Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKolukisa, Burak
dc.contributor.authorYildirim, Veli Can
dc.contributor.authorAyyildiz, Cem
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2023-03-08T07:55:19Z
dc.date.available2023-03-08T07:55:19Z
dc.date.issued2023en_US
dc.identifier.issn0920-5489
dc.identifier.issn1872-7018
dc.identifier.otherWOS:000899822400002
dc.identifier.urihttps://doi.org/10.1016/j.csi.2022.103703
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1495
dc.description.abstractThe identification of vehicle types plays a critical role in Intelligent Transportation Systems. In this study, battery-operated, easy-to-install, low-cost 3-D magnetic traffic sensors have been developed for vehicle type classification problems. In addition, a new machine learning approach based on deep neural networks (DNN) with hyper-parameter optimization using feature selection and extraction methods has been proposed for vehicle type classification. A dataset is collected from the field, and vehicles are classified into three different classes, i.e., light: motorcycles, medium: passenger cars, and heavy: buses, based on vehicle structures and sizes. The proposed system is portable, energy-efficient, and reliable. The performance results show that the proposed method, which is based on a DNN classifier, has an accuracy of 91.15%, an f-measure of 91.50%, and a battery life of up to 2 years.en_US
dc.description.sponsorshipThis research was supported by the international funding agency EUREKA with the project name ‘‘NGA-ITMS (Next Generation Autonomous Intelligent Traffic Management System)". The project is funded nationally by TUBITAK TEYDEB with Project Number: 9180036.en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.csi.2022.103703en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMagnetic sensorsen_US
dc.subjectVehicle classificationen_US
dc.subjectIntelligent transportation systemsen_US
dc.titleA deep neural network approach with hyper-parameter optimization for vehicle type classification using 3-D magnetic sensoren_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0423-4595en_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.contributor.institutionauthorKolukısa, Burak
dc.identifier.volume84en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.journalComputer Standards & Interfacesen_US
dc.relation.tubitak9180036
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster