Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGormez, Yasin
dc.contributor.authorAydin, Zafer
dc.contributor.authorKarademir, Ramazan
dc.contributor.authorGungor, Vehbi C.
dc.date.accessioned2021-02-02T11:29:31Z
dc.date.available2021-02-02T11:29:31Z
dc.date.issued2020en_US
dc.identifier.issn1074-5351
dc.identifier.issn1099-1131
dc.identifier.urihttps://doi.org/10.1002/dac.4401
dc.identifier.urihttps://hdl.handle.net/20.500.12573/530
dc.description.abstractDetecting malicious behavior is important for preventing security threats in a computer network. Denial of Service (DoS) is among the popular cyber attacks targeted at web sites of high-profile organizations and can potentially have high economic and time costs. In this paper, several machine learning methods including ensemble models and autoencoder-based deep learning classifiers are compared and tuned using Bayesian optimization. The autoencoder framework enables to extract new features by mapping the original input to a new space. The methods are trained and tested both for binary and multi-class classification on Digiturk and Labris datasets, which were introduced recently for detecting various types of DDoS attacks. The best performing methods are found to be ensembles though deep learning classifiers achieved comparable level of accuracy.en_US
dc.language.isoengen_US
dc.publisherWILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USAen_US
dc.relation.isversionof10.1002/dac.4401en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectnetwork anomaly detectionen_US
dc.subjectmachine learningen_US
dc.subjectdenial of service attacksen_US
dc.subjectdeep learningen_US
dc.subjectautoencoderen_US
dc.titleA deep learning approach with Bayesian optimization and ensemble classifiers for detecting denial of service attacksen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volumeVolume: 33en_US
dc.identifier.issue11en_US
dc.relation.journalINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMSen_US
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster