Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKolukısa, Burak
dc.contributor.authorDedeturk, Bilge Kagan
dc.contributor.authorHacilar, Hilal
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2024-01-04T09:02:38Z
dc.date.available2024-01-04T09:02:38Z
dc.date.issued2024en_US
dc.identifier.issn0920-5489
dc.identifier.issn1872-7018
dc.identifier.otherWOS:001127995400001
dc.identifier.urihttps://doi.org/10.1016/j.csi.2023.103808
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1874
dc.description.abstractIn recent years, the widespread use of the Internet has created many issues, especially in the area of cybersecurity. It is critical to detect intrusions in network traffic, and researchers have developed network intrusion and anomaly detection systems to cope with high numbers of attacks and attack variations. In particular, machine learning and meta-heuristic methods have been widely used for network intrusion detection systems (NIDS). However, existing studies on these systems usually suffer from low performance results such as accuracy, F1-measure, false positive rate, and false negative rate, and generally do not use automatic parameter tuning techniques. To address these challenges, this study proposes a novel approach based on a logistic regression model trained using a parallel artificial bee colony (LR-ABC) algorithm with a hyper-parameter optimization technique. The performance of the proposed model is evaluated against state -of-the-art machine learning and deep learning models on two publicly available NIDS datasets. Comparative performance evaluations show that the proposed method achieved satisfactory results with accuracy of 88.25% on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset, and F1-measures of 88.26% and 90.15%, respectively. These findings demonstrate the efficacy of the proposed LR-ABC model in enhancing the accuracy and reliability, while providing a scalable solution to adapt to the dynamic and evolving landscape of cybersecurity threats.en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.csi.2023.103808en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNetwork intrusion detection systemen_US
dc.subjectAnomaly detectionen_US
dc.subjectMachine learningen_US
dc.subjectArtificial bee colonyen_US
dc.subjectUNSW-NB15en_US
dc.subjectNSL-KDDen_US
dc.subjectLogistic regressionen_US
dc.titleAn efficient network intrusion detection approach based on logistic regression model and parallel artificial bee colony algorithmen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0423-4595en_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorKolukısa, Burak
dc.contributor.institutionauthorHacilar, Hilal
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.identifier.volume89en_US
dc.identifier.startpage1en_US
dc.identifier.endpage9en_US
dc.relation.journalCOMPUTER STANDARDS & INTERFACESen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster