Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGurler, Kerem
dc.contributor.authorCoskun, Mustafa
dc.contributor.authorKaragenc, Safak
dc.contributor.authorOrun, Gokhan
dc.contributor.authorPak, Burcu Kuleli
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2024-05-22T12:39:09Z
dc.date.available2024-05-22T12:39:09Z
dc.date.issued2022en_US
dc.identifier.isbn978-166548894-5
dc.identifier.urihttps://doi.org/10.1109/ASYU56188.2022.9925389
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2141
dc.description.abstractPredicting customer interest in items is very crucial in direct marketing as it can potentially boost sales. Data mining techniques are developed to predict which items a particular user might be interested in based on their purchase history or explicit feedback in form of ratings or comments. Recently, non-linear and linear methods have been developed for this purpose. In this study, we applied Neighborhood based Collaborative Filtering (CF), Matrix Factorization (MF), Singular Value Decomposition (SVD), Neural Graph CF (NGCF) and Light Graph Convolutional Network (LightGCN) on explicit user product rating data which is acquired from the online gaming and mobile entertainment platform called HADI. We compared the results of node embedding methods in terms of Precision@k, Recall@k and NDCG@k values. SVD and LightGCN showed the best test performance and SVD was significantly superior to LightGCN in terms of training speed. To further increase predictive performance of SVD, we have applied classification with Logistic Regression and Deep Random Forest on user and item embeddings created by the SVD.en_US
dc.description.sponsorshipThis work was supported by T¨ UB˙ ITAK TEYDEB Program with Project No: 3191234.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/ASYU56188.2022.9925389en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectrecommendation systemsen_US
dc.subjectnode embeddingen_US
dc.subjectlink predictionen_US
dc.titleLinear vs. Non-Linear Embedding Methods in Recommendation Systemsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0803-8372en_US
dc.contributor.institutionauthorCoskun, Mustafa
dc.contributor.institutionauthorPak, Burcu Kuleli
dc.contributor.institutionauthorGungor, Vehbi Cagri
dc.identifier.startpage1en_US
dc.identifier.endpage6en_US
dc.relation.journalProceedings - 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022en_US
dc.relation.tubitak3191234
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster