Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGormez, Yasin
dc.contributor.authorAydin, Zafer
dc.date.accessioned2023-07-14T06:10:06Z
dc.date.available2023-07-14T06:10:06Z
dc.date.issued2023en_US
dc.identifier.issn1545-5963
dc.identifier.issn1557-9964
dc.identifier.otherWOS:000965674700029
dc.identifier.urihttps://doi.org/10.1109/TCBB.2022.3191395
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1617
dc.description.abstractProtein secondary structure, solvent accessibility and torsion angle predictions are preliminary steps to predict 3D structure of a protein. Deep learning approaches have achieved significant improvements in predicting various features of protein structure. In this study, IGPRED-Multitask, a deep learning model with multi task learning architecture based on deep inception network, graph convolutional network and a bidirectional long short-term memory is proposed. Moreover, hyper-parameters of the model are fine-tuned using Bayesian optimization, which is faster and more effective than grid search. The same benchmark test data sets as in the OPUS-TASS paper including TEST2016, TEST2018, CASP12, CASP13, CASPFM, HARD68, CAMEO93, CAMEO93_HARD, as well as the train and validation sets, are used for fair comparison with the literature. Statistically significant improvements are observed in secondary structure prediction on 4 datasets, in phi angle prediction on 2 datasets and in psi angel prediction on 3 datasets compared to the state-of-the-art methods. For solvent accessibility prediction, TEST2016 and TEST2018 datasets are used only to assess the performance of the proposed model.en_US
dc.language.isoengen_US
dc.publisherIEEE COMPUTER SOCen_US
dc.relation.isversionof10.1109/TCBB.2022.3191395en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeature extraction or constructionen_US
dc.subjectmachine learningen_US
dc.subjectprotein structure predicitionen_US
dc.subjectbioinformaticsen_US
dc.subjectdeep learningen_US
dc.titleIGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibilityen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-7686-6298en_US
dc.contributor.institutionauthorAydin, Zafer
dc.identifier.volume20en_US
dc.identifier.issue2en_US
dc.identifier.startpage1104en_US
dc.identifier.endpage1113en_US
dc.relation.journalIEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster