Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBulut, Nurten
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorQaqish, Bahjat F.
dc.contributor.authorYousef, Malik
dc.date.accessioned2024-04-15T11:22:57Z
dc.date.available2024-04-15T11:22:57Z
dc.date.issued2023en_US
dc.identifier.isbn979-835030659-0
dc.identifier.urihttps://doi.org/10.1109/ASYU58738.2023.10296645
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2084
dc.description.abstractGene expression data with limited sample size and a large number of genes are frequently encountered in genetic studies. In such high-dimensional data, identification of genes that distinguish between disease states is a challenging task. Feature selection (FS) is a useful approach in dealing with high dimensionality. Support Vector Machines Recursive Cluster Elimination (SVM-RCE) is a technique for FS in highdimensional data. The SVM-RCE approach has been utilized for identification of clusters of genes whose expression levels correlate with pathological state. A key step in SVM-RCE is the use of an SVM classifier to assign an area under the curve (AUC) score to each gene cluster based on its ability to predict class labels. In this study, we investigate the use of alternative classifiers in the cluster-scoring step. Specifically, we compare Support Vector Machines, Random Forest, XgBoost, Naive Bayes, and linear logistic regression. In addition to AUC score performance evaluation, the algorithms are compared in terms of the number of selected genes at different levels of clustering and in terms of the running time.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/ASYU58738.2023.10296645en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRecursive Cluster Eliminationen_US
dc.subjectFeature Selectionen_US
dc.subjectClusteringen_US
dc.subjectGene Expression Data Analysisen_US
dc.titleThe Effect of Different Classifiers on Recursive Cluster Elimination in the Analysis of Transcriptomic Dataen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-1895-8749en_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.institutionauthorBulut, Nurten
dc.contributor.institutionauthorBakir-Gungor, Burcu
dc.identifier.startpage1en_US
dc.identifier.endpage5en_US
dc.relation.journal2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster