Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorArslan, Sibel
dc.contributor.authorKoca, Kemal
dc.date.accessioned2023-06-06T08:44:55Z
dc.date.available2023-06-06T08:44:55Z
dc.date.issued2023en_US
dc.identifier.issn0952-1976
dc.identifier.issn1873-6769
dc.identifier.otherWOS:000969649600001
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2023.106210
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1607
dc.description.abstractAutomatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate computer programs and solve complex engineering problems. This paper presents the accuracy of four different AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions. In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients CL, CD and power efficiency are output parameters. The results show that while all four methods tested in the study accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy for R2Train and R2Test (R2 values in CD Train: 0.997-Test: 0.994, in CL Train: 0.991-Test: 0.990, in PE Train: 0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap. This will make a significant contribution to the field of AI and aerodynamics research without experimental cost, labor, and additional time.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.isversionof10.1016/j.engappai.2023.106210en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomatic programmingen_US
dc.subjectGenetic programmingen_US
dc.subjectArtificial bee colony programmingen_US
dc.subjectAerodynamic coefficientsen_US
dc.subjectPower efficiencyen_US
dc.subjectWind turbine bladeen_US
dc.titleInvestigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine bladeen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-2464-6466en_US
dc.contributor.institutionauthorKoca, Kemal
dc.identifier.volume123en_US
dc.identifier.issueAen_US
dc.identifier.startpage1en_US
dc.identifier.endpage15en_US
dc.relation.journalENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster