dc.contributor.author | Hamdan, Mutasem Q. | |
dc.contributor.author | Lee, Haeyoung | |
dc.contributor.author | Triantafyllopoulou, Dionysia | |
dc.contributor.author | Borralho, Ruben | |
dc.contributor.author | Kose, Abdulkadir | |
dc.contributor.author | Amiri, Esmaeil | |
dc.contributor.author | Mulvey, David | |
dc.contributor.author | Yu, Wenjuan | |
dc.contributor.author | Zitouni, Rafik | |
dc.contributor.author | Pozza, Riccardo | |
dc.contributor.author | Hunt, Bernie | |
dc.contributor.author | Bagheri, Hamidreza | |
dc.contributor.author | Foh, Chuan Heng | |
dc.contributor.author | Heliot, Fabien | |
dc.contributor.author | Chen, Gaojie | |
dc.contributor.author | Xiao, Pei | |
dc.contributor.author | Wang, Ning | |
dc.contributor.author | Tafazolli, Rahim | |
dc.date.accessioned | 2024-01-25T08:21:12Z | |
dc.date.available | 2024-01-25T08:21:12Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 1424-8220 | |
dc.identifier.other | WOS:001099561900001 | |
dc.identifier.uri | https://doi.org/10.3390/s23218792 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1901 | |
dc.description.abstract | The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MDPI | en_US |
dc.relation.isversionof | 10.3390/s23218792 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | open radio access networks | en_US |
dc.subject | machine learning | en_US |
dc.subject | artificial intelligence | en_US |
dc.title | Recent Advances in Machine Learning for Network Automation in the O-RAN | en_US |
dc.type | article | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.contributor.authorID | 0000-0002-6877-1392 | en_US |
dc.contributor.institutionauthor | Kose, Abdulkadir | |
dc.identifier.volume | 23 | en_US |
dc.identifier.issue | 21 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 35 | en_US |
dc.relation.journal | SENSORS | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |