Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKöken, Ekin
dc.date.accessioned2024-07-05T13:11:02Z
dc.date.available2024-07-05T13:11:02Z
dc.date.issued2024en_US
dc.identifier.urihttp://doi.org/10.36306/konjes.1375871
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2260
dc.description.abstractIn this study, the power draw (P) of several grizzly feeders used in the Turkish Mining Industry (TMI) is investigated by considering the classification and regression tree (CART), random forest (RF) and adaptive neuro-fuzzy inference system (ANFIS) algorithms. For this purpose, a comprehensive field survey is performed to collect quantitative data, including power draw (P) of some grizzly feeders and their working conditions such as feeder width (W), feeder length (L), feeder capacity (Q), and characteristic feed size (F80). Before applying the soft computing methodologies, correlation analyses are performed between the input parameters and the output (P). According to these analyses, it is found that W and L are highly associated with P. On the other hand, Q is moderately correlated with P. Consequently, numerous soft computing models were run to estimate the P of the grizzly feeders. Soft computing analysis results demonstrate no superiority between the performances of RF and CART models. The RF analysis results indicate that the W is necessary for evaluating P for grizzly feeders. On the other hand, the ANFIS-based predictive model is found to be the best tool to estimate varying P values, and it satisfies promising results with a correlation of determination value (R2) of 0.97. It is believed that the findings obtained from the present study can guide relevant engineers in selecting the proper motors propelling grizzly feeders.en_US
dc.language.isoengen_US
dc.publisherKonya Mühendisliken_US
dc.relation.isversionof10.36306/konjes.1375871en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectClassification and regression treeen_US
dc.subjectGrizzly feederen_US
dc.subjectPower drawen_US
dc.subjectRandom foresten_US
dc.titleESTIMATING THE POWER DRAW OF GRIZZLY FEEDERS USED IN CRUSHING–SCREENING PLANTS THROUGH SOFT COMPUTING ALGORITHMSen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-0178-329Xen_US
dc.contributor.institutionauthorKöken, Ekin
dc.identifier.volume12en_US
dc.identifier.issue1en_US
dc.identifier.startpage100en_US
dc.identifier.endpage108en_US
dc.relation.journalKonya mühendislik bilimleri dergisi (Online)en_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster