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Abstract: Lung cancer is one of the deadly cancer types, and almost 85% of lung cancers are nonsmall cell lung cancer
(NSCLQC). In the present study we investigated classification and feature selection methods for the differentiation of
two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The major advances in
understanding the effects of therapy agents suggest that future targeted therapies will be increasingly subtype specific.
We obtained positron emission tomography (PET) images of 93 patients with NSCLC, 39 of which had ADC while
the rest had SqCC. Random walk segmentation was applied to delineate three-dimensional tumor volume, and 39
texture features were extracted to grade the tumor subtypes. We examined 11 classifiers with two different feature
selection methods and the effect of normalization on accuracy. The classifiers we used were the k-nearest-neighbor,
logistic regression, support vector machine, Bayesian network, decision tree, radial basis function network, random
forest, AdaBoostM1, and three stacking methods. To evaluate the prediction accuracy we performed a leave-one-out
cross-validation experiment on the dataset. We also considered optimizing certain hyperparameters of these models by
performing 10-fold cross-validation separately on each training set. We found that the stacking ensemble classifier, which
combines a decision tree, AdaBoostM1, and logistic regression methods by a metalearner, was the most accurate method

for detecting subtypes of NSCLC, and normalization of feature sets improved the accuracy of the classification method.
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1. Introduction

Almost 85% of lung cancers are nonsmall cell lung cancer (NSCLC) [1], and adenocarcinoma (ADC) and
squamous cell carcinoma (SqCC) are the two major subtypes of NSCLC. ADC and SqCC correspond to about
40% and 25%-30% of lung cancers, respectively [2]. Until recently, therapeutic approaches to NSCLC were
mainly guided by tumor stage, and there was no difference in treatment for ADC vs SqCC. The major advances
in understanding the effects of cytotoxic and biological agents used in NSCLC therapy suggest that future
targeted therapies will be increasingly subtype specific. Selection of patients for appropriate subtype specific

therapies requires precise pathologic differentiation of ADC and SqCC [3]. The diagnosis of lung cancer is
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usually performed based on small biopsy (bronchoscopic, needle, or core biopsies) and cytology specimens.
In most cases, the distinction of these two subtypes is achieved based on standard morphologic criteria by
routine microscopy. However, distinction can be difficult in some poorly differentiated tumors, especially in
small specimens. On the other hand, the characterization of the lesion by small biopsy might have a sampling
error, which would not represent the actual biological behavior and the intratumoral heterogeneity. Positron
emission tomography (PET) is a valuable functional imaging method. Its efficiency for patients with cancers
of NSCLC to stage tumors, evaluate therapy response, define prognosis, and guide radiotherapy and surgery
is proven. Recently, a concept called radiomics has become popular. The main hypothesis of radiomics is the
following: medical images include more information than may be obtained by visual analysis [4]. Thanks to
the increase in PET scanners’ spatial resolution there has been a tendency among researchers towards using
image processing tools/approaches for PET images. In this perspective, features extracted from PET images
may help us to describe certain tumor properties in vivo at molecular level. Texture analysis is an approach
that includes a set of pattern recognition and analysis methods. These methods are used to quantify the
relationship between the pixels or voxels for better tumor characterization, monitoring and predicting of therapy
response, and prognosis. Different combinations of textural features and automatic classification approaches
have been utilized in different contexts such as predicting response to therapy and survival [5, 6] and tumor
grade [7]. Computed tomography (CT) images have also been used for pulmonary nodule feature optimization
[8], reproducibility and prognosis [9], and predicting survival [10]. In addition to medical imaging approaches
like PET and CT, for lung cancer diagnoses automated quantitative analysis of histopathology images has
been investigated [11, 12]. Machine learning studies the construction of algorithms that can learn from and
make predictions on data to make intelligent decisions based on their recognition of complex patterns. The
machine learning methods are used in oncology in different applications such as cancer prognosis and prediction
[13], survival analysis [14], drug response [15], and gene expression [16]. The focus of the present study is
medical image analysis and computer aided diagnosis. This is a classification problem in which the aim is
to use PET images to determine whether a newly presented patient has a tumor subtype adenocarcinoma or
squamous cell carcinoma; thus the oncological therapy may be guided accordingly. In a similar study [17] that
aimed to cluster the subtypes using 24 textural features obtained from PET images, the researchers used linear
discriminant analysis as the classification approach. In the present study we used 39 textural features that are
frequently chosen by researchers to characterize tumor heterogeneity and analyzed the performances of different

classification approaches that have not been utilized in tumor subtype discrimination in NSCLC.

2. Materials and methods
2.1. Patient population and PET/CT imaging

The present study includes 18F FDG PET/CT images of 93 patients with NSCLC. The imaging of patients
was performed from March 2010 to April 2014 at Acibadem Kayseri Hospital Nuclear Medicine Department,
Kayseri, Turkey, using a PET/CT scanner (Siemens Biograph 6, HiRez). The Research Ethics Committee of
Kayseri Research and Training Hospital (KRTH) approved this study. All procedures performed in studies
involving human participants were in accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical
standards. In this retrospective study the authors worked on the previously acquired images; thus they did not
obtain informed consent from the participants. Out of the 93 patients 9 were female and 84 were male, with a

mean age of 62.9 £4.5 (range: 39-84). The tumor subtypes of 39 patients were ADCs and of 54 patients were
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SqCCs. The specimens were obtained using fine-needle or excisional biopsy and were assessed at the pathology

department of KRTH in terms of tumor subtype.

2.2. Image processing and texture analysis

The methods that were used in the present study as a single shot are summarized in Figure 1. The details
of the approaches shown in this figure are given in this and the following subsections of this section. For
each patient PET and CT images were transferred to our computers. The study mainly focused on the PET
images, especially slices with tumors (Figure 2). MATLAB (MathWorks, Natick, MA, USA) was used in the
image processing steps of PET images in DICOM format. In the image processing part of the study, first
the tumors were segmented in each slice, the image intensity values in the tumors in that slice were binned,
and finally texture analysis approaches were applied to extract texture features from each three-dimensional
tumor obtained by arranging two-dimensional slices in one stack. In the segmentation, a popular approach called
random walk [18] was used to automatically distinguish the tumor from the background. Different segmentation
methods like Otsu’s, k-means, and active-contour approaches were also tested [19], and the best results were
obtained using the random walk approach based on the comparison of the segmentation results and the manual
drawings of the nuclear medicine expert in our team. The binning process corresponds to linear mapping of
intensity values on the pixels of the segmented tumor region to be between 1 and 64. Various binning levels
were tested, and 64 was found to be the optimal value, as it was previously [20] proved that levels more than
64 do not improve classification precision. In the final step, using four different texture analysis approaches
from the binned regions with tumors 39 features were extracted. The approaches we used were the gray level
cooccurrence matrix (GLCM, 8 features), gray level run length matrix (GLRLM, 13 features), gray level size
zone matrix (GSZM, 13 features), and neighborhood gray tone difference matrix (NGTDM, 5 features). The
details of these approaches can be found elsewhere [21]. The most common quantitative value derived from
PET images that shows the uptake of radiotracer is the maximum standardized uptake value (SUVmax) in the
tumor area, which is defined as the decay-corrected tumor activity concentration divided by injected activity
per unit body weight, surface area, or lean body mass. In addition to the textural features we also included the
SUVmax as the 40th feature, whose values ranged from 2.5 to 47.1 (15.5 £ 7.4).

PET image slice Slice segmentation Stack of ROI Isotropic 3D segmented tumor
[]
. . - -
Machine learning Feature selection Feature extraction
¢ k-NN, Decision Tree e CFS « GLCM
*  Bayes Net, AdaBoost Ao *  Hybrid A * GLRM
* Logistic Regression * NGTDM
*  Random Forest « GSZM
*  RBF Network

SVM, Stacking

Figure 1. Summary of the approaches used in this study.
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F

Figure 2. Sample images from raw data.

2.3. Data preprocessing and feature selection

We considered normalizing the texture features to the interval from 0 to 1. Feature selection methods are
classified into three categories, namely filter, wrapper, and ensemble feature selection methods. The influence
of the feature selection method on the performance of the classification method was examined before [16], and
it was found that ensemble feature selection does not improve accuracy generally in breast cancer prognosis. To
reduce the number of dimensions we implemented two feature selection methods in WEKA [22]: (1) CFS subset
evaluator with BestFirst search strategy, (2) a hybrid strategy that first ranks features according to gain ratio,
followed by a wrapper method that selects features using the k-NN classifier (with k parameter optimized by
10-fold cross-validation). In the wrapper approach we considered a sequential forward selection (SFS) strategy
in which we start from an empty set and iteratively add the features to our feature set based on the initial
feature ranking we obtained using gain ratio. Since it is recommended to have at least 1-10 samples per weight
term for model training, the current size of the dataset will not be sufficient for an autoencoder model and
would be prone to overfitting. Therefore, instead of projection-based methods such as autoencoders or PCA
that map the input features to a new space, we considered feature selection methods, which allow selecting a
subset of features, which also allows us to understand which features are important for correctly classifying the

cancer subtypes.

2.4. Classification methods

In the present study, we implemented 11 different classifiers in WEKA software to differentiate the ADC
and SqCC tumor subtypes: k-nearest-neighbor (k-NN), logistic regression, support vector machine (SVM),
Bayesian network, decision tree, radial basis function (RBF) network, random forest, AdaBoostM1, and three
stacking methods. We chose these classifiers for the same reason as Parmar et al. [14] did due to their
popularity in the literature. To evaluate the prediction accuracy we performed a leave-one-out cross-validation
(LOOCYV) experiment on the dataset. We also considered optimizing certain hyperparameters of these models

by performing 10-fold cross-validation separately on each training set.

2.4.1. k-nearest neighbor

A Kk-NN classifier first finds the k training samples that are closest to the test example and combines the class
labels of these nearest neighbors by majority voting [23]. In our experiments, we employed the IBk method in
WEKA to implement the k-NN classifier. We considered selecting the number of nearest neighbors (i.e. the k
parameter) as 3 as well as optimizing this parameter by including the —X option in the command-line, choosing
the maximum number of nearest neighbors as number of samples-2 and setting the number of cross-validation
folds to 10.
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2.4.2. Logistic regression

As a special case of generalized linear models, the logistic regression classifier computes a weighted linear
combination of input features, which is passed through a nonlinear activation function (e.g., a sigmoid). In binary
classification, the class labels are assigned by comparing the output variable to 0.5. The decision boundaries of
a logistic regressor are linear hyperplanes [23]. We employed the logistic classifier in WEKA, which implements

a multinomial logistic regression method with a ridge estimator and quasi-Newton optimization procedure.

2.4.3. Support vector machines

An SVM classifier aims to solve a quadratic optimization problem [24] by mapping the training samples
to a higher dimensional space and finding a linear separating hyperplane with maximum margin [25]. We
implemented two SVMs with a radial basis function (RBF) kernel using the LIBSVM package in WEKA. In the
first version we set the C parameter to 1.0 and to 1/number of features, while in the second model we optimized
these hyperparameters by performing a grid search choosing C € (275,274,,21%) and C € (23,22,,271%). At
the end of this procedure we selected the particular pair that gave the best cross-validation accuracy, trained

the SVM classifier using these optima, and performed predictions on the test sample.

2.4.4. Decision tree

A decision tree classifier contains nodes and directed edges (i.e. branches) connecting nodes with no cycles
allowed. Each internal node represents a test on a feature and each branch the outcome of the test, which can
be true or false. For a given feature vector, the tests are applied starting from the top (root) node down to
the leaf nodes, which represent a class label (i.e. final decision). Hence, each path from root to a leaf node is
a classification rule. We employed the J48 algorithm in WEKA (a successor of C4.5) under default parameters
[26], in which the confidence threshold for pruning is set to 0.25 and the minimum number of instances per leaf

is set to 2.

2.4.5. Bayesian network

Let X = [xo,21,22,,24] be the set of variables, where xy = y is the output class variable and z1,xza,, 24
represent input features. A Bayesian network B over variables in X is a directed acyclic graph (DAG) and a set
of probability tables Bp = p(zpa(x))|z € X, where pa(x) is the set of parents of x. The probability distribution
for X can be computed as P(X) = (zX)p(zpa(x)). The classification problem can be stated as inferring the class
variable y = z( given the set of input features x = [21, xa,,x4]. In this context, a BayesNet classifier f x—y is a
function that maps an input feature vector x to class type y. The classifier is learned from a dataset containing
samples over (x, y) and the learning process includes deriving a Bayesian network structure and the mapping
function f. The classification process selects the particular class type that maximizes the a posteriori distribution
P(y | x). In the present study, we employed the BayesNet classifier in WEKA software, which first discretizes the
continuous valued features by employing the filter called weka.filters.unsupervised.attribute.NumericToNominal.
We selected the search algorithm for learning the network structure as K2, which is a hill climbing algorithm
restricted by an order of the variables and the estimator as SimpleEstimator, which computes the conditional

probability tables (CPTs) directly from the data for a given network structure [27].
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2.4.6. Radial basis function (RBF) network

A radial basis function network first clusters data and then fits a basis function to each cluster. In the second
stage, the basis function outputs are sent to a linear classifier to predict the class type [28]. We employed the
RBFNetwork classifier in WEKA, which uses the k-means clustering algorithm and fits symmetric multivariate
Gaussians to the data in each cluster. The output of Gaussians, which constitute the basis functions, are
directed to a logistic regression classifier to predict the class type. All data are normalized to zero mean and
unit variance (i.e. Z-score normalization). We implemented two versions of the RBFNetwork. The first one
uses two clusters, which is equal to the number of class types, and the second optimizes the number of clusters
by cross-validation considering the following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25.

2.4.7. Random forest

A random forest classifier is an ensemble technique that combines multiple decision trees by weighted majority
voting. Each tree receives a small subset of input features constituted by random selection and is trained on a
separate training set, which is generated by bootstrap sampling (also known as bagging) [29]. The random forest
is also robust against outliers and is less prone to overfitting. We implemented two versions of the RandomForest
classifier in WEKA. The first one uses 100 trees and the second one optimizes the number of trees by performing

cross-validation on each training set and considering the following alternatives for this parameter: 1, 2, 3, 4, 5,
6,7,8,9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100.

2.4.8. AdaBoost

A boosting ensemble combines multiple classifiers through weighted averaging of classifier outputs. Different
from bagging, the base learner at a given iteration is constructed according to the classification behavior of the
previous learner, concentrating more on the misclassified examples. To construct the training set of the current
classifier, the probability of selecting misclassified examples is increased and a bootstrap sampling procedure
is used [30]. Although boosting can be prone to overfitting, it typically improves the overall classification
accuracy. We employed the AdaBoostM1 method in WEKA by selecting DecisionStump as the base learner
and implemented two versions of this classifier. The first one selects the number of iterations as 10, which is
the default value, and the second optimizes this parameter by performing cross-validation on each training set
considering the following values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100.

2.4.9. Stacking

A stacking ensemble combines different types of classifiers, which serve as base learners through a meta learner
[31]. Typically the number of base learners is smaller than in bagging or boosting. In the present study, we
implemented three stacking ensembles by combining different classifiers. The first ensemble combines decision
tree (i.e. J48 in WEKA) with AdaBoostM1 (Stacking 1); the second combines decision tree, AdaboostM1,
and logistic regression (Stacking 2); and the third combines decision tree, AdaboostM1, logistic regression, and
BayesNet classifiers (Stacking 3). In each method we employed logistic regression as the meta learner and used
10 iterations for AdaBoostM1, which is the default setting in WEKA.

2.5. Accuracy measures

We used the following measures to evaluate the prediction accuracy of the classifiers: sensitivity (or recall),

specificity, positive predictive value (PPV), negative predictive value (NPV), Matthew’s correlation coefficient
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(MCC), F-measure, overall accuracy, and area under ROC curve (AUC) [21]. These are computed as

Sensitivity = TPzii-ipFly (1)
Speci ficity = %7 (2)
PPV:&?%%@? (3)
vaziﬁ%gﬁv, (4)

TP x TN — FP x FN
MCC = ) (5)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

I 2 x Precision x Recall (©6)
measure =
Precision + Recall

TP+ TN X
TP+TN+FP+FN’

Overall Accuracy =

where TP is true positives, FP is false positives, TN is true negatives, and FN is false negatives. AUC measure
is computed by first ranking the predictions with respect to the decision scores and then shifting the decision
threshold to compute TP and FP rate values of the ROC curve. Each horizontal move (i.e. a false positive)

generates a rectangular region in the ROC curve and the cumulative sum of these areas gives our AUC estimate.

3. Result and discussion

We performed a leave-one-out cross-validation experiment on the main dataset and obtained the accuracy
measures shown in Tables 1 to 3. Table 1 compares different classifiers when no normalization is applied
and the hybrid feature selection strategy is used. Table 2 demonstrates the accuracy of classifiers when the
data are normalized and hybrid feature selection is employed. Table 3 includes the accuracy measures of the
stacking ensemble for all combinations of the following conditions: data are not normalized, data are normalized,
no feature selection is performed, CFS subset evaluator is employed, and hybrid feature selection method is
employed. According to these results, we achieved the best results with the decision tree approach and stacking
classifiers when data are normalized and the hybrid feature selection is used. Because decision tree was among
the base learners in all stacking methods implemented, we can conclude that the stacking ensemble does not
improve the accuracy of its base learners further. Based on the results presented in Tables 1 to 3, we can also
observe that feature selection in general increases the classification accuracy compared to the condition where no
feature selection is employed. Comparing the two feature selection methods some classifiers are more accurate
when the first feature selection method is used while the rest give better results with the second strategy. Similar
behavior is observed for data normalization conditions and there is no winner takes all condition. Furthermore,
hyperparameter optimization improved the prediction accuracy of certain classifiers but not all of them. This
could be related to constraints imposed by having a small number of samples. Table 4 shows the confusion

matrix for the LOOCV experiment. It is evident that when the tumor subtype is SqCC the prediction is more
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successful, but the identification is harder for the ADC subtype. This is the main reason for having low specificity
as opposed to having high sensitivity since the number of SqCC samples is higher than the ADC samples and a
classifier typically gives more weight to correctly estimating the majority class. A second reason for this behavior
could be associated with the dataset, in which the class types overlap and separating positives from negatives
becomes a challenging task. Figure 3 shows the histogram of the number of features selected on each training
set of the leave-one-out cross-validation (a total of 93 feature subsets) when the hybrid feature selection is
employed and no normalization is applied. According to this figure, most of the time approximately 20 features
are selected out of 40. Similar behavior is observed when the same experiment is repeated on normalized data.
Figures 4 and 5 show the relative importance of the features when hybrid feature selection is employed on not
normalized and normalized data, respectively. The horizontal axis shows the features used in the present study
and the vertical axis represent the number of times a feature is selected when feature selection is repeatedly
applied to each training set of the leave-one-out cross-validation. Comparing these plots, the important features
are similar for the two normalization conditions. Finally, when the decision tree classifier is trained on the
normalized version of the dataset with 93 samples (without performing any feature selection), the tree diagram
shown in Figure 4 is obtained, which performs a test on a single attribute named RLV (run-length variance,
a parameter extracted from gray-level run-length matrix). This is also consistent with the relative importance
rankings of the features in Figures 4 and 5. Since a decision tree classifier inherently performs feature selection
and is pruned during training the resulting model is a feature-selected version of the original data. Furthermore,
due to its simplicity, it is interpretable and can be applied in clinical settings directly on future data. The main
reason for having low specificity as opposed to having high sensitivity is that the number of SQCC samples is
higher than the number of ADC samples, and a classifier typically gives more weight to correctly estimating
the majority class. A second reason for this behavior could be associated with our dataset, in which the class
types overlap and discriminating positives from negatives becomes a challenging task. There is constant effort
when using computer-aided diagnosis for classifying lung cancer subtypes. Different imaging techniques have
been used so far, such as autofluorescence bronchoscopy images (ABIs) [32] and computer tomography images
[33] besides the PET images. Each imaging modality has its limitations due to various imaging factors such as
acquisition and reconstruction. Another point we should note is the preprocessing and segmentation challenges
for a fair comparison between modalities. In a previous study [32] the authors compared the extraction of
features from HSV and RGB channels, and used logistic regression for 34 patients based on ABIs to differentiate
lung cancer subtypes. They showed that the transformation increased the classification accuracy for the ABIs.
The PET/CT modality is the most common imaging technique in clinical oncology due to the availability of
combined anatomical and metabolic information on the tumor. The major disadvantage of PET imaging is
the spatial resolution when compared to CT images. However, PET gives a better representation of metabolic
activity and tumor behavior or histopathological features. In another study [33] the authors applied two deep
learning architectures, DBN and CNN, to compare their performances with the k-nearest neighbors and SVM
classifiers, which employed the features extracted using SIFT and fractal approaches for the discrimination of
lung nodules. However, the numbers of extracted features and classifiers were limited and tumor volume was
not taken into account. In a previous study [17], the authors employed linear discriminant analysis (LDA) for
the classification of lung cancer subtypes in 30 patients. They extracted the textural features from only one
PET slice (one image), which contained the maximum standard uptake value (SUVmax). This approach is
limited in terms of representing the whole tumor volume. In our study, we extracted three-dimensional features

from the tumor volumes of 93 patients and investigated the use of 9 different classification approaches.
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Table 1. Accuracy measures of classifiers when no normalization is applied and the hybrid feature selection method is
employed.

Method Sensitivity | Specificity | PPV | NPV MCC | F-Measure | Overall | AUC
k-NN (k=3) 73.33 61.11 75.86 | 57.89 | 0.34 | 74.58 68.75 63.94
k-NN (k opt) 80.00 25.00 64.00 | 42.86 | 0.06 | 71.11 59.38 58.61
Decision tree (J48) 66.67 30.56 61.54 | 35.48 | -0.03 | 64.00 53.12 46.39
Bayes net 83.33 36.11 68.49 | 56.52 | 0.22 | 75.19 65.62 53.70
AdaBoostM1 (iterations=10) 93.33 41.67 7273 | 78.95 | 0.43 | 81.75 73.96 53.98
AdaBoostM1 (#iterations opt) | 93.33 36.11 70.89 | 76.47 | 0.37 80.58 71.88 58.10
Logistic regression 75.00 47.22 70.31 | 53.12 | 0.23 72.58 64.58 65.37
Random forest (#trees=100) 73.33 38.89 66.67 | 46.67 | 0.13 | 69.84 60.42 59.95
Random forest (#trees opt) 66.67 47.22 67.80 | 45.95 | 0.14 | 67.23 59.38 58.47
RBF network (#clusters=15) 75.00 33.33 65.22 | 44.44 | 0.09 | 69.77 59.38 53.33
RBF network (#clusters opt) | 66.67 44.44 66.67 | 44.44 | 0.11 | 66.67 58.33 52.08
SVM default 100.00 11.11 65.22 | 100.00 | 0.27 | 78.95 66.67 59.86
SVM opt 73.33 36.11 65.67 | 44.83 | 0.10 | 69.29 59.38 55.97
Stacking 1 90.00 33.33 69.23 | 66.67 | 0.29 | 78.26 68.75 50.83
Stacking 2 90.00 30.56 68.35 | 64.71 | 0.26 | 77.70 67.71 54.21
Stacking 3 86.67 33.33 68.42 | 60.00 | 0.24 | 76.47 66.67 49.77

Table 2. Accuracy measures of classifiers when data are normalized and the hybrid feature selection method is employed.

Method Sensitivity | Specificity | PPV | NPV | MCC | F-Measure | Overall | AUC
k-NN (k=3) 68.33 47.22 68.33 | 47.22 | 0.16 | 68.33 60.42 56.85
k-NN (k opt) 86.67 22.22 65.00 | 50.00 | 0.12 | 74.29 62.50 55.74
Decision tree (J48) 95.00 44.44 74.03 | 84.21 | 0.48 83.21 76.04 42.22
Bayes net 88.33 38.89 70.67 | 66.67 | 0.32 | 78.52 69.79 52.31
AdaBoostM1 (#iterations=10) | 91.67 38.89 71.43 | 73.68 | 0.37 | 80.29 71.88 49.49
AdaBoostM1 (#iterations opt) | 90.00 38.89 71.05 | 70.00 | 0.34 | 79.41 70.83 50.79
Logistic regression 76.67 52.78 73.02 | 57.58 | 0.30 74.80 67.71 67.31
Random forest (#trees=100) 83.33 38.89 69.44 | 58.33 | 0.25 | 75.76 66.67 59.95
Random forest (#trees opt) 71.67 58.33 74.14 | 55.26 | 0.30 | 72.88 66.67 61.20
RBF network (#clusters=15) | 78.33 36.11 67.14 | 50.00 | 0.16 | 72.31 62.50 68.75
RBF network (#clusters opt) 53.33 47.22 62.75 | 37.78 | 0.01 57.66 51.04 56.94
SVM default 100.00 0.00 62.50 | 0.00 | 0.00 | 76.92 62.50 53.52
SVM opt 78.33 36.11 67.14 | 50.00 | 0.16 | 72.31 62.50 59.26
Stacking 1 95.00 44.44 74.03 | 84.21 | 0.48 | 83.21 76.04 67.18
Stacking 2 95.00 44.44 74.03 | 84.21 | 0.48 83.21 76.04 68.94
Stacking 3 95.00 44.44 74.03 | 84.21 | 0.48 | 83.21 76.04 62.27

4. Conclusions

In this work, we compared the accuracy of several machine learning approaches for discriminating the two
cancer subtypes: adeno and squamous cell lung cancer. We also analyzed the effect of feature selection and

data normalization. The most accurate method was the stacking ensemble classifier that combines a decision
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Table 3. Accuracy of stacking methods with respect to normalization and feature selection. S1: First stacking method,
S2: Second stacking method, S3: Third stacking method, FS0O: No feature selection is performed, FS1: CFS subset
evaluator is employed, FS2: Hybrid feature selection is employed, NO:

No data normalization, N1: Features are

normalized.
Method Sensitivity | Specificity | PPV | NPV | MCC | F-Measure | Overall | AUC
S1 FS0 NO | 90.00 30.56 68.35 | 64.71 | 0.26 77.70 67.71 48.80
S1 FS1 NO | 88.33 36.11 69.74 | 65.00 | 0.29 77.94 68.75 69.49
S1 FS2 NO | 90.00 33.33 69.23 | 66.67 | 0.29 78.26 68.75 50.83
S1 FSO N1 | 95.00 36.11 71.25 | 81.25 | 0.40 81.43 72.92 61.20
S1 FS1 N1 | 95.00 44.44 74.03 | 84.21 | 0.48 | 83.21 76.04 65.23
S1 FS2 N1 | 95.00 44.44 74.03 | 84.21 | 0.48 83.21 76.04 67.18
S2 FSO NO | 83.33 27.78 74.03 | 50.00 | 0.13 73.53 62.50 49.26
S2 FS1 NO | 88.33 36.11 69.74 | 65.00 | 0.29 77.94 68.75 66.11
S2 FS2 NO | 90.00 30.56 68.35 | 64.71 | 0.26 77.70 67.71 54.21
S2 FSO N1 | 95.00 33.33 70.37 | 80.00 | 0.38 | 80.85 71.88 58.01
S2 FS1 N1 | 93.33 44.44 73.68 | 80.00 | 0.45 | 82.35 75.00 69.63
S2 FS2 N1 | 95.00 44.44 74.03 | 84.21 | 0.48 | 83.21 76.04 68.94
S3 FSO NO | 83.33 27.78 65.79 | 50.00 | 0.13 73.53 62.50 43.61
S3 FS1 NO | 86.67 36.11 69.33 | 61.90 | 0.27 | 77.04 67.71 61.85
S3 FS2 NO | 86.67 33.33 68.42 | 60.00 | 0.24 76.47 66.67 49.77
S3 FSO N1 | 91.67 33.33 69.62 | 70.59 | 0.32 79.14 69.79 51.81

Table 4. Confusion matrix for Stacking 2 classifier when data are normalized and the

employed.

True \Pred Pred = ADC | Pred = SqCC
True = ADC | 18 21
True = SqCC | 3 51
40 T T T T T T T T T T
301 1
)
2
3 20+ 8
g
@
10 8

15 20
Number of features selected

25

30

hybrid feature selection is

Figure 3. Histogram of the number of features selected on each training set of the leave-one-out cross-validation when
no data normalization is performed.

tree, AdaBoostM1, and logistic regression methods by a meta learner. In future work, we are planning to test

other feature selection methods in the machine learning literature and enlarge our dataset by including more

subjects and new features. To improve the specificity of the classifiers, we are planning to apply threshold

moving and adjust false positive as well as false negative rates according to the clinical expectations. All these
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Figure 4. Selection frequencies of the features on training sets of the leave-one-out cross-validation when hybrid feature
selection is employed and data are not normalized.
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Figure 5. Selection frequencies of the features on training sets of the leave-one-out cross-validation when hybrid feature
selection is employed and data are normalized.

efforts are expected to advance the detection of cancer subtypes, which is very important for future targeted
therapies. In addition, in the literature, so far this kind of discrimination problem has not been handled in such

a rigorous manner from feature selection to classification.
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