Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMUKHANDI, HABIBU SHOMARI
dc.date.accessioned2020-07-21T12:37:09Z
dc.date.available2020-07-21T12:37:09Z
dc.date.issued2018en_US
dc.identifier.otherTez No: 513764
dc.identifier.urihttps://hdl.handle.net/20.500.12573/310
dc.description.abstractMachine learning refers to training of a computer (machine) to be able to acquire knowledge from data (i.e. experience) and improve itself on a given task. The field of machine learning has become a mainstream, improving hundreds of millions of lives. Fraudulent actions in computer networks, credit card transactions and website advertisement traffic might devastate large businesses and cause anually fiscal loss of billions of dollars around the globe. In this thesis, we propose various machine learning methods for three fraud detection problems: network anomaly detection, credit card fraud detection and detection of fraudulent clicks to advertisements on the internet. We design various classifiers such as logistic regression, k-nearest neighbors, decision tree, support vector machine, and ensemble classifiers such as random forest, bagging, stacking and AdaBoost. The hyper-parameters of the classifiers are optimized by performing cross-validation experiments on train sets. In the next step, the models are trained using the optimum hyper-parameter configurations and predictions are computed on test sets. Among the various methods compared the highest accuracy is obtained by ensemble learners.en_US
dc.language.isoengen_US
dc.publisherAbdullah Gül Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnomaly Detectionen_US
dc.subjectFraud Detectionen_US
dc.subjectNetwork Anomaly Detectionen_US
dc.subjectCredit Card Fraud Detection,en_US
dc.subjectFraud Detection for Advertisement Clicken_US
dc.subjectMachine Learningen_US
dc.subjectEnsemble Classifiersen_US
dc.titleDeveloping machine learning methods for network anomaly detectionen_US
dc.title.alternativeBilgisayar ağlarında anormal durum tespiti yapan öğrenme yöntemlerinin geliştirilmesien_US
dc.typemasterThesisen_US
dc.contributor.departmentAGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.contributor.institutionauthorMUKHANDI, HABIBU SHOMARI
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster