Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGogebakan, Maruf
dc.contributor.authorErol, Hamza
dc.date.accessioned2023-04-07T08:37:59Z
dc.date.available2023-04-07T08:37:59Z
dc.date.issued2020en_US
dc.identifier.isbn978-3-030-36178-5
dc.identifier.isbn978-3-030-36177-8
dc.identifier.issn2367-4512
dc.identifier.otherWOS:000678771000043
dc.identifier.urihttps://doi.org/10.1007/978-3-030-36178-5_43
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1572
dc.description.abstractIn this study, a new algorithm was developed for clustering multivariate big data. Normal mixture distributions are used to determine the partitions of variables. Normal mixture models obtained from the partitions of variables are generated using Genetic Algorithms (GA). Each partition in the variables corresponds to a clustering center in the normal mixture model. The best model that fits the data structure from normal mixture models is obtained by using the information criteria obtained from normal mixture distributions.en_US
dc.language.isoengen_US
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AGen_US
dc.relation.isversionof10.1007/978-3-030-36178-5_43en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenetic Algorithmen_US
dc.subjectGaussian mixture modelsen_US
dc.subjectModel based clusteringen_US
dc.subjectInformation criteriaen_US
dc.titleNormal Mixture Model-Based Clustering of Data Using Genetic Algorithmen_US
dc.typeotheren_US
dc.contributor.departmentAGÜen_US
dc.contributor.institutionauthorGogebakan, Maruf
dc.identifier.volume43en_US
dc.identifier.startpage539en_US
dc.identifier.endpage543en_US
dc.relation.journalARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster