Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models
Özet
Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies.
Kaynak
APPLIED SCIENCES-BASELCilt
12Sayı
7Koleksiyonlar
İlgili Öğeler
Başlık, yazar, küratör ve konuya göre gösterilen ilgili öğeler.
-
AMP-GSM: Prediction of Antimicrobial Peptides via a Grouping–Scoring–Modeling Approach
Soylemez, Ummu Gulsum; Yousef, Malik; Bakir-Gungor, Burcu (MDPI, 2023)Due to the increasing resistance of bacteria to antibiotics, scientists began seeking new solutions against this problem. One of the most promising solutions in this field are antimicrobial peptides (AMP). To identify ... -
Natural Molecule-Incorporated Magnetic Organic-Inorganic Nanoflower: Investigation of Its Dual Fenton Reaction-Dependent Enzyme-Like Catalytic Activities with Cyclic Use
Dadi, Seyma; Cardoso, Marlon Henrique; Mandal, Amit Kumar; Franco, Octavio Luiz; Ildiz, Nilay; Ocsoy, Ismail (WILEY-V C H VERLAG GMBH, 2023)The functional organic-inorganic hybrid nanoflowers (hNFs) have recently attracted considerable attention due to enhanced catalytic activity and stability. The main purpose of this study is to synthesize new Fenton reagents ... -
Green Synthesis of Silver Nanoparticles Using Walnut Shell Powder and Cynara sp. and their Antibacterial Activities
Erdem, İlker; Çakır, Şerife (Hacettepe Üniversitesi, 2022)The silver (Ag) is a well-known material with interesting properties (i.e. catalytic activity, antimicrobial, etc.). The nanosized particles of silver propose enhanced properties due to having relatively higher surface ...