Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkbas, Ayhan
dc.contributor.authorBuyrukoglu, Selim
dc.date.accessioned2024-03-29T08:21:42Z
dc.date.available2024-03-29T08:21:42Z
dc.date.issued2023en_US
dc.identifier.urihttps://doi.org/10.1007/s13369-022-07365-5
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2056
dc.description.abstractIn wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models.en_US
dc.language.isoengen_US
dc.publisherInstitute for Ionicsen_US
dc.relation.isversionof10.1007/s13369-022-07365-5en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWireless sensor networksen_US
dc.subjectMachine learningen_US
dc.subjectParameter predictionen_US
dc.subjectStacked ensembleen_US
dc.subjectGradient boostingen_US
dc.titleStacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimationen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-6425-104Xen_US
dc.contributor.institutionauthorAkbas, Ayhan
dc.identifier.volume48en_US
dc.identifier.issue8en_US
dc.identifier.startpage9739en_US
dc.identifier.endpage9748en_US
dc.relation.journalArabian Journal for Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster