Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorZeybek, Halil
dc.contributor.authorKarakoç, Battal Gazi
dc.date.accessioned2022-11-14T06:56:01Z
dc.date.available2022-11-14T06:56:01Z
dc.date.issued2016en_US
dc.identifier.urihttps://doi.org/10.1186/s40064-016-1773-9
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1406
dc.description.abstractIn this work, we construct the lumped Galerkin approach based on cubic B-splines to obtain the numerical solution of the generalized regularized long wave equation. Applying the von Neumann approximation, it is shown that the linearized algorithm is unconditionally stable. The presented method is implemented to three test problems including single solitary wave, interaction of two solitary waves and development of an undular bore. To prove the performance of the numerical scheme, the error norms [Formula: see text] and [Formula: see text] and the conservative quantities [Formula: see text], [Formula: see text] and [Formula: see text] are computed and the computational data are compared with the earlier works. In addition, the motion of solitary waves is described at different time levels.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1186/s40064-016-1773-9en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCubic B-splineen_US
dc.subjectGRLW equationen_US
dc.subjectLumped Galerkin methoden_US
dc.subjectSolitary wavesen_US
dc.subjectUndular boreen_US
dc.titleA numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-splineen_US
dc.typearticleen_US
dc.contributor.departmentAGÜen_US
dc.contributor.institutionauthorZeybek, Halil
dc.identifier.issue199en_US
dc.identifier.startpage1en_US
dc.identifier.endpage17en_US
dc.relation.journalSpringer Plusen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster