Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDogan, Abdulkadir
dc.date.accessioned2023-04-04T06:11:53Z
dc.date.available2023-04-04T06:11:53Z
dc.date.issued2015en_US
dc.identifier.issn1056-2176
dc.identifier.issn1879-0224
dc.identifier.otherWOS:000366947700005
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1552
dc.description.abstractIn this paper, we study the following p-Laplacian boundary value problems on time scales {(phi(p)(u(Delta)(t)))(del) + a(t)f(t, u(t), u(Delta)(t)) = 0, t is an element of [0,T](T), u(0) - B-0(u(Delta)(0)) = 0, u(Delta)(T) = 0, where phi(p)(u) = vertical bar u vertical bar(p-2)u, for p > 1. We prove the existence of triple positive solutions for the one-dimensional p-Laplacian boundary value problem by using the Leggett-Williams fixed point theorem. The interesting point in this paper is that the non-linear term f is involved with first-order derivative explicitly. An example is also given to illustrate the main result.en_US
dc.language.isoengen_US
dc.publisherDYNAMIC PUBLISHERS, INCen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBVPSen_US
dc.subjectDYNAMIC EQUATIONSen_US
dc.titleON THE EXISTENCE OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL p-LAPLACIAN BOUNDARY VALUE PROBLEMS ON TIME SCALESen_US
dc.typearticleen_US
dc.contributor.departmentAGÜen_US
dc.contributor.institutionauthorDogan, Abdulkadir
dc.identifier.volume24en_US
dc.identifier.issue3en_US
dc.identifier.startpage295en_US
dc.identifier.endpage303en_US
dc.relation.journalDYNAMIC SYSTEMS AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster