Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKacmaz, Rukiye Nur
dc.contributor.authorYilmaz, Bulent
dc.date.accessioned2021-05-21T08:54:24Z
dc.date.available2021-05-21T08:54:24Z
dc.date.issued2018en_US
dc.identifier.isbn978-1-5386-6852-8
dc.identifier.urihttps://hdl.handle.net/20.500.12573/735
dc.description.abstractUlcerative colitis (UC) is a disease in which inner surface of colon is inflamed. Ulcers and open scars on the colon are observed. The complaint in the flare period is the frequent bloody diarrhea. Complaints of people with UC increase and decrease periodically. Colonoscopy is the most preferred approach for the visualization of the gastrointestinal tract for the diagnosis and follow-up of related diseases, and UC in particular. The lack of experience of the colonoscopist, complicated locality of the lesion, and the rush in the colonoscopy suite to complete the procedure as soon as possible may cause mistakes in visual analysis. In this study, 200 colonoscopy images (100 normal, 100 UC) were used. The statistical features such as gray level variance, gray level local variance, normalized variance, histogram range, and entropy were extracted from the images, and a normalized 200x5 feature matrix was formed. The normal images and images with UC were discriminated using support vector machines and k-nearest neighbors. It should be noted that the extraction of only 5 features from the colonoscopy images resulted in 95% accuracy. This study demonstrated the feasibility of the development of software tools for aiding the physicians in the diagnosis of colon diseases.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi; Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumuen_US
dc.language.isoturen_US
dc.publisherIEEE, 345 E 47TH ST, NEW YORK, NY 10017 USAen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImage processingen_US
dc.subjectColonoscopyen_US
dc.subjectUlcerative colitisen_US
dc.titleDetection of Ulcerative Colitis From Colonoscopy Imagesen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.relation.journal2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster