Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYavuz, Levent
dc.contributor.authorSoran, Ahmet
dc.contributor.authorOnen, Ahmet
dc.contributor.authorLi, Xiangjun
dc.contributor.authorMuyeen, S. M.
dc.date.accessioned2023-02-27T09:01:15Z
dc.date.available2023-02-27T09:01:15Z
dc.date.issued2022en_US
dc.identifier.issn2096-0042
dc.identifier.otherWOS:000831132500018
dc.identifier.urihttps://doi.org/10.17775/CSEEJPES.2020.03760
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1463
dc.description.abstractThis paper proposes a new cost-efficient, adaptive, and self-healing algorithm in real time that detects faults in a short period with high accuracy, even in the situations when it is difficult to detect. Rather than using traditional machine learning (ML) algorithms or hybrid signal processing techniques, a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms. In the proposed method, the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization (PSO) weights. For this purpose, power system failures are simulated by using the PSCAD-Python co-simulation. One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information. Therefore, the proposed technique will be able to work on different systems, topologies, or data collections. The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect.en_US
dc.language.isoengen_US
dc.publisherCHINA ELECTRIC POWER RESEARCH INSTen_US
dc.relation.isversionof10.17775/CSEEJPES.2020.03760en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDecision tree (DT)en_US
dc.subjectensemble machine learning algorithmen_US
dc.subjectfault detectionen_US
dc.subjectislanding operationen_US
dc.subjectk-Nearest Neighbor (kNN)en_US
dc.subjectlinear discriminant analysis (LDA)en_US
dc.subjectlogistic regression (LR)en_US
dc.subjectNa¨ıve Bayes (NB)en_US
dc.subjectself-healing algorithmen_US
dc.titleAdaptive Fault Detection Scheme Using an Optimized Self-healing Ensemble Machine Learning Algorithmen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-1398-9447en_US
dc.contributor.institutionauthorYavuz, Levent
dc.contributor.institutionauthorSoran, Ahmet
dc.identifier.volume8en_US
dc.identifier.issue4en_US
dc.identifier.startpage1145en_US
dc.identifier.endpage1156en_US
dc.relation.journalCSEE JOURNAL OF POWER AND ENERGY SYSTEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster