Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBakır Güngör, Burcu
dc.contributor.authorSöylemez, Ümmü Gülsüm
dc.contributor.authorYousef, Malik
dc.contributor.authorKesmen, Zulal
dc.contributor.authorBüyükkiraz, Mine Erdem
dc.date.accessioned2022-07-01T08:40:07Z
dc.date.available2022-07-01T08:40:07Z
dc.date.issued2022en_US
dc.identifier.issn2076-3417
dc.identifier.urihttps://doi.org/10.3390/app12073631
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1307
dc.description.abstractAntimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies.en_US
dc.description.sponsorship-Zefat Academic College -Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/app12073631en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectantimicrobial peptide (AMP)en_US
dc.subjectmachine learningen_US
dc.subjectclassification modelen_US
dc.subjectantimicrobial peptide predictionen_US
dc.subjectantimicrobial activityen_US
dc.subjectphysico-chemical propertiesen_US
dc.subjectlinear cationic antimicrobial peptidesen_US
dc.titlePrediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Modelsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorIDABC-1093-2021en_US
dc.contributor.authorID0000-0001-8780-6303en_US
dc.contributor.authorID0000-0002-4505-6871en_US
dc.contributor.authorID0000-0002-6602-772Xen_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.institutionauthorBakır Güngör, Burcu
dc.identifier.volume12en_US
dc.identifier.issue7en_US
dc.identifier.startpage1en_US
dc.identifier.endpage27en_US
dc.relation.journalAPPLIED SCIENCES-BASELen_US
dc.relation.tubitak120Z565
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster