Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSabzekar, Mostafa
dc.date.accessioned2021-12-07T07:01:50Z
dc.date.available2021-12-07T07:01:50Z
dc.date.issued2021en_US
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.urihttps //doi.org/10.1007/s00500-021-05630-70
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1066
dc.description.abstractA noise-aware version of support vector machines is utilized for feature selection in this paper. Combining this method and sequential backward search (SBS), a new algorithm for removing irrelevant features is proposed. Although feature selection methods in the literature which utilize support vector machines have provided acceptable results, noisy samples and outliers may affect the performance of SVM and feature selections method, consequently. Recently, we have proposed relaxed constrains SVM (RSVM) which handles noisy data and outliers. Each training sample in RSVM is associated with a degree of importance utilizing the fuzzy c-means clustering method. Therefore, a less importance degree is assigned to noisy data and outliers. Moreover, RSVM has more relaxed constraints that can reduce the effect of noisy samples. Feature selection increases the accuracy of different machine learning applications by eliminating noisy and irrelevant features. In the proposed RSVM-SBS feature selection algorithm, noisy data have small effect on eliminating irrelevant features. Experimental results using real-world data verify that RSVM-SBS has better results in comparison with other feature selection approaches utilizing support vector machines.en_US
dc.language.isoengen_US
dc.publisherSPRINGERONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, NY 10004, UNITED STATESen_US
dc.relation.isversionof10.1007/s00500-021-05630-7en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeature selectionen_US
dc.subjectNoisy dataen_US
dc.subjectImportance degreeen_US
dc.subjectSequential backward searchen_US
dc.titleA noise-aware feature selection approach for classificationen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAydin, Zafer
dc.identifier.volumeVolume 25 Issue 8 Page 6391-6400en_US
dc.relation.journalSOFT COMPUTINGen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster