Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKolukisa, Burak
dc.contributor.authorYildirim, Veli Can
dc.contributor.authorElmas, Bahadir
dc.contributor.authorAyyildiz, Cem
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2023-04-04T13:20:35Z
dc.date.available2023-04-04T13:20:35Z
dc.date.issued2022en_US
dc.identifier.issn1389-1286
dc.identifier.issn1872-7069
dc.identifier.otherWOS:000869792900014
dc.identifier.urihttps://doi.org/10.1016/j.comnet.2022.109326
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1555
dc.description.abstractIn the Intelligent Transportation Systems, it is crucial to determine the type of vehicles to improve traffic management, increase human comfort, and enable future development of transport infrastructures. This paper presents a deep learning-based vehicle type classification approach for intermediate road traffic. Specifically, a low-cost, easy-to-install, battery-operated 3-D traffic sensor is designed and developed. In addition, a total of 376 vehicle samples are collected, and the vehicles are identified into three different classes according to their structures: light, medium, and heavy. Firstly, an oversampling method is applied to increase the number of samples in the training set. Then, the signals are converted into time series for LSTM and GRU and 2-D images for transfer learning models. Finally, soft voting is proposed using the LSTM, GRU, and VGG16, which is the best transfer learning method for vehicle type classification. The developed system is portable, power-limited, battery-operated, and reliable. Comparative performance results show that the soft voting ensemble method using a deep learning classifier improves the accuracy and f-measure performances by 92.92% and 93.42%, respectively. Additionally, the battery lifetime of the developed magnetic sensor node can work for up to 2 years.en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.comnet.2022.109326en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntelligent Transportation Systemsen_US
dc.subjectMagnetic sensoren_US
dc.subjectVehicle classificationen_US
dc.subjectDeep learningen_US
dc.titleDeep learning approaches for vehicle type classification with 3-D magnetic sensoren_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0423-4595en_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.contributor.institutionauthorKolukisa, Burak
dc.identifier.volume217en_US
dc.identifier.startpage1en_US
dc.identifier.endpage9en_US
dc.relation.journalComputer Networksen_US
dc.relation.tubitak9180036
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster