Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGormez, Yasin
dc.contributor.authorSabzekar, Mostafa
dc.contributor.authorAydin, Zafer
dc.date.accessioned2022-02-17T07:10:15Z
dc.date.available2022-02-17T07:10:15Z
dc.date.issued2021en_US
dc.identifier.issn0887-3585
dc.identifier.issn1097-0134
dc.identifier.otherPubMed ID33993559
dc.identifier.urihttps //doi.org/10.1002/prot.26149
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1157
dc.descriptionThe experiments reported in this article were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources), the National Center for High Performance Computing of Turkey (UHeM) under project no 5004062016, and AGU HPC.en_US
dc.description.abstractThere is a close relationship between the tertiary structure and the function of a protein. One of the important steps to determine the tertiary structure is protein secondary structure prediction (PSSP). For this reason, predicting secondary structure with higher accuracy will give valuable information about the tertiary structure. Recently, deep learning techniques have obtained promising improvements in several machine learning applications including PSSP. In this article, a novel deep learning model, based on convolutional neural network and graph convolutional network is proposed. PSIBLAST PSSM, HHMAKE PSSM, physico-chemical properties of amino acids are combined with structural profiles to generate a rich feature set. Furthermore, the hyper-parameters of the proposed network are optimized using Bayesian optimization. The proposed model IGPRED obtained 89.19%, 86.34%, 87.87%, 85.76%, and 86.54% Q3 accuracies for CullPDB, EVAset, CASP10, CASP11, and CASP12 datasets, respectively.en_US
dc.description.sponsorshipNational Center for High Performance Computing of Turkey (UHeM 5004062016en_US
dc.language.isoengen_US
dc.publisherWILEY111 RIVER ST, HOBOKEN 07030-5774, NJen_US
dc.relation.isversionof10.1002/prot.26149en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian optimizationen_US
dc.subjectconvolutional neural networken_US
dc.subjectdeep learningen_US
dc.subjectgraph convolutional networken_US
dc.subjectprotein secondary structure predictionen_US
dc.titleIGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure predictionen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAydin, Zafer
dc.identifier.volumeVolume 89 Issue 10 Page 1277-1288en_US
dc.relation.journalPROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICSen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster