Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCelik, Selahattin
dc.contributor.authorIbrahimoglu, Beycan
dc.contributor.authorToros, Serkan
dc.contributor.authorMat, Mahmut D
dc.date.accessioned2023-08-04T08:24:53Z
dc.date.available2023-08-04T08:24:53Z
dc.date.issued2014en_US
dc.identifier.issn1879-3487
dc.identifier.issn0360-3199
dc.identifier.otherWOS:000345803900041
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijhydene.2014.09.110
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1692
dc.description.abstractOne of the most common problems in solid oxide fuel cells (SOFCs) is the delamination and thus the degradation of electrode/electrolyte interface which occurs in the consequences of the stresses generated within the different layers of the cell. Nowadays, the modeling of this problem under certain conditions is one of the main issues for the researchers. The structural and thermo-physical properties of the cell materials (i.e. porosity, density, Young's modulus etc.) are usually assumed to be homogenous in the mathematical modeling of solid oxide fuel cells at macro-scale. However, during the real operation, the stresses created in the multiphase porous layers might be very different than those at macro-scale. Therefore, micro-level modeling is required for an accurate estimation of the real stresses and the performance of SOFCs. This study presents a microstructural characterization and a finite element analysis of the delamination and the degradation of porous solid oxide fuel cell anode and electrode/electrolyte interface under various operating temperatures, compressing forces and material compositions by using the synthetically generated microstructures. A multi physics computational package (COMSOL) is employed to calculate the Von Misses stresses in the anode microstructures. The maximum thermal stress in the electrode/electrolyte interface and three phase boundaries is found to exceed the yield strength at 900 C while 800 C is estimated as a critical temperature for the delamination and micro cracks due to thermal stress generated. The thermal stress decreases in the grain boundaries with increasing content of one of the phases (either Ni or YSZ) and the porosity of the electrode. A clamping load higher than 5 kg cm2 is also found to exceed the shear stress limit.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.isversionof10.1016/j.ijhydene.2014.09.110en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSolid oxide fuel cellen_US
dc.subjectMicro level modelingen_US
dc.subjectStress analysisen_US
dc.subjectAnodeen_US
dc.titleThree dimensional stress analysis of solid oxide fuel cell anode micro structureen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-6395-4424en_US
dc.contributor.institutionauthorIbrahimoglu, Beycan
dc.identifier.volume39en_US
dc.identifier.issue33en_US
dc.identifier.startpage19119en_US
dc.identifier.endpage19131en_US
dc.relation.journalINTERNATIONAL JOURNAL OF HYDROGEN ENERGYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster