Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKolukisa, Burak
dc.contributor.authorHacilar, Hilal
dc.contributor.authorGoy, Gokhan
dc.contributor.authorKus, Mustafa
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorAral, Atilla)
dc.contributor.authorGungor, Vehbi Cagri
dc.date.accessioned2021-05-20T09:58:26Z
dc.date.available2021-05-20T09:58:26Z
dc.date.issued2018en_US
dc.identifier.isbn978-1-5386-5035-6
dc.identifier.issn2639-1589
dc.identifier.urihttps://hdl.handle.net/20.500.12573/730
dc.descriptionThis work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project no 3180177.en_US
dc.description.abstractAccording to the World Health Organization (WHO), 31% of the world's total deaths in 2016 (17.9 million) was due to cardiovascular diseases (CVD). With the development of information technologies, it has become possible to predict whether people have heart diseases or not by checking certain physical and biochemical values at a lower cost. In this study, we have evalated a set of different classification algorithms, linear discriminant analysis and proposed a new hybrid feature selection methodology for the diagnosis of coronary heart diseases (CHD). Throughout this research effort, using three publicly available Heart Disease diagnosis datasets (UCI Machine Learning Repository), we have conducted comparative performance evaluations in terms of accuracy, sensitivity, specificity, F-measure, AUC and running time.en_US
dc.description.sponsorshipIEEE; IEEE Comp Soc; Expedia Grp; Baidu; Squirrel AI Learning; Ankura; Springer Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 3180177en_US
dc.language.isoengen_US
dc.publisherIEEE, 345 E 47TH ST, NEW YORK, NY 10017 USAen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectFeature Selectionen_US
dc.subjectLinear Discriminant Analysisen_US
dc.subjectData Miningen_US
dc.subjectCardiovascular Diseaseen_US
dc.titleEvaluation of Classification Algorithms, Linear Discriminant Analysis and a New Hybrid Feature Selection Methodology for the Diagnosis of Coronary Artery Diseaseen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.journal2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)en_US
dc.relation.tubitak3180177
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster