Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorManic, Setinder
dc.contributor.authorFoh, Chuan Heng
dc.contributor.authorKose, Abdulkadir
dc.contributor.authorLee, Haeyoung
dc.contributor.authorLeow, Chee Yen
dc.contributor.authorChatzimisios, Periklis
dc.contributor.authorMoessner, Klaus
dc.contributor.authorKlaus, Moessner
dc.date.accessioned2024-04-15T08:04:22Z
dc.date.available2024-04-15T08:04:22Z
dc.date.issued2023en_US
dc.identifier.isbn979-835030434-3
dc.identifier.urihttps://doi.org/10.1109/MICC59384.2023.10419542
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2076
dc.description.abstractThe incorporation of mmWave technology in vehicular networks has unlocked a realm of possibilities, propelling the advancement of autonomous vehicles, enhancing interconnectedness, and facilitating communication for intelligent transportation systems (ITS). Despite these strides in connectivity, challenges such as high path-loss have arisen, impacting existing beam management procedures. This work aims to address this issue by improving beam management techniques, specifically focusing on enhancing the service time between vehicles and base stations through adaptive mmWave beamwidth adjustments, accomplished using a Contextual MultiArmed Bandit Algorithm. By leveraging various conditions to train the ML agent of the Contextual MultiArmed Bandit Algorithm, it seeks to learn about vehicle mobility profiles and optimize the usage of different antenna beamwidth settings to maximize seamless connection time. The extensive simulation results showcase the effectiveness of an adaptive beamwidth for mobility profiles, extending the connection time a vehicle experiences with a base station when compared to the existing strategies.en_US
dc.description.sponsorshipIEEE Malaysia Communication Society and Vehicular Technology Society Joint Chapter (Com-VT). This work was partly sponsored by Horizon 2020 Marie Skłodowska-Curie Actions under the project SwiftV2X (grant agreement ID 101008085), DEDICAT6G(grant no. 101016499), the Ministry of Higher Education Malaysia under HICOE Grant 4J636, and Universiti Teknologi Malaysia under Grant 22H33. We would also like to recognise the contributions from 5GIC/6GIC members to this study.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/MICC59384.2023.10419542en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbeamwidth adaptationen_US
dc.subjectmmWaveen_US
dc.subjectV2Xen_US
dc.titleMachine Learning based Beamwidth Adaptation for mmWave Vehicular Communicationsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-6877-1392en_US
dc.contributor.institutionauthorKose, Abdulkadir
dc.identifier.startpage80en_US
dc.identifier.endpage85en_US
dc.relation.journal2023 IEEE 16th Malaysia International Conference on Communication (MICC)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster