cell parts are visible. If this segmented image was di-
rectly used to subtract bead and micropad from the Bcbk image, detec-
tion of some cell parts can be missed. Thus, before subtraction, cell
pieces should be cleared from the image.

To remove cell portions, like in Fig. 5, opening operation was em-
ployed. However, direct application of the opening operation to the

result of Ol caused some parts of the micropads to remain in cell only
image. To overcome this situation, after the watershed, Bp image was
added to Ol. Then, morphological opening operation was applied while
the opening parameter was set to 225 which is the half of the pixel area
of the immunomagnetic bead. As a result of these steps, some noise
signals, pieces of immunomagnetic beads and cells were cleared from
the Ol. The final image was called as Bs, and dilation operation was

Fig. 4. (A)Original RGB image, (B) gray-scale image, (C) filtered image, (D) binary image after Otsu’s threshold, (E) masked gray-scale image, (F) binary image of
masked image after Otsu’s threshold, (G) binary image after watershed segmentation, and (H) binary micropad subtracted image. Scale bars= 20 μm.

Fig. 5. Result of the watershed algorithm. In the image there are some cells, micropad and immunomagnetic beads. Background is black. Watershed lines are visible
between different objects and even in the same object.
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applied on it. Then the image was subtracted from the binary image
that had cells, beads, and micropads, Bcbk, and cell only image, Bc, was
procured as:

= − ⊕ˆ B BB ( s)cbk sC (4)

Where⊕ was the dilation operation, and s was a disc shaped structuring
element.

Next, in the cell images to clear noises, morphological operations
were applied. After this step, the resulted image was in binary format,
and contained only the cells, in order to count the number of cells,
objects were traced (Gonzalez and Woods, 2007).

3.4. Cluster detection and quantification

The cluster detection steps are shown in Fig. 6. A larger micropad
denotes that cells and beads were attached to the micropad and formed
a cluster on the micropad. To detect this clusters, by using Bp, the areas
of larger micropads were identified, and a new image was created. Then
this image was added to Bb image. After that, to find clusters which
were formed by beads, first opening operation with disc was applied to
obtain the circular shapes of bead colonies (when beads form cluster
around a single cell, the cluster shape becomes almost circular). Next,
small objects, which are not clusters, were removed. Finally, on the
original image, larger micropads, circular shaped and certain size bead
clusters were remained. Then, binary operations of object detection and
counting were performed.

3.5. Detection of cell and cluster attached to the micropads

The micropads in the microfluidic biochip were functionalized with
CD45 antibody using the methods presented in [22.] In the biochip if
the cells have CD45 antigen on the cell membrane, micropads capture
these CD45+ cells. This means that, the quantification of cells or
clusters attached to the micropads reveal information about the im-
munophenotype of the cells. To analyze the cells attached to micropads,
after cell, micropad and cluster detection steps, following method was
implemented.

Bp was dilated by morphological operation in Eq. (5).

Dp= Bp ⊕ Se (5)

Where Se was square shaped structuring element and ⊕ was binary
dilation operation.

Bc was eroded by the morphological operation in Eq. (6).

= = ⊆ˆE SE BB θ SE {z|( )}c z cC (6)

Where SE was disc shaped structuring element and θ was binary erosion
operation. In other words, the result of erosion operation was obtained

by identifying perfect overlaps between the structuring element (SE)
with the foreground pixels in Bc and translating the set of pixel loca-
tions to z matrix.

Then, dilated micropad image, eroded cell image and binary cluster
were compounded. After that, morphological closing operation was
applied and, Ccp, image was created. After that, object finding on binary
image by using connected component algorithm was performed. Then,
in Bp, area of a micropad was calculated and Ccp was scanned to find the
larger micropads. This means that, if an object area was larger than the
area of one micropad, cells or clusters were attached to the corre-
sponding micropad. With this way, cells or clusters bonded to the mi-
cropads and their locations were obtained and counted.

4. Results

The images were recorded at different time and for each image, the
number of cells, immunomagnetic beads, micropads and cells captured
on the micropads were counted by using the proposed algorithm. In
addition, the results of the algorithm were compared with manual
counting and flow cytometry results. We had two different image sets to
test the algorithm; cells from the cell culture and patient cells. To show
the potential of the algorithm, 75 real patient images from 4 different
patients at different days were analyzed. All the patients responded to
chemotherapy and the number of blast cells were reduced on the fol-
lowing days of the chemotherapy. The developed algorithm was able to
reveal the similar output with the manual counting and flow cytometry.
In order to determine the performance of the proposed algorithm, true
positive, false positive, and false negative values were found and by
using them, precision, recall, F-measure, absolute percentage error
were calculated (Chiang et al., 2018; Kumar et al., 2015).

4.1. Quantification of micropads and immunomagnetic beads

In an image, micropads are uniform in size, but in different biochips
micropads with different sizes were tested. Micropads were detected
with less error rate as a result of their regular shape and size. Also, for
each image a single immunomagnetic bead had uniform shape and size
but accumulation of immunomagnetic beads had nonuniform shapes
and sizes which required extra processing steps. However, the proposed
algorithm was able to identify immunomagnetic beads, their location
and quantity. For both immunomagnetic bead and micropad finding,
error rate is identified to estimate the accuracy of the algorithm. Error
rate is given by Eq. (7) (Uslu et al., 2019).

= −∼
E N N

N (7)

Where N is number of micropads or beads, ∼N is number of micropads

Fig. 6. Flow diagram of cluster finding and counting steps.

F. Uslu, et al. Micron 133 (2020) 102863

6



or beads found by the proposed algorithm. Error rate for micropad
detection was 0.01 while error rate for bead detection was 0.02.

4.2. Quantification of cells and clusters attached to the micropads

In the experiments, micropads with different sizes (e.g.
15 μmx 15 μm, 24 μmx 24 μm, 35 μmx 35 μm) were tested. The size of
the micropad effects the accuracy of detecting cells and accuracy of
detecting clusters attached to the micropads. If the micropad size is
small (15 μmx 15 μm), cells and beads do not overlap with the micro-
pads and they can be identified with higher precision. On the other
hand, if the micropad size is larger (35 μmx 35 μm), cells and beads
cannot be seen clearly and so, it is difficult to detect them. In Table 1,
average result by using whole 75 images are given.

From Table 1 it can be seen that, precision, recall and F-measure
values are higher than 80 %.

4.3. Quantification of cells

In an image, cells may appear in different forms such as isolated
cell, partially covered cell or fully covered cell. Partially and fully
covered cell refers to cells that are bound to immunomagnetic beads.
The detection of partially or fully covered cells requires extra compu-
tation steps, and after detecting cells for different forms, the results
were combined to calculate the overall number of cells.

Before examining the patient samples, we used cell culture samples
to test the proposed algorithm. Average results of cell culture samples
were given in Table 2. The cells in the cell culture had higher uni-
formity and bigger size compared to patient samples, thus, higher
precision and recall rate for cell culture images were obtained.

4.3.1. Detection of partially covered and isolated cells
Compared to cell clusters, isolated and partially covered cells have

visible cell parts. This means that, a different approach was needed to
detect partially covered and isolated cell detection. In Table 3, it can be
seen that, recall level reaches 90 % success. This indicates that most of
the cells are detected correctly, while there is a low number of missed
detections.

4.3.2. Detection of fully covered cells (clusters)
When many immunomagnetic beads were bound to a single cell, the

cell was not visible and the cell counting algorithm alone did not detect
the cell. However, even if a cell is not visible directly, there might be a
cell under the beads and it must be counted as a cell. Those covered
cells are called as cluster, and there are different methods than cell
detection and counting process to identify clusters since they are in a
different form compared to a single cell which can be recognized using
the features, such as, color, shape, and size. In this work, we also
checked the size of clusters and evaluated how many cells would pre-
sent in the cluster. The immunomagnetic beads are 4.5 μm in diameter,
when cells are fully covered with immunomagnetic beads, the size of
the cluster is approximately 20 μm (Fig. 1c red arrow). Larger-size

clusters can be determined as multiple cells based on the size of the
cluster (Fig. 1b red arrow).

The average precision was 93 %, and the average F-measure was 85
% for all dataset (Table 4). High precision means that most of the
clusters are detected correctly, and there are only few incorrect detec-
tions.

4.3.3. Cell detection and quantification for patient dataset
In Fig. 7 cell detection results for patient images are shown. Dif-

ferent patient samples on different days, were analyzed using the pro-
posed algorithm. It can be seen that micropad sizes may change, and
also clarity of the image may change depending on the micropad size,
illumination effect, color change, and immunomagnetic bead intensity.
If micropad sizes were small and, cells were clear on the image, then the
algorithm could reach as an average more than 95 % precision rate. In
addition, when the micropad sizes were large, and bead intensity was
low we were able to obtain high precision. If these conditions were
satisfied, as an average more than 90 % precision was obtained. Since
large micropad size resulted in the covering of cells and beads, identi-
fying cells and clusters became more challenging. In Fig. 7 results show
both bead cluster and cell detection. The images were recorded by
different personal and light settings of the microscope were adjusted
individually resulting in brightness and color variations for images.
Even the images were very different from each other, cells were found
with an average 85 % precision, and an average 86 % recall value.

In this study, 12 samples from 4 different patients were processed
and the relevant chip images were acquired. For each patient different
time samples for the diagnosis, 15th. day, 90th. day, etc. were collected
due to the availability of the patients and the medical center. Also,
different size micropads were tested to investigate the impact. The size
of the micropads directly affected the results of the developed algo-
rithm. If the micropad area was larger, lower precision was obtained.
The proposed algorithm is applied to all of 75 images, each image is
4067-pixel x 3116-pixel represents 540 μmx 720 μm area of the chip
surface. For one sample, minimum 3 images (maximum 12 images) at
different locations of the chip were analyzed and the average number of
cells in one image was calculated. The images of the chip surfaces that
did not have any cells were excluded. A medical expert manually
counted the cells under microscope and the overall results are shown in
Fig. 8. As an expected result of applied chemotherapy, the number of
blast cells should decrease on the 15th day compared to the instant of
diagnosis. On the following days after the 15th day, the number of
healthy cells with CD45 antigen on the cell surface increase and the
obtained trends are mostly in good agreement with the literature re-
porting the changes of cell numbers during the treatment (Nagant et al.,
2018). As shown in Fig. 8, the trend of manual and automated counting
was highly similar.

In this manual and automated counting comparison study, since
there were two independent groups, and there were limited number of
samples, non-parametric Mann-Whitney U test was used to investigate
their statistical relation (Kasuya, 2001). For the test we had two hy-
pothesis; H0 : Statistically there is no difference between manual

Table 1
Average bead and micropad detection and counting performance results.

Average TP Average FP Average FN Precision Recall F-Measure APE Detection Error

9.38 2.09 1.76 0.81 0.84 0.82 2.94 0.17

Table 2
Cell culture experiments: Average cell counting performance results for 20X objectives.

Average TP Average FP Average FN Precision Recall F-Measure APE Detection Error

20X objective 134.5 1.3 2.3 0.99 0.98 0.98 −0.73 0.01
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counting and automated counting, H1: Statistically there are differences
between manual counting and automated counting. When the test was
completed with all 4 patients separately, patient 1, patient 2, patient 3,
patient 4 had 0.87, 0.51, 0.12, 0.56 Asymp. Sig. values respectively.
This means that all four values were bigger than 0.05, hypothesis H0
was retained, and concluded that there was no statistically significant
difference between manual counting and automated counting.

The smallest Asymp. Sig value was calculated for patient 3, and in
Fig. 8 even though the trends were similar the average number of cells
obtained from the manual counting and automated counting deviated
more compared to the results for the other patient samples. The main
reasons of this deviation were 1) using larger micropads (35 μmx 35
μm) for this patient, and 2) the intensity of the micropads were higher
compared to other images. When micropads overlapped and blocked
the visibility of the cells, the proposed algorithm could not detect every
cell in the image. For the patient 1, small size micropads (15 μmx 15
μm) were used and cells were not blocked by the micropads in the
image, as a result automated cell counting yielded similar numbers with
manual counting.

5. Conclusion

The proposed algorithm is aimed to be used to detect and count cells
in a biochip. The biochip includes immunomagnetic beads and micro-
pads for separation of the target B lymphoblast cells. For this study
main image objective was 20× . Without cell staining, color, size and
shape-based methods achieved 85 % precision and 86 % recall and F-

measure for patient dataset. To test proposed methods, precision, recall,
f-measure, absolute percentage error and detection error rate was used.
The results show that even if micropad size and bead density change,
our algorithm can find cells. In addition, although micropad size may
differ, micropads can be found with high accuracy. If micropad size is
small on the image, cells can be seen clearly, then the cell quantification
yields better results on those images. The highest precision and recall
are 98 % for the clear images of cultured cells (analyzed with small
micropads) shows the power of the developed method. In addition,
proposed algorithm detects beads and micropads on the image with
0.02 and 0.01 detection errors respectively. When determining the
performance of the algorithm such as precision, recall, F-measure and
others, we compared the outputs of the algorithm with the output of our
manual evaluation of the images. On the other hand, for the patient
samples the statistical test compared the outputs of the algorithm with
the outputs of the medical expert’s evaluation of the chips. The statis-
tical test revealed that the manual counting of the medical expert and
automated counting are statistically in good agreement.

6. Discussion

In order to separate and visualize cells in images cells are stained
(Ounkomol et al., 2018). Breast cancer associated cytokeratin positive
cells were separated from blood by using immunomagnetic beads and
immunocytochemically stained for cell detection (Witzig et al., 2002).
In our proposed method, detecting immunomagnetic beads has two
purposes that are inherent cell separation feature and being visual

Table 3
Average cell counting performance results for partially covered and isolated cells.

Average TP Average FP Average FN Precision Recall F-Measure APE Detection Error

11.41 3.75 1.18 0.75 0.90 0.82 20 0.17

Table 4
Average cell counting performance results for fully covered cells.

Average TP Average FP Average FN Precision Recall F-Measure APE Detection Error

4.24 0.29 1.10 0.93 0.79 0.85 −15.15 0.13

Fig. 7. Cell detection and quantification result examples. Images belong to different patient along with different day. Blue color shows detected cells while yellow
color shows detected clusters. Given images are some parts of the whole images. A, B, C, and D are original RGB images, E, F, G, and H are final result images. Scale
bars= 20 μm (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

F. Uslu, et al. Micron 133 (2020) 102863

8



markers for cell detection.
Detection of cells from microscopy images are reported in

(Mohapatra et al., 2010) with 95 % accuracy, in (Patel and Mishra,
2015) with 93.4 % accuracy, and in (Ghane et al., 2017) with 97 %
precision. However, those cells are stained by using violet color that
makes cell distinctive. On the other hand, in our method cells are not
stained and average precision and recall rates are more than 85 % on
for all patient samples. Reducing the micropad size resulted in 95 %
precision and 97 % recall.

In this study, the images include not only cells but also im-
munomagnetic beads and square micropads which create more chal-
lenging cases as distinct from cell analysis in (Long et al., 2006; Mualla
et al., 2013). We developed automated image processing methods to
solve five problems: cell detection, cluster detection, bead detection,
micropad detection and cell or cluster attached micropad detection, and
then to quantify cells. We developed simple but fast and effective de-
tection algorithms and tested them on two types of datasets; the cell
culture and the patient samples. Proposed method gives higher preci-
sion rate on the cell culture than patient image because cells are clearer
in cell culture, and also in some patient images micropads are very
large, and it is difficult to identify cells on those images.

In our previous study (Uslu et al., 2019) since cells were not clear,
and this made cell detection more challenging, we used machine
learning and more complex algorithms. Total algorithm run time was
more than 300 s. However, in this study, existence of micropads in the
images added one more complexity. Also, the developed algorithm will
be the signal readout method of the biochip’s real time measurements
which requires lower run times. In order to analyze more complicated
images in a lower run time (average run time was 90 s) we preferred
relatively simple image processing techniques and not machine
learning algorithms.

The developed system incorporated color, size and shape-based
methods to identify the cells, immunomagnetic beads and micropads.
Even though the cells were magnetically separated from complex bodily
fluid and then introduced to the microfluidics, there might be some
artifacts in the microfluidics. Size, color and shape-based filters can be
simply added to the algorithm to identify the artifacts. For example, the
larger size cell in Fig. 7c and 7 g has a circler and non-circler parts and a
total length of approximately 31 μm. The developed algorithm identi-
fied it as 2 cells, but it is possible by adding shape and size filters to
identify the circler part as a cell and identify the non-circler part as an
artifact. The immunomagnetic separation has high yield (95–98 % (İçöz
et al., 2019)) of capturing target cells and our platform was developed
based on this fact. However, as a scenario if non-target cells present in
the microfluidics which are similar size of the target cells, the current
algorithm is not able to distinguish between non-target and target cells.

Different micropad sizes were used for the patient samples collected
on different dates after the chemotherapy started. In some tested bio-
chips micropads have larger area and this makes detection and quan-
tification of the cells difficult. In some samples, the size of micropads
were reduced (15 μmx 15 μm) thus we obtained better cell detection
results. As a future work, we will test smaller micropads in order to find
the optimum size for patient samples, the micropads should not block
and shadow any cells but they also have sufficient surface area for
capturing cells.

In (Wang et al., 2018) and (Georg et al., 2018) Python based image
processing methods are used to identify biomedical and chip images.
They claim that python makes modern computer algorithms easier to be
applied in bioimage analysis. As future work, we are also planning to
study on Python based image processing techniques and compare them
with our results.

Fig. 8. Results of proposed algorithm on different patients. Each graph shows comparison of manual counting and automated counting for different patient.
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