Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCoskun, Mustafa
dc.contributor.authoraggag, Abdelkader
dc.contributor.authorKoyuturk, Mehmet
dc.date.accessioned2022-03-04T06:53:38Z
dc.date.available2022-03-04T06:53:38Z
dc.date.issued2021en_US
dc.identifier.issn1384-5810
dc.identifier.issn1573-756X
dc.identifier.urihttps //doi.org/10.1007/s10618-021-00754-8
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1228
dc.description.abstractNetwork proximity computations are among the most common operations in various data mining applications, including link prediction and collaborative filtering. A common measure of network proximity is Katz index, which has been shown to be among the best-performing path-based link prediction algorithms. With the emergence of very large network databases, such proximity computations become an important part of query processing in these databases. Consequently, significant effort has been devoted to developing algorithms for efficient computation of Katz index between a given pair of nodes or between a query node and every other node in the network. Here, we present LRC-Katz, an algorithm based on indexing and low rank correction to accelerate Katz index based network proximity queries. Using a variety of very large real-world networks, we show that LRC-Katzoutperforms the fastest existing method, Conjugate Gradient, for a wide range of parameter values. Taking advantage of the acceleration in the computation of Katz index, we propose a new link prediction algorithm that exploits locality of networks that are encountered in practical applications. Our experiments show that the resulting link prediction algorithm drastically outperforms state-of-the-art link prediction methods based on the vanilla and truncated Katz.en_US
dc.language.isoengen_US
dc.publisherSPRINGERVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDSen_US
dc.relation.isversionof10.1007/s10618-021-00754-8en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFast Katz methoden_US
dc.subjectLink predictionen_US
dc.subjectNetwork proximityen_US
dc.titleFast computation of Katz index for efficient processing of link prediction queriesen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-4805-1416en_US
dc.contributor.institutionauthorCoskun, Mustafa
dc.identifier.volumeVolume 35 Issue 4 Page 1342-1368 Special Issue SIen_US
dc.relation.journalDATA MINING AND KNOWLEDGE DISCOVERYen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster