Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGolec, Muhammed
dc.contributor.authorGill, Sukhpal Singh
dc.contributor.authorCuadrado, Felix
dc.contributor.authorParlikad, Ajith Kumar
dc.contributor.authorXu, Minxian
dc.contributor.authorWu, Huaming
dc.contributor.authorUhlig, Steve
dc.date.accessioned2025-05-07T10:53:12Z
dc.date.available2025-05-07T10:53:12Z
dc.date.issued2024en_US
dc.identifier.issn2377-3782
dc.identifier.urihttps://doi.org/10.1109/TSUSC.2023.3348157
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2518
dc.description.abstractServerless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and CO2 emission amount of these models are evaluated and compared for the training and prediction phases.en_US
dc.language.isoengen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.isversionof10.1109/TSUSC.2023.3348157en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInternet of Thingsen_US
dc.subjectServerless edge computingen_US
dc.subjectCold starten_US
dc.subjectDeep reinforcement learningen_US
dc.subjectSustainable resource managementen_US
dc.titleATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environmentsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.contributor.institutionauthorGolec, Muhammed
dc.identifier.volume9en_US
dc.identifier.issue6en_US
dc.identifier.startpage817en_US
dc.identifier.endpage829en_US
dc.relation.journalIEEE TRANSACTIONS ON SUSTAINABLE COMPUTINGen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster